ECE276B: Planning \& Learning in Robotics Lecture 15: Pontryagin's Minimum Principle

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Jinzhao Li: jil016@eng.ucsd.edu

UCSanDiego
JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Deterministic Continuous-time Optimal Control

$$
\begin{array}{ll}
\min _{\pi} & V^{\pi}\left(0, \mathbf{x}_{0}\right):=\int_{0}^{T} \ell(\mathbf{x}(t), \pi(t, \mathbf{x}(t))) d t+\mathfrak{q}(\mathbf{x}(T)) \\
\text { s.t. } & \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathbf{x}(0)=\mathbf{x}_{0} \\
& \mathbf{x}(t) \in \mathcal{X}, \pi(t, \mathbf{x}(t)) \in P C^{0}([0, T], \mathcal{U})
\end{array}
$$

- Hamiltonian: $H(\mathbf{x}, \mathbf{u}, \mathbf{p}):=\ell(\mathbf{x}, \mathbf{u})+\mathbf{p}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u})$
- Costate: $\mathbf{p}(t)$ is the gradient/sensitivity of the optimal value function with respect to the state \mathbf{x}.
- Relationship to Mechanics:
- Hamilton's principle of least action: trajectories of mechanical systems are extremals of the action integral $\int_{0}^{T} \ell(\mathbf{x}(t), \dot{\mathbf{x}}(t)) d t$, where the Lagrangian $\ell(\mathbf{x}, \dot{\mathbf{x}}):=K(\dot{\mathbf{x}})-U(\mathbf{x})$ is the difference between kinetic and potential energy.
- If the stage cost is the Lagrangian of a mechanical system, the Hamiltonian is the (negative) total energy (kinetic plus potential)

Lagrangian Mechanics

- Consider a point mass m with position \mathbf{x} and velocity $\dot{\mathbf{x}}$
- Kinetic energy $K(\dot{\mathbf{x}}):=\frac{1}{2} m\|\dot{\mathbf{x}}\|_{2}^{2}$ and momentum $\mathbf{p}:=m \dot{\mathbf{x}}$
- Potential energy $U(\mathbf{x})$ and conservative force $\mathbf{F}=-\frac{\partial U(\mathbf{x})}{\partial \mathbf{x}}$
- Newtonian equations of motion: $\mathbf{F}=m \ddot{x}$
- Note that $-\frac{\partial U(\mathbf{x})}{\partial \mathbf{x}}=\mathbf{F}=m \ddot{\mathbf{x}}=\frac{d}{d t} \mathbf{p}=\frac{d}{d t}\left(\frac{\partial K(\dot{\mathbf{x}})}{\partial \dot{\mathbf{x}}}\right)$
- Note that $\frac{\partial U(\mathrm{x})}{\partial \dot{\mathrm{x}}}=0$ and $\frac{\partial K(\dot{\mathrm{x}})}{\partial \mathrm{x}}=0$
- Lagrangian: $\ell(\mathbf{x}, \dot{\mathbf{x}}):=K(\dot{\mathbf{x}})-U(\mathbf{x})$
- Euler-Lagrange equation: $\frac{d}{d t}\left(\frac{\partial \ell(\mathbf{x}, \dot{\mathbf{x}})}{\partial \dot{\mathbf{x}}}\right)-\frac{\partial \ell(\mathbf{x}, \dot{\mathbf{x}})}{\partial \mathbf{x}}=0$

Conservation of Energy

- Total energy $E(\mathbf{x}, \dot{\mathbf{x}})=K(\dot{\mathbf{x}})+U(\mathbf{x})=2 K(\dot{\mathbf{x}})-\ell(\mathbf{x}, \dot{\mathbf{x}})=\mathbf{p}^{\top} \dot{\mathbf{x}}-\ell(\mathbf{x}, \dot{\mathbf{x}})$
- Note that:

$$
\begin{gathered}
\frac{d}{d t}\left(\mathbf{p}^{\top} \dot{\mathbf{x}}\right)=\frac{d}{d t}\left(\frac{\partial \ell(\mathbf{x}, \dot{\mathbf{x}})^{\top}}{\partial \dot{\mathbf{x}}} \dot{\mathbf{x}}\right)=\left(\frac{d}{d t} \frac{\partial \ell(\mathbf{x}, \dot{\mathbf{x}})}{\partial \dot{\mathbf{x}}}\right)^{\top} \dot{\mathbf{x}}+\frac{\partial \ell(\mathbf{x}, \dot{\mathbf{x}})^{\top}}{\partial \dot{\mathbf{x}}} \ddot{\mathbf{x}} \\
\frac{d}{d t} \ell(\mathbf{x}, \dot{\mathbf{x}})=\frac{\partial \ell(\mathbf{x}, \dot{\mathbf{x}})^{\top}}{\partial \mathbf{x}} \dot{\mathbf{x}}+\frac{\partial \ell(\mathbf{x}, \dot{\mathbf{x}})^{\top}}{\partial \dot{\mathbf{x}}} \ddot{\mathbf{x}}+\frac{\partial}{\partial t} \ell(\mathbf{x}, \dot{\mathbf{x}})
\end{gathered}
$$

- Conservation of energy using the Euler-Lagrange equation:
- In our formulation, the costate is the negative momentum and the Hamiltonian is the negative total energy
- Extremal open-loop trajectories (ie., local minima) can be computed by solving a boundary-value ODE with initial state $\mathbf{x}(0)$ and terminal costate $\mathbf{p}(T)=\nabla_{\times} \mathfrak{q}(\mathbf{x})$

Theorem: Pontryagin's Minimum Principle (PMP)

- Let $\mathbf{u}^{*}(t):[0, T] \rightarrow \mathcal{U}$ be an optimal control trajectory
- Let $\mathbf{x}^{*}(t):[0, T] \rightarrow \mathcal{X}$ be the associated state trajectory from \mathbf{x}_{0}
- Then, there exists a costate trajectory $\mathbf{p}^{*}(t):[0, T] \rightarrow \mathcal{X}$ satisfying:

1. Canonical equations with boundary conditions:

$$
\begin{array}{ll}
\dot{\mathbf{x}}^{*}(t)=\nabla_{\mathbf{p}} H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right), & \mathbf{x}^{*}(0)=\mathbf{x}_{0} \\
\dot{\mathbf{p}}^{*}(t)=-\nabla_{\mathbf{x}} H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right), & \mathbf{p}^{*}(T)=\nabla_{\times} \mathfrak{q}\left(\mathbf{x}^{*}(T)\right)
\end{array}
$$

2. Minimum principle with constant (holonomic) constraint:

$$
\begin{array}{ll}
\mathbf{u}^{*}(t)=\underset{\mathbf{u} \in \mathcal{U}\left(\mathbf{x}^{*}(t)\right)}{\arg \min } H\left(\mathbf{x}^{*}(t), \mathbf{u}, \mathbf{p}^{*}(t)\right), & \forall t \in[0, T] \\
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right)=\text { constant, } & \forall t \in[0, T]
\end{array}
$$

- Proof: Liberzon, Calculus of Variations \& Optimal Control, Ch. 4.2

Proof of PMP (Step 0: Preliminaries)

Lemma: ∇-min Exchange

Let $F(t, \mathbf{x}, \mathbf{u})$ be continuously differentiable in $t \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^{n}, \mathbf{u} \in \mathbb{R}^{m}$ and let $\mathcal{U} \subseteq \mathbb{R}^{m}$ be a convex set. Assume $\pi^{*}(t, \mathbf{x})=\arg \min F(t, \mathbf{x}, \mathbf{u})$ exists and is

$$
\mathbf{u} \in \mathcal{U}
$$ continuously differentiable. Then, for all t and \mathbf{x} :

$$
\frac{\partial}{\partial t}\left(\min _{\mathbf{u} \in \mathcal{U}} F(t, \mathbf{x}, \mathbf{u})\right)=\left.\frac{\partial}{\partial t} F(t, \mathbf{x}, \mathbf{u})\right|_{\mathbf{u}=\pi^{*}(t, \mathbf{x})} \nabla_{x}\left(\min _{\mathbf{u} \in \mathcal{U}} F(t, \mathbf{x}, \mathbf{u})\right)=\left.\nabla_{x} F(t, \mathbf{x}, \mathbf{u})\right|_{\mathbf{u}=\pi^{*}(t, \mathbf{x})}
$$

- Proof: Let $G(t, \mathbf{x}):=\min _{\mathbf{u} \in \mathcal{U}} F(t, \mathbf{x}, \mathbf{u})=F\left(t, \mathbf{x}, \pi^{*}(t, \mathbf{x})\right)$. Then:

$$
\frac{\partial}{\partial t} G(t, \mathbf{x})=\left.\frac{\partial}{\partial t} F(t, \mathbf{x}, \mathbf{u})\right|_{\mathbf{u}=\pi^{*}(t, \mathbf{x})}+\underbrace{\left.\frac{\partial}{\partial \mathbf{u}} F(t, \mathbf{x}, \mathbf{u})\right|_{\mathbf{u}=\pi^{*}(t, \mathbf{x})}} \frac{\partial \pi^{*}(t, \mathbf{x})}{\partial t}
$$

A similar derivation can be used for the partial derivative wry \mathbf{x}.

Proof of PMP (Step 1: HJB PDE gives $\left.V^{*}(t, \mathbf{x})\right)$

- Extra Assumptions: $V^{*}(t, \mathbf{x})$ and $\pi^{*}(t, \mathbf{x})$ are continuously differentiable in t and \mathbf{x} and \mathcal{U} is convex. These assumptions can be avoided in a more general proof.
- With a continuously differentiable value function, the HJB PDE is also a necessary condition for optimality:

$$
\begin{aligned}
V^{*}(T, \mathbf{x}) & =\mathfrak{q}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \\
0 & =\min _{\mathbf{u} \in \mathcal{U}}^{\left(\ell(\mathbf{x}, \mathbf{u})+\frac{\partial}{\partial t} V^{*}(t, \mathbf{x})+\nabla_{X} V^{*}(t, \mathbf{x})^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u})\right)}, \quad \forall t \in[0, T], \mathbf{x} \in \mathcal{X}
\end{aligned}
$$

with a corresponding optimal policy $\pi^{*}(t, \mathbf{x})$.

Proof of PMP (Step 2: ∇-min Exchange Lemma)

- Apply the ∇-min Exchange Lemma to the HJB PDE:

$$
\begin{aligned}
& 0=\frac{\partial}{\partial t}\left(\min _{u \in \mathcal{U}} F(t, \mathbf{x}, \mathbf{u})\right)=\frac{\partial^{2}}{\partial t^{2}} V^{*}(t, \mathbf{x})+\left[\frac{\partial}{\partial t} \nabla_{x} V^{*}(t, \mathbf{x})\right]^{\top} \mathbf{f}\left(\mathbf{x}, \pi^{*}(t, \mathbf{x})\right) \\
& 0=\nabla_{x}\left(\min _{\mathbf{u} \in \mathcal{U}} F(t, \mathbf{x}, \mathbf{u})\right) \\
&=\nabla_{x} \ell\left(\mathbf{x}, \mathbf{u}^{*}\right)+\nabla_{x} \frac{\partial}{\partial t} V^{*}(t, \mathbf{x})+\left[\nabla_{x}^{2} V^{*}(t, \mathbf{x})\right] \mathbf{f}\left(\mathbf{x}, \mathbf{u}^{*}\right)+\left[\nabla_{x} \mathbf{f}\left(\mathbf{x}, \mathbf{u}^{*}\right)\right]^{\top} \nabla_{x} V^{*}(t, \mathbf{x}) \\
& \text { where } \mathbf{u}^{*}:=\pi^{*}(t, \mathbf{x})
\end{aligned}
$$

- Evaluate these along the trajectory $\mathbf{x}^{*}(t)$ resulting from $\pi^{*}\left(t, \mathbf{x}^{*}(t)\right)$:

$$
\dot{\mathbf{x}}^{*}(t)=\mathbf{f}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t)\right)=\nabla_{p} H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}\right), \quad \mathbf{x}^{*}(0)=\mathbf{x}_{0}
$$

Proof of PMP (Step 3: Evaluate along $\left.x^{*}(t), u^{*}(t)\right)$

- Evaluate the results of Step 2 along $\mathbf{x}^{*}(t)$:

$$
\begin{aligned}
0 & =\left.\frac{\partial^{2} V^{*}(t, \mathbf{x})}{\partial t^{2}}\right|_{\mathbf{x}=\mathbf{x}^{*}(t)}+\left[\left.\frac{\partial}{\partial t} \nabla_{x} V^{*}(t, \mathbf{x})\right|_{\mathbf{x}=\mathbf{x}^{*}(t)}\right]^{\top} \dot{\mathbf{x}}^{*}(t) \\
& =\frac{d}{d t}(\underbrace{\left.\frac{\partial}{\partial t} V^{*}(t, \mathbf{x})\right|_{\mathbf{x}=\mathbf{x}^{*}(t)}}_{:=r(t)})=\frac{d}{d t} r(t) \Rightarrow r(t)=\text { cons. } \forall t \\
& =\left.\nabla_{x} \ell\left(\mathbf{x}, \mathbf{u}^{*}\right)\right|_{\mathbf{x}=\mathbf{x}^{*}(t)}+\frac{d}{d t}(\underbrace{\left.\nabla_{x} V^{*}(t, \mathbf{x})\right|_{\mathbf{x}=\mathbf{x}^{*}(t)}}_{=: \mathbf{p}^{*}(t)}) \\
& +\left[\left.\nabla_{x} \mathbf{f}\left(\mathbf{x}, \mathbf{u}^{*}\right)\right|_{\mathbf{x}=\mathbf{x}^{*}(t)}\right]^{\top}\left[\left.\nabla_{x} V^{*}(t, \mathbf{x})\right|_{\mathbf{x}=\mathbf{x}^{*}(t)}\right] \\
& =\left.\nabla_{x} \ell\left(\mathbf{x}, \mathbf{u}^{*}\right)\right|_{\mathbf{x}=\mathbf{x}^{*}(t)}+\dot{\mathbf{p}}^{*}(t)+\left[\left.\nabla_{x} \mathbf{f}\left(\mathbf{x}, \mathbf{u}^{*}\right)\right|_{\mathbf{x}=\mathbf{x}^{*}(t)}\right]^{\top} \mathbf{p}^{*}(t) \\
& =\dot{\mathbf{p}}^{*}(t)+\nabla_{x} H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right)
\end{aligned}
$$

Proof of PMP (Step 4: Done)

- The boundary condition $V^{*}(T, \mathbf{x})=\mathfrak{q}(\mathbf{x})$ implies that $\nabla_{x} V^{*}(T, \mathbf{x})=\nabla_{x} \mathfrak{q}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$ and thus $\mathbf{p}^{*}(T)=\nabla_{x} \mathfrak{q}\left(\mathbf{x}^{*}(T)\right)$
- From the HJB PDE we have:

$$
-\frac{\partial}{\partial t} V^{*}(t, \mathbf{x})=\min _{\mathbf{u} \in \mathcal{U}} H\left(\mathbf{x}, \mathbf{u}, \nabla_{x} V^{*}(t, \cdot)\right)
$$

which along the optimal trajectory $\mathbf{x}^{*}(t), \mathbf{u}^{*}(t)$ becomes:

$$
-r(t)=H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right)=\text { const }
$$

- Finally, note that

$$
\begin{aligned}
\mathbf{u}^{*}(t) & =\underset{\mathbf{u} \in \mathcal{U}}{\arg \min } F\left(t, \mathbf{x}^{*}(t), \mathbf{u}\right) \\
& =\underset{\mathbf{u} \in \mathcal{U}}{\arg \min }\left\{\ell\left(\mathbf{x}^{*}(t), \mathbf{u}\right)+\left[\left.\nabla_{x} V^{*}(t, \mathbf{x})\right|_{\mathbf{x}=\mathbf{x}^{*}(t)}\right]^{\top} \mathbf{f}\left(\mathbf{x}^{*}(t), \mathbf{u}\right)\right\} \\
& =\underset{\mathbf{u} \in \mathcal{U}}{\arg \min }\left\{\ell\left(\mathbf{x}^{*}(t), \mathbf{u}\right)+\mathbf{p}^{*}(t)^{\top} \mathbf{f}\left(\mathbf{x}^{*}(t), \mathbf{u}\right)\right\} \\
& =\underset{\mathbf{u} \in \mathcal{U}}{\arg \min } H\left(\mathbf{x}^{*}(t), \mathbf{u}, \mathbf{p}^{*}(t)\right)
\end{aligned}
$$

HJB PDE vs PMP

- The HJB PDE provides a lot of information - the optimal value function and an optimal policy for all time and all states!
- Often, we only care about the optimal trajectory for a specific initial condition \mathbf{x}_{0}. Exploiting that we need less information, we can arrive at simpler conditions for optimality - Pontryagin's Minimum Principle
- The PMP does not apply to infinite horizon problems, so one has to use the HJB PDE in that case
- The HJB PDE is a sufficient condition for optimality: it is possible that the optimal solution does not satisfy it but a solution that satisfies it is guaranteed to be optimal
- The PMP is a necessary condition for optimality: it is possible that non-optimal trajectories satisfy it so further analysis is necessary to determine if a candidate PMP policy is optimal
- The PMP requires solving an ODE with split boundary conditions (not easy but much easier than the nonlinear HJB PDE!)

Example: Resource Allocation for a Martian Base

- A fleet of reconfigurable, general purpose robots is sent to Mars at $t=0$
- The robots can 1) replicate or 2) make human habitats
- The number of robots at time t is $x(t)$, while the number of habitats is $z(t)$ and they evolve according to:

$$
\begin{aligned}
\dot{x}(t) & =u(t) x(t), \quad x(0)=x>0 \\
\dot{z}(t) & =(1-u(t)) x(t), \quad z(0)=0 \\
0 & \leq u(t) \leq 1
\end{aligned}
$$

where $u(t)$ denotes the percentage of the $x(t)$ robots used for replication

- Goal: Maximize the size of the Martian base by a terminal time T, i.e.:

$$
\max z(T)=\int_{0}^{T}(1-u(t)) x(t) d t
$$

with $f(x, u)=u x, \ell(x, u)=-(1-u) x$ and $\mathfrak{q}(x)=0$

Example: Resource Allocation for a Martian Base

- Hamiltonian: $H(x, u, p)=-(1-u) x+p u x$
- Apply the PMP:

$$
\begin{aligned}
& \dot{x}^{*}(t)=\nabla_{p} H\left(x^{*}, u^{*}, p^{*}\right)=x^{*}(t) u^{*}(t), \quad x^{*}(0)=x \\
& \dot{p}^{*}(t)=-\nabla_{x} H\left(x^{*}, u^{*}, p^{*}\right)=\left(1-u^{*}(t)\right)-p^{*}(t) u^{*}(t), \quad p^{*}(T)=0 \\
& u^{*}(t)=\underset{0 \leq u \leq 1}{\arg \min } H\left(x^{*}(t), u, p^{*}(t)\right)=\underset{0 \leq u \leq 1}{\arg \min }\left(x^{*}(t)\left(p^{*}(t)+1\right) u\right)
\end{aligned}
$$

- Since $x^{*}(t)>0$ for $t \in[0, T]$:

$$
u^{*}(t)= \begin{cases}0 & \text { if } p^{*}(t)>-1 \\ 1 & \text { if } p^{*}(t) \leq-1\end{cases}
$$

Example: Resource Allocation for a Martian Base

- Work backwards from $t=T$ to determine $p^{*}(t)$:
- Since $p^{*}(T)=0$ for t close to T, we have $u^{*}(t)=0$ and the costate dynamics become $\dot{p}^{*}(t)=1$
- At time $t=T-1, p^{*}(t)=-1$ and the control input switches to $u^{*}(t)=1$
- For $t \leq T-1$:

$$
\begin{aligned}
\dot{p}^{*}(t) & =-p^{*}(t), \quad p(T-1)=-1 \\
& \Rightarrow p^{*}(t)=e^{-[(T-1)-t]} p(T-1) \leq-1 \text { for } t<T-1
\end{aligned}
$$

- Optimal control:

$$
u^{*}(t)= \begin{cases}1 & \text { if } 0 \leq t \leq T-1 \\ 0 & \text { if } T-1 \leq t \leq T\end{cases}
$$

Example: Resource Allocation for a Martian Base

- Optimal trajectories for the Martian resource allocation problem:

- Conclusions:
- All robots replicate themselves from $t=0$ to $t=T-1$ and then all robots build habitats
- If $T<1$, then the robots should only build habitats
- If the Hamiltonian is linear in u, its min can only be attained on the boundary of \mathcal{U}, known as bang-bang control

PMP with Fixed Terminal State

- Suppose that in addition to $\mathbf{x}(0)=\mathbf{x}_{s}$, a final state $\mathbf{x}(T)=\mathbf{x}_{\tau}$ is given.
- The terminal cost $\mathfrak{q}(\mathbf{x}(T))$ is not useful since $V^{*}(T, \mathbf{x})=\infty$ if $\mathbf{x}(T) \neq \mathbf{x}_{\tau}$. The terminal boundary condition for the costate $\mathbf{p}(T)=\nabla_{\times} \mathfrak{q}(\mathbf{x}(T))$ does not hold but as compensation we have a different boundary condition $\mathbf{x}(T)=\mathbf{x}_{\tau}$.
- We still have $2 n$ ODEs with $2 n$ boundary conditions:

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{x}(0)=\mathbf{x}_{s}, \mathbf{x}(T)=\mathbf{x}_{\tau} \\
& \dot{\mathbf{p}}(t)=-\nabla_{\mathbf{x}} H(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t))
\end{aligned}
$$

- If only some terminal state are fixed $\mathbf{x}_{j}(T)=\mathbf{x}_{\tau, j}$ for $j \in I$, then:

$$
\begin{array}{ll}
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{x}(0)=\mathbf{x}_{s}, \quad \mathbf{x}_{j}(T)=\mathbf{x}_{\tau, j}, \quad \forall j \in I \\
\dot{\mathbf{p}}(t)=-\nabla_{\mathbf{x}} H(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t)), \quad \mathbf{p}_{j}(T)=\frac{\partial}{\partial x_{j}} \mathfrak{q}(\mathbf{x}(T)), \quad \forall j \notin I
\end{array}
$$

PMP with Fixed Terminal Set

- Terminal set: a $k \operatorname{dim}$ surface in \mathbb{R}^{n} requiring:

$$
\mathbf{x}(T) \in \mathcal{X}_{\tau}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid h_{j}(\mathbf{x})=0, j=1, \ldots, n-k\right\}
$$

- The costate boundary condition requires that $\mathbf{p}(T)$ is orthogonal to the tangent space $D=\left\{\mathbf{d} \in \mathbb{R}^{n} \mid \nabla_{x} h_{j}(\mathbf{x}(T))^{\top} \mathbf{d}=0, j=1, \ldots, n-k\right\}$:

$$
\begin{array}{ll}
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{x}(0)=\mathbf{x}_{s}, & h_{j}(\mathbf{x}(T))=0, j=1, \ldots, n-k \\
\dot{\mathbf{p}}(t)=-\nabla_{\mathbf{x}} H(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t)), & \mathbf{p}(T) \in \mathbf{s p a n}\left\{\nabla_{x} h_{j}(\mathbf{x}(T)), \forall j\right\} \\
& \text { OR } \mathbf{d}^{\top} \mathbf{p}(T)=0, \forall \mathbf{d} \in D
\end{array}
$$

PMP with Free Initial State

- Suppose that x_{0} is free and subject to optimization with additional cost $\ell_{0}\left(\mathbf{x}_{0}\right)$ term
- The total cost becomes $\ell_{0}\left(\mathbf{x}_{0}\right)+V\left(0, \mathbf{x}_{0}\right)$ and the necessary condition for an optimal initial state \mathbf{x}_{0} is:

$$
\left.\nabla_{x} \ell_{0}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{x}_{0}}+\underbrace{\left.\nabla_{x} V(0, \mathbf{x})\right|_{\mathbf{x}=\mathbf{x}_{0}}}_{=\mathbf{p}(0)}=0 \Rightarrow \mathbf{p}(0)=-\nabla_{x} \ell_{0}\left(\mathbf{x}_{0}\right)
$$

- We lose the initial state boundary condition but gain an adjoint state boundary condition:

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \\
& \dot{\mathbf{p}}(t)=-\nabla_{\mathbf{x}} H(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t)), \quad \mathbf{p}(0)=-\nabla_{\mathbf{x}} \ell_{0}\left(\mathbf{x}_{0}\right), \quad \mathbf{p}(T)=-\nabla_{\mathbf{x}} \mathfrak{q}(\mathbf{x}(T))
\end{aligned}
$$

- Similarly, we can deal with some parts of the initial state being free and some not

PMP with Free Terminal Time

- Suppose that the initial and/or terminal state are given but the terminal time T is free and subject to optimization
- We can compute the total cost of optimal trajectories for various terminal times T and look for the best choice, i.e.:

$$
\left.\frac{\partial}{\partial t} V^{*}(t, \mathbf{x})\right|_{t=T, \mathbf{x}=\mathbf{x}(T)}=0
$$

- Recall that on the optimal trajectory:

$$
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right)=-\left.\frac{\partial}{\partial t} V^{*}(t, \mathbf{x})\right|_{\mathbf{x}=\mathbf{x}^{*}(t)}=\text { const. } \quad \forall t
$$

- Hence, in the free terminal time case, we gain an extra degree of freedom with free T but lose one degree of freedom by the constraint:

$$
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right)=0, \quad \forall t \in[0, T]
$$

PMP with Time-varying System and Cost

- Suppose that the system and stage cost vary with time:

$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) \quad \ell(\mathbf{x}(t), \mathbf{u}(t), t)
$$

- A usual trick is to convert the problem to a time-invariant one by making t part of the state. Let $y(t)=t$ with dynamics:

$$
\dot{y}(t)=1, \quad y(0)=0
$$

- Augmented state $\mathbf{z}(t):=(\mathbf{x}(t), y(t))$ and system:

$$
\begin{aligned}
\dot{\mathbf{z}}(t) & =\overline{\mathbf{f}}(\mathbf{z}(t), \mathbf{u}(t)):=\left[\begin{array}{c}
\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), y(t)) \\
1
\end{array}\right] \\
\bar{\ell}(\mathbf{z}, \mathbf{u}) & :=\ell(\mathbf{x}, \mathbf{u}, y) \quad \overline{\mathfrak{q}}(\mathbf{z}):=\mathfrak{q}(\mathbf{x})
\end{aligned}
$$

- The Hamiltonian need not to be constant along the optimal trajectory:

$$
\begin{aligned}
H(\mathbf{x}, \mathbf{u}, \mathbf{p}, t) & =\ell(\mathbf{x}, \mathbf{u}, t)+\mathbf{p}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u}, t) & & \\
\dot{\mathbf{x}}^{*}(t) & =\mathbf{f}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t\right), & & \mathbf{x}^{*}(0)=\mathbf{x}_{0} \\
\dot{\mathbf{p}}^{*}(t) & =-\nabla_{x} H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right), & & \mathbf{p}^{*}(T)=\nabla \\
\mathbf{u}^{*}(t) & =\arg \min H\left(\mathbf{x}^{*}(t), \mathbf{u}, \mathbf{p}^{*}(t), t\right) & & \\
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) & \neq \operatorname{con} \mathbf{c o n s t} & &
\end{aligned}
$$

Singular Problems

- The minimum condition $\mathbf{u}(t)=\arg \min H\left(\mathbf{x}^{*}(t), \mathbf{u}, \mathbf{p}^{*}(t), t\right)$ may be $\mathbf{u} \in \mathcal{U}$ insufficient to determine $\mathbf{u}^{*}(t)$ for all t in some cases because the values of $\mathbf{x}^{*}(t)$ and $\mathbf{p}^{*}(t)$ are such that $H\left(\mathbf{x}^{*}(t), \mathbf{u}, \mathbf{p}^{*}(t), t\right)$ is independent of \mathbf{u} over a nontrivial interval of time
- The optimal trajectories consist of portions where $\mathbf{u}^{*}(t)$ can be determined from the minimum condition (regular arcs) and where $\mathbf{u}^{*}(t)$ cannot be determined from the minimum condition since the Hamiltonian is independent of \mathbf{u} (singular arcs)

Example: Fixed Terminal State

- System: $\dot{x}(t)=u(t), x(0)=0, x(1)=1, u(t) \in \mathbb{R}$
- Cost: $\min \frac{1}{2} \int_{0}^{1}\left(x(t)^{2}+u(t)^{2}\right) d t$
- Want $x(t)$ and $u(t)$ to be small but need to meet $x(1)=1$

- Approach: use PMP to find a locally optimal open-loop policy

Example: Fixed Terminal State

- Pontryagin's Minimum Principle
- Hamiltonian: $H(x, u, p)=\frac{1}{2}\left(x^{2}+u^{2}\right)+p u$
- Minimum principle: $u(t)=\underset{u \in \mathbb{R}}{\arg \min }\left\{\frac{1}{2}\left(x(t)^{2}+u^{2}\right)+p(t) u\right\}=-p(t)$
- Canonical equations with boundary conditions:

$$
\begin{aligned}
& \dot{x}(t)=\nabla_{p} H(x(t), u(t), p(t))=u(t)=-p(t), \quad x(0)=0, x(1)=1 \\
& \dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t))=-x(t)
\end{aligned}
$$

- Candidate trajectory: $\ddot{x}(t)=x(t) \quad \Rightarrow \quad x(t)=a e^{t}+b e^{-t}=\frac{e^{t}-e^{-t}}{e-e^{-1}}$
$\rightarrow x(0)=0 \Rightarrow a+b=0$
$\rightarrow x(1)=1 \quad \Rightarrow \quad a e+b e^{-1}=1$
- Open-loop control: $u(t)=\dot{x}(t)=\frac{e^{t}+e^{-t}}{e-e^{-1}}$

Example: Free Initial State

- System: $\dot{x}(t)=u(t), x(0)=$ free, $x(1)=1, u(t) \in \mathbb{R}$
- Cost: $\min \frac{1}{2} \int_{0}^{1}\left(x(t)^{2}+u(t)^{2}\right) d t$
- Picking $x(0)=1$ will allow $u(t)=0$ but we will accumulate cost due to $x(t)$. On the other hand, picking $x(0)=0$ will accumulate cost due to $u(t)$ having to drive the state to $x(1)=1$.

- Approach: use PMP to find a locally optimal open-loop policy

Example: Free Initial State

- Pontryagin's Minimum Principle
- Hamiltonian: $H(x, u, p)=\frac{1}{2}\left(x^{2}+u^{2}\right)+p u$
- Minimum principle: $u(t)=\underset{u \in \mathbb{R}}{\arg \min }\left\{\frac{1}{2}\left(x(t)^{2}+u^{2}\right)+p(t) u\right\}=-p(t)$
- Canonical equations with boundary conditions:

$$
\begin{aligned}
& \dot{x}(t)=\nabla_{p} H(x(t), u(t), p(t))=u(t)=-p(t), \quad x(1)=1 \\
& \dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t))=-x(t), \quad p(0)=0
\end{aligned}
$$

- Candidate trajectory:

$$
\ddot{x}(t)=x(t) \Rightarrow x(t)=a e^{t}+b e^{-t}=\frac{e^{t}+e^{-t}}{e+e^{-1}}
$$

$$
\begin{aligned}
& p(t)=-\dot{x}(t)=-a e^{t}+ \\
& =1 \quad \Rightarrow \quad a e+b e^{-1}=1
\end{aligned}
$$

- $p(0)=0 \Rightarrow-a+b=0$
$-x(0) \approx 0.65$
\checkmark Open-loop control: $u(t)=\dot{x}(t)=\frac{e^{t}-e^{-t}}{e+e^{-1}}$

Example: Free Terminal Time

- System: $\dot{x}(t)=u(t), x(0)=0, x(T)=1, u(t) \in \mathbb{R}$
- Cost: $\min \int_{0}^{T} 1+\frac{1}{2}\left(x(t)^{2}+u(t)^{2}\right) d t$
- Free terminal time: $T=$ free
- Note: if we do not include 1 in the stage-cost (i.e., use the same cost as before), we would get $T^{*}=\infty$ (see next slide for details)
- Approach: use PMP to find a locally optimal open-loop policy

Example: Free Terminal Time

- Pontryagin's Minimum Principle
- Hamiltonian: $H(x(t), u(t), p(t))=\frac{1}{2}\left(x(t)^{2}+u(t)^{2}\right)+p(t) u(t)$
- Minimum principle: $u(t)=\underset{u \in \mathbb{R}}{\arg \min }\left\{\frac{1}{2}\left(x(t)^{2}+u^{2}\right)+p(t) u\right\}=-p(t)$
- Canonical equations with boundary conditions:

$$
\begin{aligned}
& \dot{x}(t)=\nabla_{p} H(x(t), u(t), p(t))=u(t)=-p(t), \quad x(0)=0, x(T)=1 \\
& \dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t))=-x(t)
\end{aligned}
$$

- Candidate trajectory: $\ddot{x}(t)=x(t) \quad \Rightarrow \quad x(t)=a e^{t}+b e^{-t}=\frac{e^{t}-e^{-t}}{e^{T}-e^{-T}}$

$$
\begin{aligned}
& \Rightarrow x(0)=0 \quad \Rightarrow \quad a+b=0 \\
& x(T)=1 \quad \Rightarrow \quad a e^{T}+b e^{-T}=1
\end{aligned}
$$

- Free terminal time:

$$
\begin{aligned}
0 & =H(x(t), u(t), p(t))=1+\frac{1}{2}\left(x(t)^{2}-p(t)^{2}\right) \\
& =1+\frac{1}{2}\left(\frac{\left(e^{t}-e^{-t}\right)^{2}-\left(e^{t}+e^{-t}\right)^{2}}{\left(e^{T}-e^{-T}\right)^{2}}\right)=1-\frac{2}{\left(e^{T}-e^{-T}\right)^{2}} \\
& \Rightarrow \quad T \approx 0.66
\end{aligned}
$$

Example: Time-varying Singular Problem

- System: $\dot{x}(t)=u(t), x(0)=$ free, $x(1)=$ free, $u(t) \in[-1,1]$
- Time-varying cost: $\min \frac{1}{2} \int_{0}^{1}(x(t)-z(t))^{2} d t$ for $z(t)=1-t^{2}$
- Example feasible state trajectory that tracks the desired $z(t)$ until the slope of $z(t)$ becomes less than -1 and the input $u(t)$ saturates:

- Approach: use PMP to find a locally optimal open-loop policy

Example: Time-varying Singular Problem

- Pontryagin's Minimum Principle
- Hamiltonian: $H(x, u, p, t)=\frac{1}{2}(x-z(t))^{2}+p u$
- Minimum principle:

$$
u(t)=\underset{|u| \leq 1}{\arg \min } H(x(t), u, p(t), t)= \begin{cases}-1 & \text { if } p(t)>0 \\ \text { undetermined } & \text { if } p(t)=0 \\ 1 & \text { if } p(t)<0\end{cases}
$$

- Canonical equations with boundary conditions:

$$
\begin{aligned}
& \dot{x}(t)=\nabla_{p} H(x(t), u(t), p(t))=u(t) \\
& \dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t))=-(x(t)-z(t)), \quad p(0)=0, p(1)=0
\end{aligned}
$$

- Singular arc: when $p(t)=0$ for a non-trivial time interval, the control cannot be determined from PMP
- In this example, the singular arc can be determined from the costate ODE. For $p(t)=0$:

$$
0 \equiv \dot{p}(t)=-x(t)+z(t) \quad \Rightarrow \quad u(t)=\dot{x}(t)=\dot{z}(t)=-2 t
$$

Example: Time-varying Singular Problem

- Since $p(0)=0$, the state trajectory follows a singular arc until $t_{s} \leq \frac{1}{2}$ (since $u(t)=-2 t \in[-1,1]$) when it switches to a regular arc with $u(t)=-1$ (since $z(t)$ is decreasing and we are trying to track it).
- For $0 \leq t \leq t_{s} \leq \frac{1}{2}$:

$$
x(t)=z(t) \quad p(t)=0
$$

- For $t_{s}<t \leq 1$:

$$
\begin{aligned}
\dot{x}(t) & =-1 \quad \Rightarrow \quad x(t)=z\left(t_{s}\right)-\int_{t_{s}}^{t} d s=1-t_{s}^{2}-t+t_{s} \\
\dot{p}(t) & =-(x(t)-z(t))=t_{s}^{2}-t_{s}-t^{2}+t, \quad p\left(t_{s}\right)=p(1)=0 \\
& \Rightarrow p(s)=p\left(t_{s}\right)+\int_{t_{s}}^{s}\left(t_{s}^{2}-t_{s}-t^{2}+t\right) d t, \quad s \in\left[t_{s}, 1\right] \\
& \Rightarrow 0=p(1)=t_{s}^{2}-t_{s}-\frac{1}{3}+\frac{1}{2}-t_{s}^{3}+t_{s}^{2}+\frac{t_{s}^{3}}{3}-\frac{t_{s}^{2}}{2} \\
& \Rightarrow 0=\left(t_{s}-1\right)^{2}\left(1-4 t_{s}\right) \\
& \Rightarrow t_{s}=\frac{1}{4}
\end{aligned}
$$

Discrete-time PMP

- Consider a discrete-time problem with dynamics $\mathbf{x}_{t+1}=\mathbf{f}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)$
- Introduce Lagrange multipliers $\mathbf{p}_{0: T}$ to relax the constraints:

$$
\begin{aligned}
L\left(\mathbf{x}_{0: T}, \mathbf{u}_{0: T-1}, \mathbf{p}_{0: T}\right) & =\mathfrak{q}\left(\mathbf{x}_{T}\right)+\mathbf{x}_{0}^{\top} \mathbf{p}_{0}+\sum_{t=0}^{T-1} \ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\left(\mathbf{f}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)-\mathbf{x}_{t+1}\right)^{\top} \mathbf{p}_{t+1} \\
& =\mathfrak{q}\left(\mathbf{x}_{T}\right)+\mathbf{x}_{0}^{\top} \mathbf{p}_{0}-\mathbf{x}_{T}^{\top} \mathbf{p}_{T}+\sum_{t=0}^{T-1} H\left(\mathbf{x}_{t}, \mathbf{u}_{t}, \mathbf{p}_{t+1}\right)-\mathbf{x}_{t}^{\top} \mathbf{p}_{t}
\end{aligned}
$$

- Setting $\nabla_{\mathbf{x}} L=\nabla_{\mathfrak{p}} L=0$ and explicitly minimizing wrt $\mathbf{u}_{0: T-1}$ yields:

Theorem: Discrete-time PMP

If $\mathbf{x}_{0: T}^{*}, \mathbf{u}_{0: T-1}^{*}$ is an optimal state-control trajectory starting at \mathbf{x}_{0}, then there exists a costate trajectory $\mathbf{p}_{0: T}^{*}$ such that:

$$
\begin{array}{rlrl}
\mathbf{x}_{t+1}^{*} & =\nabla_{\mathbf{p}} H\left(\mathbf{x}_{t}^{*}, \mathbf{u}_{t}^{*}, \mathbf{p}_{t+1}^{*}\right)=\mathbf{f}\left(\mathbf{x}_{t}^{*}, \mathbf{u}_{t}^{*}\right), & \mathbf{x}_{0}^{*}=\mathbf{x}_{0} \\
\mathbf{p}_{t}^{*} & =\nabla_{\mathbf{x}} H\left(\mathbf{x}_{t}^{*}, \mathbf{u}_{t}^{*}, \mathbf{p}_{t+1}^{*}\right)=\nabla_{\mathbf{x}} \ell\left(\mathbf{x}_{t}^{*}, \mathbf{u}_{t}^{*}\right)+\nabla_{\mathbf{x}} \mathbf{f}\left(\mathbf{x}_{t}^{*}, \mathbf{u}_{t}^{*}\right)^{\top} \mathbf{p}_{t+1}^{*}, & \mathbf{p}_{T}^{*}=\nabla_{\mathbf{x}} \mathfrak{q}\left(\mathbf{x}_{T}^{*}\right) \\
\mathbf{u}_{t}^{*} & =\underset{\mathbf{u}}{\arg \min } H\left(\mathbf{x}_{t}^{*}, \mathbf{u}, \mathbf{p}_{t+1}^{*}\right) & &
\end{array}
$$

Gradient of the Value Function via the PMP

- The discrete-time PMP provides an efficient way to evaluate the gradient of the value function with respect to \mathbf{u} and thus optimize control trajectories locally and numerically

Theorem: Value Function Gradient

Given an initial state \mathbf{x}_{0} and trajectory $\mathbf{u}_{0: T-1}$, let $\mathbf{x}_{1: T}, \mathbf{p}_{0: T}$ be such that:

$$
\begin{aligned}
\mathbf{x}_{t+1} & =\mathbf{f}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right), \quad \mathbf{x}_{0} \text { given } \\
\mathbf{p}_{t} & =\nabla_{\mathbf{x}} \ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\left[\nabla_{\mathbf{x}} \mathbf{f}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)\right]^{\top} \mathbf{p}_{t+1}, \quad \mathbf{p}_{T}=\nabla_{\mathbf{x}} \mathfrak{q}\left(\mathbf{x}_{T}\right)
\end{aligned}
$$

Then:

$$
\nabla_{\mathbf{u}_{t}} V\left(\mathbf{x}_{0: T}, \mathbf{u}_{0: T-1}\right)=\nabla_{\mathbf{u}} H\left(\mathbf{x}_{t}, \mathbf{u}_{t}, \mathbf{p}_{t+1}\right)=\nabla_{\mathbf{u}} \ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\nabla_{\mathbf{u}} \mathbf{f}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)^{\top} \mathbf{p}_{t+1}
$$

- Note that \mathbf{x}_{t} can be found in a forward pass (since it does not depend on \mathbf{p}) and then \mathbf{p}_{t} can be found in a backward pass

Proof by Induction

- The accumulated cost can be written recursively:

$$
V_{t}\left(\mathbf{x}_{t: T}, \mathbf{u}_{t: T-1}\right)=\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+V_{t+1}\left(\mathbf{x}_{t+1: T}, \mathbf{u}_{t+1: T-1}\right)
$$

- Note that \mathbf{u}_{t} affects the future costs only through $\mathbf{x}_{t+1}=f\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)$:

$$
\nabla_{\mathbf{u}_{t}} V_{t}\left(\mathbf{x}_{t: T}, \mathbf{u}_{t: T-1}\right)=\nabla_{\mathbf{u}} \ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\left[\nabla_{\mathbf{u}} \mathbf{f}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)\right]^{\top} \nabla_{\mathbf{x}_{t+1}} V_{t+1}\left(\mathbf{x}_{t+1: T}, \mathbf{u}_{t+1: T-1}\right)
$$

- Claim: $\mathbf{p}_{t}=\nabla_{\mathbf{x}_{t}} V_{t}\left(\mathbf{x}_{t: T}, \mathbf{u}_{t: T-1}\right)$:
- Base case: $\mathbf{p}_{T}=\nabla_{\mathbf{x}_{T}} \mathfrak{q}\left(\mathbf{x}_{T}\right)$
- Induction: for $t \in[0, T)$:

$$
\underbrace{\nabla_{\mathbf{x}_{t}} V_{t}\left(\mathbf{x}_{t: T}, \mathbf{u}_{t: T-1}\right)}_{=\mathbf{p}_{t}}=\nabla_{\mathbf{x}} \ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\left[\nabla_{\mathbf{x}} \mathbf{f}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)\right]^{\top} \underbrace{\nabla_{\mathbf{x}_{t+1}} V_{t+1}\left(\mathbf{x}_{t+1: T}, \mathbf{u}_{t+1: T-1}\right)}_{=\mathbf{p}_{t+1}}
$$

which is identical with the costate difference equation.

