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Continuous-time System Dynamics

> time: t € [0, T]
> state: x(t) € X CR", Vt € [0, T]
» control: u(t) ed CR™, Vte [0, T]
» motion model: a stochastic differential equation (SDE):
x(t) = f(x(t), u(t)) + C(x(t), u(t))w(t)
defined by functions f : X x U — R" and C : X x U — R"™*d

> white noise: w(t) € RY, Vt € [0, T]



Gaussian Process

» A Gaussian Process with mean function pu(t) and covariance function
k(t,t') is an R9%valued continuous-time stochastic process {g(t)}, such

that every finite set g(t1),...,g(t,) of random variables has a joint
Gaussian distribution:
g(t1) w(ty) k(ti,t1) ... k(ti,tn)
: ~N : , : :
g(tn) V’(tn) k(tnatl) k(tnvtn)

» Short-hand notation: g(t) ~ GP(u(t), k(t,t"))

» Intuition: a GP is a Gaussian distribution for a function g(t)



Brownian Motion

» Robert Brown made microscopic observations in 1827 that small
particles in plant pollen, when immersed in liquid, exhibit highly irregular
motion

» Brownian Motion is an R%valued continuous-time stochastic process
{B(t)};>( with the following properties:

> (3(t) has stationary independent increments, i.e., for
0<ty<t; <...<tn B(to),B(t1) — B(t),--.,B(tn) — B(tn—1) are
independent
> B(t) — B(s) ~N(0,(t — s)Q) for 0 < s < t and diffusion matrix Q
> 3(t) is almost surely continuous (but nowhere differentiable)

» Standard Brownian Motion: 3(0) =0 and Q =/

» Brownian motion is a Gaussian process 3(t) ~ GP(0, min {t,t'} Q)



White Noise

> White Noise is an R%valued continuous-time stochastic process
{w(t)};~( with the following properties:

> w(ty) and w(ty) are independent if t; # t,
> w(t) is a Gaussian process GP(0,d(t — t')Q) with spectral density Q,
where § is the Dirac delta function.

» The sample path of w(t) is discontinuous almost everywhere

» White noise is unbounded: it takes arbitrarily large positive and negative
values at any finite interval

» White noise can be considered the formal derivative of Brownian

motion: dB3(t) = w(t)dt, where 3(t) ~ GP(0, min{t,t'} Q)

» White noise is used to model the motion noise in continuous-time
systems of ordinary differential equations






Continuous-time Stochastic Optimal Control

» Infinite-dimensional dynamic constrained optimization:

.
minV/"(0, o) = E{/O o(x(t), (t, x(t))) dt + q(x(T))

stage cost terminal cost
s.t. x(t) = f(x(t), 7(t,x(t))) + C(x(t), 7(t,x(t)))w(t).
x(t) € X, n(t,x(t)) € PCO([0, T],U)

x(0) = xo}

» Admissible policies: PCO([0, T],i) is the set of piecewise continuous
functions from [0, T] to U

» Problem variations:
> x(0) can be given or free for optimization
» x(T) can be in a given target set T or free for optimization

» T can be given or free for optimization

» Additional state and control constraints can be imposed via X and U



Assumptions

» f is continuously differentiable wrt to x and continuous wrt u

» Existence and Uniqueness: for any admissible policy 7 and initial
x(7) € X, 7 € [0, T], the noise-free system, x(t) = f(x(t), 7(t,x(t))),
has a unique state trajectory x(t), t € [r, T].

» The stage cost ¢(x, u) is continuously differentiable wrt x and
continuous wrt u

» The terminal cost q(x) is continuously differentiable wrt x



Examples: Existence and Uniqueness

» Example: Existence in not guaranteed in general
x(t) = x(t)?, x(0) =1

Solution does not exist forT > 1: x(t) = 13

» Example: Uniqueness in not guaranteed in general

Infinite number of solutions : 0 foro<t<r
t 2 3/2
(5(t—7)) fort > 71



Special case: Calculus of Variations

» Let C1([a, b],R™) be the set of continuously differentiable functions
from [a, b] to R™

» Calculus of Variations: find a curve y(x) from yg to yr that minimizes
a certain objective such as curve length or travel time for a particle
accelerated by gravity (Brachistochrone Problem)

Uy ))d
yea?ﬂ;";] 2 / ))dx + a(y(b))
= Yo, ¥(b) =yr

» Special case of continuous-time deterministic optimal control:

> fully-actuated system: x =u
> notation: x(t) « y(x), u(t) = x(t) + y(x)
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Optimal Value Function
> Optimal policy: u*(t) := 7*(t, x(t))
» Optimal value function:

V*(t,x) < V™(t,x), Yre PCO[0, T, U),x € X

HJB PDE

The Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) is
satisfied for all time-state pairs (t,x) by the optimal value function V*(t,x):

V*(T,x)=q(x), VxeX
0

~ 5 V*(t,x) = uénui?x) {E(x, u) + V, V*(t,x) " f(x,u) + %tr (Z(x,u) [VAV*(t, x)])}

for all t € [0, T] and x € X and where ¥ (x,u) := C(x,u)C"(x,u).

» The HJB PDE is the continuous-time analog of the Bellman Equation
11



HJB PDE Derivation

» A discrete-time approximation of the cont.-time optimal control problem
can be used to derive the HJB PDE from the DP algorithm
» Motion model: x = f(x,u) + C(x, u)w with x(0) = xo
» Euler Discretization of the SDE with time step 7:
> Discretize [0, T] into N pieces of width 7 := [
> Define xx := x(k7) and uy := u(k7) for k=0,..., N
> Discretized system dynamics:
Xk+1 :Xk+Tf(Xk,Uk)+ C(Xhuk)ek, €k NN(O,T/)
=Xk +dg, dg NN(Tf(Xk,Uk),TZ(Xk,Uk))
where ¥ (x,u) = C(x,u)C " (x,u) as before

» Gaussian motion model: ps(x' | x,u) = ¢(x; x + 7f(x, u), 7X(x, u)),
where ¢ is the Gaussian probability density function

> Discretized stage cost: 7¢(x,u)
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HJB PDE Derivation

» Idea: apply the Bellman Equation to the now discrete-time problem and
take the limit as 7 — 0 to obtain a “continuous-time Bellman Equation”

» Bellman Equation: finite-horizon problem with t := k71

V(t,x) = uénb;? {T0(x,u) + B oy (jxy [V(E+7,X)]}

» Note that X' = x + d where d ~ N(7f(x,u), 7Z(x,u))

» Taylor-series expansion of V(t + 7,x’) around (t,x):

V(t+7,x+d) =V(t,x) + T%—\t/(t,x) + 0(72)

VAV x)] T d+ %dT V2V(t,x)] d + o(d?)
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HJB PDE Derivation

> Note that E [d" Md]| = p" Mp + tr(EM) for d ~ N(p, ¥) so that:

oV
Ex/pr(.|x7u) [V(t + 7, X/)] = V(t, X) + Tﬁ(t’ X) + O(T2)

[V V()] F(x,u) + %tr (Z(x,u) [V2V(t,x)])
» Substituting in the Bellman Equation and simplifying, we get:

7_2
0= min {€<x7u)+%f(t,x)+[VXV(t,x)1Tf(x7u)+%tr(i(x,u) [vsvu,x)]wy}

ucld(x)

» Taking the limit as 7 — 0 (assuming it can be exchanged with
minyey(x)) leads to the HIB PDE:

oV

~ 5 —(t,x) = ug?/;? {E(x, u) + [V V(t,x)] " f(x,u) + %tr (Z(x,u) [V2V(t, x)])}
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Infinite-Horizon Stochastic Optimal Control

> V7 (x) :JE{ b e\_; U(x(t), 7(t,x(t)))dt | with v € [0, 0)

discount

HJB PDEs for the Optimal Value Function

Hamiltonian: H[x,u, p(-)] = £(x,u) + p(x) " f(x,u) + %tr (Z(x,u)[Vxp(x)])

*

Finite Horizon: —2Y_(t,x) = min Hpou, VoV*(5,)],  VA(T,%) = q(x)
ueld(x)

ot
First Exit: 0= mL;?)H[x7 u, V, V*(-)], V*(x) = q(x),Vx € T
uct(x
Discounted: 1V*(x) = min H[x,u, V4 V*(:)]
' vy a uel(x) T
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Existence and Uniqueness of HJB PDE Solutions

» The HJB PDE has at most one classical solution — a function which
satisfies the PDE everywhere

» If a classical solution exists then it is the optimal value function

» The HJB PDE may not have a classical solution, in which case the
optimal value function is not smooth (e.g., bang-bang control)

» The HJB PDE always has a unique viscosity solution which is the
optimal value function

» Approximation schemes based on MDP discretization are guaranteed to
converge to the unique viscosity solution

» Most continuous function approximation schemes (which scale better)
are unable to represent non-smooth solutions

» All examples of non-smoothness seem to be deterministic, i.e., noise
tends to smooth the optimal value function
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Example 1: Guessing a Solution for the HJB PDE

>

>

System: x(t) = u(t), |u(t)| <1,0<t<1
Costs: £(x,u) =0 and q(x) = 3x> for all x € X and u € U

Since we only care about the square of the terminal state, we can
construct a candidate optimal policy that drives the state towards 0 as
quickly as possible and maintains it there:

-1 ifx>0
m(t,x) = —sgn(x) =<0 ifx=0
1 if x <0

The value in not smooth: V™(t,x) = 1 (max {0, x| — (1 — t)})?

We will verify that this function satisfies the HJB and is therefore indeed
the optimal value function
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Example 1: Partial Derivative wrt x

» Value function and its partial derivative wrt x for fixed t:

VT (t x) = %(max {0, x| = (1 = £)})? 8‘/;(;“) — sgn(x) max{0, x| — (1 — t)}
Jﬂ:(t,x) BJ"a(t,x)

—(1—1) /
—(1—t) 0 (1-1) x / 0 (1—1) x
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Example 1: Partial Derivative wrt t

» Value function and its partial derivative wrt t for fixed x:

- o 1 2 8V7T(t,X)
V7 (t,x) = > (max {0, [x| — (1 - t)}) o
JH(t,x)
el — 1 x| —1
0 1—|x] 0
—|xI>1
— =1

= max{0, |x| — (1 — t)}

1— x|

1
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Example 1: Guessing a Solution for the HJB PDE

> Boundary condition: V™(1,x) = 3x% = g(x)

» The minimum in the HJB PDE is obtained by u = —sgn(x):

ITIiSnl (8\/:’)(:7 2 6\/;(;7 . u> B |T|i§n1 (1 + sgn(x)u) (max{0, |x| — (1 — t)})) =

» Conclusion: V™(t,x) = V*(t,x) and 7*(t,x) = —sgn(x) is an optimal
policy

» Solving the HIB PDE in general is non-trivial
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Example 2: HJB PDE without a Classical Solution

>

>

System: x(t) = x(t)u(t), |u(t)] <1,0<t<1

Costs: ¢(x,u) =0 and q(x) =x forall x € X and u € U

Optimal policy:
-1 ifx>0
m(t,x) =40 ifx=0
1 if x<0
Optimal value function:
et“Ix x>0
VT(t,x) =<0 x=0 xe

el“tx x<0

J, (%,x)

»
g
wie

ol

The value function is not differentiable wrt x at x = 0 and hence does
not satisfy the HIB PDE in the classical sense
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Optimality Conditions

» The HJB PDE is not a necessary condition for optimality of the
continuous-time optimal control problem but it is sufficient

Theorem: HJB PDE Sufficiency

Suppose that V/(t,x) is continuously differentiable in t and x and solves the
HJB PDE:

V(T,x)=q(x), vxeX

ov(t,x) . 1
5r ure?j;?x) 0(x,u) + V, V(t,x) Tf(x,u) + Str (Z(x,u) [V2V(t,x)])

for all x € X and 0 < ¢t < T. Suppose also that a policy 7*(t, x) attains the
minimum in the HJB PDE above for all t and x and is piecewise-continuous
in t. Then, under the assumptions on Slide 7, V/(t,x) is the unique solution
of the HJB PDE and is equal to the optimal value function V*(t,x), while
7*(t,x) is an optimal policy.
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Tractable Problems

>

>

>

Control-affine system dynamics: x = a(x) + B(x)u + C(x)w
Stage cost quadratic in u: /(x,u) = g(x) + 1u” R(x)u, R(x) = 0
The Hamiltonian can be minimized analytically wrt u (suppressing the

dependence on x for clarity):

H(x,u,p) =q+ %UTRU +p' (a+Bu)+ %tr(CCTpX)
VuH(x,u,p) = Ru+ B'p VﬁH(x,u, p)=R>0
Optimal policy for t € [0, T] and x € X
7*(t,x) = arg min H(x,u, Vi (t,x)) = —R71(x)BT (x) Vi(t, x)
u
The HIB PDE becomes a second-order quadratic PDE, no longer
involving the min operator:

V(T,x) = a(x),
1 1
—Vi(t,x) = qg+a' Vi(t,x) + 5tr(ccT Vi(t,%)) — EVX(t,x)TBR*IBT Vi(t,x)
23



Example: Pendulum

» Pendulum dynamics (Newton's second law for
rotational systems):

mL2?0 = u — mglsin @ + noise
» Noise: ow(t) with w(t) ~ GP(0,0(t — t'))

> State-space form with x = (x1, %) = (6, 6):

= st * 1) €77

> Stage cost: /(x,u) = q(x) + 5u?

» Optimal value and policy for a discounted problem formulation:

* ]' *
7(x) = — Vi (x)
1
v

ZVE(x) = q(x) + xVZ (%) + ksin(xi) V(%) + =

mg cosl



Example: Pendulum
> Parameters: k=0 =r=1, 7 =0.3, q(6,0) = 1 — exp(—26?)

» Discretize the state space, approximate derivatives via finite differences,
and iterate:

VIiED(x) = VO (x) + a ('y min H[x, u, V, V()] - V(i)(x))v a =001

q(x) V(x) T(X)

+8
2
3 \) I.'hh-
(&)
>

-8

-T 0 +7
position
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