ECE276B: Planning & Learning in Robotics
Lecture 12: Model-free Control

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhI355Q@eng.ucsd.edu
Jinzhao Li: jil016@eng.ucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:jil016@eng.ucsd.edu

Model-free Generalized Policy lteration

» Model-based case: our main tool for solving a stochastic
infinite-horizon problem was Generalized Policy Iteration (GPI):

» Policy Evaluation: Given 7, compute V™:
VF(X) = E(X, 71'(X)) + ,YEX/NPf(*lx,ﬂ'(X)) [V”(x/)] s Vx e X
» Policy Improvement: Given V™ obtain a new policy 7'

7' (x) = argmin {£(x,u) + VB wp () [VT(X)]}, ¥XxEX
ucld(x)

Q7 (x,u)
» Model-free case: is it still possible to implement the GPI algorithm?

» Policy Evaluation: given 7, we saw in the previous lecture that MC or
TD learning can be used to estimate V™ or Q™

» Policy Improvement: computing 7’ based on V™ requires access to
£(x,u) but based on Q™ can be done without knowing ¢(x, u):

7' (x) = argmin Q" (x, u)
ueld(x)

Policy Evaluation (Recap)

» Given T, iterate 7, to compute V™ or Q™ via Dynamic Programming
(DP), Temporal Difference (TD), or Monte Carlo (MC)

» DP needs a model but TD and MC are model-free

» Value function:

DP : Tr[V](xe) = €(xe, m(xt)) + VB, s (-xesm(xe)) [V (Xe41)]
TD : Tr[V](xt) = V(xt) + a [f(xe,ur) + 7V (xe11) — V(xt)]
T-t-1

Z YEUXe ko ue i)+ talxr) = V(xe)
k=0

MC : TR[V](x¢) = V(x¢) + «

» Q function:

DP : 7;1'[(?](Xf7 uf) = E(Xh ut) + 7Ext+1~Pf('|X:7Uz) [Q(Xt-‘rl’ 71—(X7f+1))]
TD : TA[Q](xt, ur) = Q(xe, ue) + v [l(xe, ur) + YQ(Xet1, Ur+1) — Q(xe, ut)]

MC : T [Ql(xt, ur) =~ Q(x¢, ut) +

T-t-1
Z Ve ves) + 97 alxr) = Qxe, Ut)]
k=0

3

Model-free Policy Improvement

» If Q7, instead of V™, is estimated via MC or TD, the policy
improvement step can be implemented model-free, i.e., can compute
min, Q™ (x, u) without knowing the motion model pr or the state cost ¢

» The fact that Q™ is an approximation to the true Q-function still causes
problems:

» Picking the “best” control according to the current estimate @™ might
not be the actual best control

> If a deterministic policy is used for Evaluation/Improvement, one will
observe returns for only one of the possible controls at each state and also
might not visit many states. Hence, estimating Q™ will not be possible at
those never-visited states and controls.

Example: Greedy Control Selection (David Silver)

| 2

>

There are two doors in front of you

You open the left door and get reward 0
((left) =0

You open the right door and get reward +1
U(right) = —1

You open the right door and get reward +3
{(right) = =3

You open the right door and get reward +2
{(right) = =2

Are you sure the right door is the best
long-term choice?

“Behind one door |s tenure - behind the other
is flipping burgers at McDonald's.”

Model-free Control

» Two ideas to ensure that you do not commit to the wrong controls too
early and continue exploring the state and control spaces:

1. Exploring Starts: in each episode p(K) ~ 7, choose initial state-control
pairs with non-zero probability among all possible pairs X x U

2. e-Soft Policy: a stochastic policy under which every control has a
non-zero probability of being chosen and hence every reachable state will
have non-zero probability of being encountered

First-visit MC Policy Iteration with Exploring Starts

Algorithm 1 MC Policy lteration with Exploring Starts

1: Init: Q(x,u),w(x) for all x € X andu e U

2: loop

3: Choose (xg,ug) € X x U randomly > exploring starts!
4. Generate an episode p = Xo, Ug, X1, U1, ...,X7T_1,Us—1,XT from 7

5: for each x,u in p do

6: L < return following the first occurrence of x,u

7: Q(x,u) < Q(x,u) + a(L — Q(x,u))

8: for each x in p do

9:

w(x) < arg min Q(x, u)

e-Greedy Exploration

| 2

>

An alternative to exploring starts

To ensure exploration it must be possible to encounter all |/(x)]
controls at state x with non-zero probability

e-Soft Policy: a stochastic policy that picks each control with

probability of at least Ol

€

U (x)]

m(ulx) =P(us = u | x = x) > Vx € X, u € U(x)
e-Greedy Policy: a stochastic policy that picks the best control
according to Q(x,u) in the policy improvement step but ensures that all
other controls are selected with a small (non-zero) probability:

1—€+ G if u=argmin Q(x,u’)
m(u|x) =Plus =u| x; =x) := u’€U(x)

m otherwise

Bellman Equations with a Stochastic Policy

» Value function of a stochastic policy :

VT(x) :=Eug x1,u1,%,... [Z YH(x¢,u¢) | X0 = x]
t=0
=Euen(ey [£06 1) + VB (e [V (X)]]
:/ [E(x,u) +’y/ (VT (x)] pf(x’|x,u)dx’} 7(u|x)du
U(x) X
:Ewwr(-\x) [Qﬂ(x7 u)]

» Q function of a stochastic policy 7

Q7 (x,u) :=l(x,u) + Ex, u,,... [Z Vtﬁ(xt, us) | xo = x,up = u]

t=1

={(x,u) + 'YEX’NPf('\x,u),u’rwr(~|x’) [QW(Xla u/)]

e-Greedy Policy Improvement

Theorem: e-Greedy Policy Improvement

For any e-soft policy 7 with associated @™, the e-greedy policy 7’ with
respect to Q™ is an improvement, i.e., V™ (x) < V7(x) for all x € X

» Proof:
]EU/NT('/("X) [Qw(x’u/)] = Z 71-/(u/ | X)Qﬂ(xa u/)
u’el(x)
— ¢ ™ / _ H ™
- |Z/{(X)| u/ezu:(x) Q (X7 u) + (1 6) ug/ll?x) Q (X, U)

€ T(x. u . W("|x)_m (%
= UM Z>Q(’")+(1 9D g Qlxw

W eU(x uel(x)

= Z m(u | x)Q™(x,u) = V™(x)

ueld(x)

10

e-Greedy Policy Improvement

» Then, similarity to the policy improvement theorem for deterministic
policies, for all x € X:

VT (x) > EUONW'() [Q7(x, uo)]
Eugrere' () [0, U0) + 1By (x,u0) [V (X1)]]
> IEuo~7r'([x) [E(Xa U()) + ’VExlNPf('|XaUO) [EUINW/("XI) [Qﬂ(xl’ ul)]“
(-

=E ug~’(+|x) [ﬁ(x, UO) + YEx; u; [g(xlv ul) + VEx, Vw(x2)]]
00
>0 > E,OONﬂ'/ [Z ytﬁ(xt, ut)

xo =x| = V™ (x)

t=0

11

First-visit MC Policy lteration with e-Greedy Improvement

Algorithm 2 First-visit MC Policy Iteration with e-Greedy Improvement

1: Init: Q(x,u), m(u|x) (e-soft policy) for all x € X and u € U

2: loop

3: Generate an episode p := Xo, Ug, X1, U1, ...,XT—1,Us_1,XT from m
4. for each x,u in p do

5: L < return following the first occurrence of x,u

6: Q(x,u) + Q(x,u) + a(L — Q(x,u))

7 for each x in p do

8:

u* < arg min Q(x, u)
1—€+m ifu:u*

m(ufx) {E if uu*

[U(x)]

©

Temporal-Difference Control

» TD prediction has several advantages over MC prediction:
» Works with incomplete episodes

» Can perform online updates to Q™ after every transition

» The TD estimate of Q@™ has lower variance than the MC one
» TD in the policy iteration algorithm:

» Use TD for policy evaluation

> Can update Q(x,u) after every transition within an episode

» Use an e-greedy policy for policy improvement because we still need to
trade off exploration and exploitation

13

TD Policy Iteration with e-Greedy Improvement (SARSA)

» SARSA: estimates the action-value function Q™ using TD updates after
every S, A¢, Rey1, St41, Ary1 transition:

Q(Xtv uf) «— Q(Xta ut) +a [g(xta ut) + ’YQ(XH-lv uf+1) - Q(Xta ut)]

» Ensures exploration via an e-greedy policy in the policy improvement step

Algorithm 3 SARSA

1: Init: Q(x,u) for all x € X and all u € U

2: loop

3: m < e-greedy policy derived from Q

4: Generate episode p := Xg, Ug, X1, U1, ...,XT_1,Us_1,XT from 7
5: for (x,u,x’,u’) € p do

6: Q(x,u) < Q(x,u) + a[l(x,u) + yQ(x',u’") — Q(x,u)]

14

Convergence of Model-free Policy lteration

» Greedy in the Limit with Infinite Exploration (GLIE):
> All state-control pairs are explored infinitely many times: klim Ni(x,u) = co
—00

> The e-greedy policy converges to a greedy policy wrt u* = arg min Q(x, u).
uel(x)

» Example: If ¢, = % then e-greedy is GLIE

1—e+ 5 ifu=u* 1 ifu=u*
m(u|x):—{ e Jm wk<u|x)—{0 -
—»00 ITu u

Theorem: Convergence of Model-free Policy Iteration

Both MC Policy Iteration and SARSA converge to the optimal action-value
function, Q(x,u) — Q*(x,u), as the number of episodes k — o as long as:

» the sequence of e-greedy policies mx(u | x) is GLIE,

» the sequence of step sizes ay is Robbins-Monro.

15

On-Policy vs Off-Policy Learning

» On-policy Prediction: estimate V™ or Q™ using experience from 7

» Off-policy Prediction: estimate V™ or Q™ using experience from g

» On-policy methods:
» evaluate or improve the policy 7 that is used to make decisions and
collect experience
> require well-designed exploration functions
» empirically successful with function approximation

» Off-policy methods:
> evaluate or improve a policy 7 that is different from the (behavior) policy
1 used to generate data
can use an effective exploratory policy u to generate data while learning
about an optimal policy
can learn from observing other agents (or humans)
can re-use experience from old policies 71, m, ..., Tk_1
can learn about multiple policies while following one policy
have problems with function approximation and eligibility traces

v

vvyvyy

16

Importance Sampling for Off-policy Learning

» Off-policy learning: use returns generated from p to evaluate 7

» The stage costs obtained from p, need to be re-weighted according to
the similarity (i.e., likelihood) of the states encountered by 7

» Importance Sampling: estimates the expectation of a function ¢(x)
with respect to a probability density function p(x) by computing a
re-weighted expectation over a different probability density g(x):

Eypy 03] = / p(x)E(x)dx

= / q(x)’;ﬁgf(x)dx = Exvq() [ZEXW)}

17

Importance Sampling for Off-policy MC Learning

» To use returns generated from p to evaluate m via MC, weight the
long-term cost L; via importance-sampling corrections along the whole
episode:

Lﬂ/u _ m(ue|xe) m(uei1]Xer1) m(ur_1|x7-1) L
= o .
‘ M(Ut’Xt) M(Ut+1|xt+1) H(UT—lfxT—l)

» Update the value estimate towards the corrected return:
V™ (x¢) < V™ (xe) + o (L‘;‘/“ - V’r(xt)>

» Note: importance sampling in MC can dramatically increase variance

18

Importance Sampling for Off-policy TD Learning

» To use returns generated from u to evaluate 7 via TD, weight the TD
target £(x,u) + vy V/(x') by importance sampling:

V) V() (T () 49V) = V)

» Importance sampling in TD is much lower variance than in MC and the
policies need to be similar (i.e., u should not be zero when 7 is
non-zero) over a single step only

19

Off-policy TD Control without Importance Sampling

» Q-Learning (Watkins, 1989): one of the early breakthroughs in
reinforcement learning was the development of an off-policy TD
algorithm that does not use importance sampling

» Q-Learning approximates 7.[Q](x, u) directly using samples:

Q(x¢,ue) Q(x¢,up)+a | €(xe,ue) + eZT(in | Q(xe41,u) — Q(x¢, uy)
u Xt+1

» The learned Q function eventually approximates Q* regardless of the
policy being followed!

Theorem: Convergence of Q-Learning

Q-Learning converges almost surely to @* assuming all state-control pairs
continue to be updated and the sequence of step sizes ay is Robbins-Monro.

» C. J. Watkins and P. Dayan. “Q-learning,” Machine learning, 1992.
20

Q-Learning: Off-policy TD Learning

Algorithm 4 Q-Learning

1. Init: Q(x,u) for allx € X and allu e U

2: loop

3: T < e-greedy policy derived from @ > 7 can be arbitrary!
4: Generate episode p := Xg, Ug, X1, U1, ...,XT_1,Us_1,XT from 7

5: for (x,u,x’) € p do

6: Q(x,u) + Q(x,u) + a[l(x,u) + v miny Q(X',u") — Q(x,u)]

21

Relationship Between Full and Sample Backups

Full Backups (DP) Sample Backups (TD)

Policy Evaluation TD Prediction

V(x) + T=[V](x) = £(x, (X)) + VEx [V(x’)} V(x) + V(x) + a(l(x,u) + vV (x') — V(x))

Policy Q-Evaluation TD Prediction Step in SARSA

Q(x,u) « Tr[Q](x,u) = £(x,u) + yEx [Q(x/. w(x'))} Q(x,u) + Q(x,u) + a(f(x,u) + yQ(xX',u’) — Q(x,u))
Value Iteration N/A

V(x) + T[V](x) = muin {(x,u) +vEx [V(x)] }

Q-Value lteration Q-Learning

Q(x,u) < T[Q](x,u) = £(x,u) + YEx [n:,'/n Q(x’7u’)] Q(x,u) + Q(x,u) + (((x, u) + 'yr’r:liln QX ') — Q(x, u)>

22

Batch Sampling-based Q-Value Iteration

Algorithm 5 Batch Sampling-based Q-Value Iteration

1: Init: Qo(x,u) forallx € X and allue U/

2:
3:
4:

a

loop

7 < e-greedy policy derived from Q;
Generate episodes {p(K)}K_ from
for (x, u)eXxZ/ldo

T(K)

(k)

xt aut

)=

(x, u)}

Zzt o T[], u), Ei)o 1{(

Qit1(x,u)
+ T(k)]l{((k))

(x,u)}

» Batch Sampling-based Q-Value Iteration behaves like

Qi+1

= T.[Qi] + noise. Does it actually converge?

23

L east-squares Backup Version
> Qualx, u)—mean{ﬂ[Q,](xtk),ut) x0)), vk, t such that (x{9, ul) = (x, u)}
» Note that: mean {x k)} = arg min Zk:l [x(K) — x||2

> Qit1(x,u) =arg mlnz Z ’

=1 (x{9,ul)=(x,u)
K TW®)

> Qit1 = argmmZZ‘

k=1 t=0

TAQI, uf, x9) — |

TAQIC, uf?, x0) — Q) ul) |

Algorithm 6 Batch Least-squares Q-Value lteration

1. Init: Qo(x,u) for all x € X and allu e Y
2: loop

3: 7 < e-greedy policy derived from Q;
4 Generate episodes {p(K)}K_ from

K T®

Q,_H—argmanZHT[Q, ng),ut) t+1) Q(ng)vut)H

k=1 t=0 24

a

Small Steps in the Backup Direction
» Full backup: Qi1 < 7[Qi] + noise
» Partial backup: Qi1 + aT.[Qi] + (1 — @) Q; + noise
» Equivalent to a gradient step on squared error objective function:
Qi+1 < aT:[Qi] + (1 — @) Q; + noise
= Qi + a(T:[Qi] — @) + noise

+ noise)
QR=Q;

» Behaves like stochastic gradient descent for f(Q) := %H’E[Q,] - QJ?
but the objective is changing, i.e., T.[Q;] is a moving target

1
=Qi—« <2VQH7;[QI] - QJ?

» Stochastic Approximation Theory: a “partial update” to ensure
contraction + appropriate step size v implies convergence to the
contraction fixed point: lim;_ . Q; = Q*

» T. Jaakkola, M. Jordan, S. Singh, “On the convergence of stochastic
iterative dynamic programming algorithms,” Neural computation, 19945

L east-squares Partial Backup Version

Algorithm 7 Batch Gradient Least-squares Q-Value Iteration

1: Init: Qo(x,u) forallx e X and allue U/

2: loop
3: 7w < e-greedy policy derived from Q;
4: Generate episodes {p(K)}K_ from
K T
«
5 Qe Q- 5V | DD ITI@I", u <) - o(xﬁ“,uﬁk’w]
k=11t=0

QR=Q;

» Watkins Q-learning is a special case with T =1

26

