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Definition of Markov Chain

» Stochastic process: an indexed collection of random variables
{x0,x1,...} whose range is a measurable space (X, F)
» example: time series of weekly demands for a product

» A temporally homogeneous Markov chain is a stochastic process
{x0,x1,...} such that:
> xo ~ po(:) for a prior probability density function p on (X, F)
» P(xey1 € Al xoit) = P(xeq1 € A xe) = [, pr(x | x¢)dx for Ae F and a
conditional pdf ps(- | x¢) on (X, F)

» Intuitive definition:
» In a Markov Chain the distribution of x;+1 | xo.r depends only on x; (a

memoryless stochastic process)

» The state captures all information about the history, i.e., once the state is
known, the history may be thrown away

> “The future is independent of the past given the present” (Markov
Assumption)



A Markov Chain is a stochastic process defined by a tuple (X, po, pr, T):

» X is discrete/continuous set of states

» po is a prior pmf/pdf defined on X

v

pr(- | x) is a conditional pmf/pdf defined on X" for given x € X" that
specifies the stochastic process transitions.

» T is a finite/infinite time horizon

» In a finite-dimensional case, the transition pmf is summarized by a
matrix PU = ]P)(Xt+l :_] | Xy = l) = Pf(J | X = /)



Example: Student Markov Chain




Example: Student Markov Chain

» Sample paths:
> C1 C2 C3 Pass Sleep
> C1 FB FB C1 C2 Sleep
» C1 C2 C3 Pub C2 C3 Pass Sleep
» CI1FBFBC1C2C3PubCl1FB
FB FB C1 C2 Sleep

» Transition matrix:

FB [09 01 0 O 0O 0 O
C1 05 0 05 0 0 O

o

C2 0O 0O O 08 0 0 02
P= (3 0O 0 O O0 04 06 O
Pub 0 02 04 04 0 0 O
Pass 0 0 0 0 0 0 1
Sleep 0O 0o O o0 o0 o0 1 ]



Chapman-Kolmogorov Equation

» n-step transition probabilities of a time-homogeneous Markov chain
on X ={1,...,N}

Pi(jn) =P(xepn=J | xt =1)=P(xn=j | x0 =1)
» Chapman-Kolmogorov: the n-step transition probabilities can be

obtained recursively from the 1-step transition probabilities:

ZP(”’)P(” ™ Vi 0<m<n

n times

» Given the transition matrix P and a vector pg := [po(1), ..., po(N)]" of
prior probabilities, the vector of probabilities p;|; after t steps is:

Pl = Po P*




Example: Student Markov Chain

P? =

ploo _

Pub
Pass
Sleep

FB
C1

c3
Pub
Pass
Sleep

r0.9 0.1 00 0 O

05 0 05 0 0 0 0

0 0 08 0 0 02

0 0 0 04 06 0

0 020404 0 0 0

0 0 00 0 1

Lo o 0 0 0 1

[0.86 0.09 005 0 0 0 0
045 005 0 04 0 0 01
0 0 0 0 032 048 02
0 008 016 016 0 0 06
01 0 01 032 016 024 0.08
0o o o0 0 0 o0 1
Lo o o o 0 0 1
[0.01 0 0 0 0 0 0.99

001 0 0 00 0 099

0 00000 1

0 00000 1

0 00000 1

0 00000 1

0 00000 1



First Passage Time

» First Passage Time: the number of transitions necessary to go from
Xp = I to state j for the first time is a random variable

» Recurrence Time: the first passage time 7j; to go from xp =i toj =i

> Probability of first passage in n steps: p,(.j") =P(rj=n|x0 =1)

1
pg):Pj

P = [Py — pi) Py (first time we visit j should not be 11)

I T L Wy 1
(n)

> Probability of first passage: pj; := P(7; < oo | x =1i) =} 7%, pj;
» Number of visits to j up to time n:

= Z]l{xt =Jj} vj = lim vj(")
t=0



Recurrence and Transience

» Absorbing state: a state j such that P;; =1

> Transient state: a state j such that p;; <1

> Recurrent state: a state j such that p;; =1

> Positive recurrent state: a recurrent state j with E[7; | xo = j] < 00
» Null recurrent state: a recurrent state j with E[7j | xg = j] = o0

» Periodic state: can only be visited at integer multiples of t

» Ergodic state: a positive recurrent state that is aperiodic



Recurrence and Transience

Total Number of Visits Lemma

IP’(vjzk—i—l\xo:j):pj-‘jforallkZO

Proof: By the (strong) Markov property and induction
(B(y > k+1|x0=) = pB(y; > k| 30 = J)).

0 — 1 Law for Total Number of Visits

J is recurrent iff E[v; | xo = j] = 00

Proof: Since v; is discrete, we can write v; = Y, 1{v; > k} and

o
Elvi|xo=j1=) P(y>k+1|x=j)= ZPJJ
k=0

1 - pJJ

Theorem: Recurrence is contagious

i is recurrent and p;; >0 = jisrecurrent and p;; =1
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Classification of Markov Chains

» Absorbing Markov Chain: contains at least one absorbing state that
can be reached from every other state (not necessarily in one step)

» Irreducible Markov Chain: it is possible to go from every state to
every state (not necessarily in one step)

» Ergodic Markov Chain: an aperiodic, irreducible and positive recurrent
Markov chain

» Stationary distribution: a vector w € {p € [0,1]V | 1Tp = 1} such
thatw' P =w'
» Absorbing chains have stationary distributions with nonzero elements only
in absorbing states

> Ergodic chains have a unique stationary distribution (Perron-Frobenius
Theorem)

> Some periodic chains only satisfy a weaker condition, where w; > 0 only
v
n+1

for recurrent states and w; is the frequency of being in state j as
n— oo
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Absorbing Markov Chains

» Interesting questions:
Q1: On average, how mant times is the process in state j7

Q2: What is the probability that the state will eventually be absorbed?
Q3: What is the expected absorption time?

Q4: What is the probability of being absorbed by j given that we started in j?
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Absorbing Markov Chains

» Canonical form: reorder the states so that the transient ones come

.5 1@ R
f|rst.P—[0 /

Q" *
0o |/
Proof: If j is transient, then p; < 1 and from the 0-1 Law:

S 1= ) | 0= :} SR

n=0
» Fundamental matrix: 74 = (1 — Q)_l = Eiozo Q" exists for an
absorbing Markov chain
> Expected number of times the chain is in state j: Z/j‘ =E[v | xo =1]
» Expected absorption time when starting from state /: Zj Z,-j-‘

» One can show that P" = and Q" — 0as n— oo

co>E[v|x=i=E

> Let B = Z”R. The probability of reaching absorbing state j starting from
state i is Bj;
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Example: Drunkard’s Walk

> Transition matrix:

P =

» Canonical form:

p =

1 0
05 O
0 05
0 O
0 O
0 05
05 O
0 05
0 O
0 O

0
0.5
0
0.5
0

0
0

» Fundamental matrix:

ZA=(1-Q)t=

0 0
0 0
05 0
0 05
0 1|
05 0]
0 0
0 05
1 0
0 1|
15 1 05
1 2 1
05 1 15
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Perron-Frobenius Theorem

Let P be the transition matrix of an irreducible, aperiodic, finite,
time-homogeneous Markov chain with stationary distribution w. Then

» 1 is the eigenvalue of max modulus, i.e., |[\| < 1 for all other eigenvalues

» 1 is a simple eigenvalue, i.e., the associated eigenspace and
left-eigenspace have dimension 1

» The eigenvector associated with 1 is 1
» The unique left eigenvector w is nonnegative and

lim P" = 1w '
n—oo

Hence, w is the unique stationary distribution for the Markov chain and any
initial distribution converges to it.
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Fundamental Matrix for Ergodic Chains

» We can try to get a fundamental matrix as in the absorbing case but
(I — P)~1 does not exist because P1 = 1 (Perron-Frobenius)

> [+ Q+ Q%+ ...= (I — @) converges because Q" — 0

> Try I+ (P—1w")+ (P> —1w') +... because P" — 1w "
(Perron-Frobenius)

» Note that Plw’ = 1w’ and (lw")?2 = 1w 1w’ = 1w’

(P—1w')" = Zn:(—l)" (’:) P (IwT) = P74+ Iz_n;(—l)" <7> (1w

i=0

=P"4+

(1-1)7—1

» Thus, the following inverse exists:

I+ (PP =1w ) =1+> (P-1w')"=(/-P+1w')"!
n=1 n=1 16



Fundamental Matrix for Ergodic Chains

» Fundamental matrix: ZF := (/ — P+ 1w ")~! where P is the
transition matrix and w is the stationary distribution.

> Properties: w’ ZF =w', ZF1 =1, and ZE(I —-P)=1- 1w’

E—ZE

] ij

» Mean first passage time: m;; :=E[r; | xo =i] =
Wi
j
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Example: Land of Oz

» Transition matrix:

05 0.25 0.25
P=1|05 0 05
025 025 05
» Stationary distribution:
wl =104 02 04] 0.25
» Fundamental matrix: 05 0.25
09 —005 0.5 os @@ 05
|—P+1w’ = |-01 12 —0.1 025 05
(015 —0.05 0.9
[ 1.147 0.04 —0.187 025
ZE =1 008 084 0.08
| —0.187 0.04 1.147

» Mean first passage time:

_ ZE-ZE _ 0.84-0.04 _
myp = 2 = =5 =4
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