ECE276B: Planning & Learning in Robotics Lecture 1: Markov Chains

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Zhichao Li: zhl355@eng.ucsd.edu Jinzhao Li: jil016@eng.ucsd.edu

UC San Diego JACOBS SCHOOL OF ENGINEERING

Electrical and Computer Engineering

Definition of Markov Chain

Stochastic process: an indexed collection of random variables {x₀, x₁,...} whose range is a measurable space (X, F)
 example: time series of weekly demands for a product

A temporally homogeneous Markov chain is a stochastic process {x₀, x₁,...} such that:

• $x_0 \sim p_0(\cdot)$ for a prior probability density function p on $(\mathcal{X}, \mathcal{F})$

▶ $\mathbb{P}(x_{t+1} \in A \mid x_{0:t}) = \mathbb{P}(x_{t+1} \in A \mid x_t) = \int_A p_f(x \mid x_t) dx$ for $A \in \mathcal{F}$ and a conditional pdf $p_f(\cdot \mid x_t)$ on $(\mathcal{X}, \mathcal{F})$

Intuitive definition:

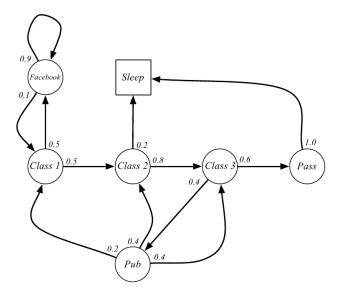
- In a Markov Chain the distribution of x_{t+1} | x_{0:t} depends only on x_t (a memoryless stochastic process)
- The state captures all information about the history, i.e., once the state is known, the history may be thrown away
- "The future is independent of the past given the present" (Markov Assumption)

Markov Chain

A Markov Chain is a stochastic process defined by a tuple $(\mathcal{X}, p_0, p_f, T)$:

- X is discrete/continuous set of states
- p_0 is a prior pmf/pdf defined on \mathcal{X}
- *p_f*(· | **x**) is a conditional pmf/pdf defined on X for given **x** ∈ X that specifies the stochastic process transitions.
- T is a finite/infinite time horizon
- In a finite-dimensional case, the transition pmf is summarized by a matrix P_{ij} := ℙ(x_{t+1} = j | x_t = i) = p_f(j | x_t = i)

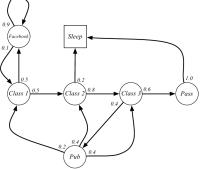
Example: Student Markov Chain



Example: Student Markov Chain

Sample paths:

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 Sleep



Transition matrix:

FB	F0.9	0.1	0	0	0	0	0]
<i>C</i> 1	0.5	0	0.5	0	0	0	0
C2	0	0	0	0.8	0	0	0.2
<i>P</i> = <i>C</i> 3	0	0	0	0	0.4	0.6	0
Pub	0	0.2	0.4	0.4	0	0	0
Pass	0	0	0	0	0	0	1
FB $C1$ $C2$ $P = C3$ Pub $Pass$ $Sleep$	[0	0	0	0	0	0	1]

Chapman-Kolmogorov Equation

n-step transition probabilities of a time-homogeneous Markov chain on X = {1,..., N}

$$P_{ij}^{(n)} := \mathbb{P}(x_{t+n} = j \mid x_t = i) = \mathbb{P}(x_n = j \mid x_0 = i)$$

Chapman-Kolmogorov: the *n*-step transition probabilities can be obtained recursively from the 1-step transition probabilities:

$$P_{ij}^{(n)} = \sum_{k=1}^{N} P_{ik}^{(m)} P_{kj}^{(n-m)}, \qquad \forall i, j, n, 0 \le m \le n$$
$$P^{(n)} = \underbrace{P \cdots P}_{n \text{ times}} = P^{n}$$

Given the transition matrix P and a vector p₀ := [p₀(1),..., p₀(N)][⊤] of prior probabilities, the vector of probabilities p_{t|t} after t steps is:

$$\mathbf{p}_{t|t}^{\top} = \mathbf{p}_0^{\top} P^t$$

Example: Student Markov Chain

P =	FB C1 C2 C3 Pub Pass Sleep	0.9 0.5 0 0 0 0 0 0	0.1 0 0 0.2 0 0	(0. (0. ((.5) .4)	0 0.8 0 0.4 0	0.) 0) 0 .4 0.6) 0) 0	0 0 0.2 0 0 1 1	
$P^2 =$	FB C1 C2	0.86 0.45 0 0.1 0 0.1	0.0 0.0 0.0 0 0.0 0 0)9)5)8	0.(C C 0.: 0. C)5) 16 1	0 0.4 0.1 0.3 0 0	0 0.32 6 0	0	0 0.1 0.2 0.6 0.08 1 1
$P^{100} =$	FB C1 C2 C3 Pub Pass Sleep	0.01 0.01 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0.99 0.99 1 1 1 1 1 1		

First Passage Time

First Passage Time: the number of transitions necessary to go from x₀ = i to state j for the first time is a random variable

$$\tau_{ij} := \inf\{t \ge 1 \mid x_t = j, x_0 = i\}$$

Recurrence Time: the first passage time τ_{ii} to go from x₀ = i to j = i
 Probability of first passage in n steps: ρ⁽ⁿ⁾_{ii} := P(τ_j = n | x₀ = i)

$$\rho_{ij}^{(1)} = P_{ij}$$

$$\rho_{ij}^{(2)} = [P^2]_{ij} - \rho_{ij}^{(1)} P_{jj} \qquad \text{(first time we visit } j \text{ should not be } 1!)$$

$$\vdots$$

$$\rho_{ij}^{(n)} = [P^n]_{ij} - \rho_{ij}^{(1)} [P^{n-1}]_{jj} - \rho_{ij}^{(2)} [P^{n-2}]_{jj} - \dots - \rho_{ij}^{(n-1)} P_{jj}$$

Probability of first passage: ρ_{ij} := P(τ_j < ∞ | x₀ = i) = ∑[∞]_{n=1} ρ⁽ⁿ⁾_{ij}
 Number of visits to j up to time n:

$$v_j^{(n)} := \sum_{t=0}^n \mathbb{1}\{x_t = j\}$$
 $v_j := \lim_{n \to \infty} v_j^{(n)}$

Recurrence and Transience

- Absorbing state: a state j such that P_{jj} = 1
- Transient state: a state j such that ρ_{jj} < 1</p>
- Recurrent state: a state j such that ρ_{jj} = 1
- ▶ **Positive recurrent state**: a recurrent state *j* with $\mathbb{E}[\tau_j | x_0 = j] < \infty$
- ▶ Null recurrent state: a recurrent state *j* with $\mathbb{E}[\tau_j | x_0 = j] = \infty$
- Periodic state: can only be visited at integer multiples of t
- **Ergodic state**: a positive recurrent state that is aperiodic

Recurrence and Transience

Total Number of Visits Lemma

$$\mathbb{P}(v_j \geq k+1 \mid x_0 = j) =
ho_{jj}^k$$
 for all $k \geq 0$

Proof: By the (strong) Markov property and induction $(\mathbb{P}(v_j \ge k+1 \mid x_0 = j) = \rho_{jj}\mathbb{P}(v_j \ge k \mid x_0 = j)).$

0-1 Law for Total Number of Visits

$$j$$
 is recurrent iff $\mathbb{E}\left[v_{j} \mid x_{0}=j
ight]=\infty$

Proof: Since v_j is discrete, we can write $v_j = \sum_{k=0}^{\infty} \mathbb{1}\{v_j > k\}$ and

$$\mathbb{E}[v_j \mid x_0 = j] = \sum_{k=0}^{\infty} \mathbb{P}(v_j \ge k+1 \mid x_0 = j) = \sum_{k=0}^{\infty} \rho_{jj}^k = \frac{\rho_{jj}}{1 - \rho_{jj}}$$

Theorem: Recurrence is contagious

i is recurrent and $ho_{ij} > 0 \quad \Rightarrow \quad j$ is recurrent and $ho_{ji} = 1$

Classification of Markov Chains

- Absorbing Markov Chain: contains at least one absorbing state that can be reached from every other state (not necessarily in one step)
- Irreducible Markov Chain: it is possible to go from every state to every state (not necessarily in one step)
- Ergodic Markov Chain: an aperiodic, irreducible and positive recurrent Markov chain

• Stationary distribution: a vector $\mathbf{w} \in {\mathbf{p} \in [0,1]^N \mid \mathbf{1}^\top \mathbf{p} = 1}$ such that $\mathbf{w}^\top P = \mathbf{w}^\top$

- Absorbing chains have stationary distributions with nonzero elements only in absorbing states
- Ergodic chains have a unique stationary distribution (Perron-Frobenius Theorem)
- Some periodic chains only satisfy a weaker condition, where w_j > 0 only for recurrent states and w_j is the frequency v_j⁽ⁿ⁾/n+1 of being in state j as n → ∞

Absorbing Markov Chains

- Interesting questions:
 - Q1: On average, how mant times is the process in state j?
 - Q2: What is the probability that the state will eventually be absorbed?
 - Q3: What is the expected absorption time?
 - Q4: What is the probability of being absorbed by j given that we started in i?

Absorbing Markov Chains

- **Canonical form**: reorder the states so that the transient ones come first: $P = \begin{bmatrix} Q & R \\ 0 & I \end{bmatrix}$
- One can show that $P^n = \begin{bmatrix} Q^n & * \\ 0 & I \end{bmatrix}$ and $Q^n \to 0$ as $n \to \infty$ *Proof*: If *j* is transient, then $\rho_{ij} < 1$ and from the 0-1 Law:

$$\infty > \mathbb{E}[v_j \mid x_0 = i] = \mathbb{E}\left[\sum_{n=0}^{\infty} \mathbb{1}\{x_n = j\} \mid x_0 = i\right] = \sum_{n=0}^{\infty} [P^n]_{ij}$$

- Fundamental matrix: $Z^A = (I Q)^{-1} = \sum_{n=0}^{\infty} Q^n$ exists for an absorbing Markov chain
 - ▶ Expected number of times the chain is in state j: $Z_{ij}^A = \mathbb{E}[v_j | x_0 = i]$
 - Expected absorption time when starting from state *i*: $\sum_{i} Z_{ii}^{A}$
 - Let B = Z^AR. The probability of reaching absorbing state j starting from state i is B_{ij}

Example: Drunkard's Walk

Transition matrix:

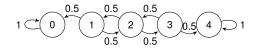
$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Canonical form:

$$P = \begin{bmatrix} 0 & 0.5 & 0 & 0.5 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Fundamental matrix:

$$Z^{A} = (I - Q)^{-1} = \begin{bmatrix} 1.5 & 1 & 0.5 \\ 1 & 2 & 1 \\ 0.5 & 1 & 1.5 \end{bmatrix}$$



Perron-Frobenius Theorem

Theorem

Let P be the transition matrix of an irreducible, aperiodic, finite, time-homogeneous Markov chain with stationary distribution **w**. Then

- ▶ 1 is the eigenvalue of max modulus, i.e., $|\lambda| < 1$ for all other eigenvalues
- 1 is a simple eigenvalue, i.e., the associated eigenspace and left-eigenspace have dimension 1
- The eigenvector associated with 1 is 1
- The unique left eigenvector w is nonnegative and

$$\lim_{n\to\infty}P^n=\mathbf{1}\mathbf{w}^\top$$

Hence, \mathbf{w} is the unique stationary distribution for the Markov chain and any initial distribution converges to it.

Fundamental Matrix for Ergodic Chains

- We can try to get a fundamental matrix as in the absorbing case but $(I P)^{-1}$ does not exist because $P\mathbf{1} = \mathbf{1}$ (Perron-Frobenius)
- ▶ $I + Q + Q^2 + \ldots = (I Q)^{-1}$ converges because $Q^n \to 0$
- ► Try $I + (P \mathbf{1}\mathbf{w}^{\top}) + (P^2 \mathbf{1}\mathbf{w}^{\top}) + \dots$ because $P^n \to \mathbf{1}\mathbf{w}^{\top}$ (Perron-Frobenius)
- ▶ Note that $P\mathbf{1}\mathbf{w}^{\top} = \mathbf{1}\mathbf{w}^{\top}$ and $(\mathbf{1}\mathbf{w}^{\top})^2 = \mathbf{1}\mathbf{w}^{\top}\mathbf{1}\mathbf{w}^{\top} = \mathbf{1}\mathbf{w}^{\top}$

$$(P - \mathbf{1}\mathbf{w}^{\top})^{n} = \sum_{i=0}^{n} (-1)^{i} {n \choose i} P^{n-i} (\mathbf{1}\mathbf{w}^{\top})^{i} = P^{n} + \sum_{i=1}^{n} (-1)^{i} {n \choose i} (\mathbf{1}\mathbf{w}^{\top})^{i}$$
$$= P^{n} + \underbrace{\left[\sum_{i=1}^{n} (-1)^{i} {n \choose i}\right]}_{(1-1)^{n}-1} (\mathbf{1}\mathbf{w}^{\top}) = P^{n} - \mathbf{1}\mathbf{w}^{\top}$$

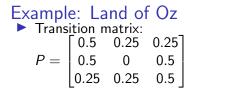
Thus, the following inverse exists:

$$I + \sum_{n=1}^{\infty} (P^n - \mathbf{1}\mathbf{w}^{\top}) = I + \sum_{n=1}^{\infty} (P - \mathbf{1}\mathbf{w}^{\top})^n = (I - P + \mathbf{1}\mathbf{w}^{\top})^{-1}$$
16

Fundamental Matrix for Ergodic Chains

- ▶ Fundamental matrix: $Z^E := (I P + \mathbf{1}\mathbf{w}^\top)^{-1}$ where *P* is the transition matrix and **w** is the stationary distribution.
- Properties: $w^T Z^E = \mathbf{w}^T$, $Z^E \mathbf{1} = \mathbf{1}$, and $Z^E (I P) = I \mathbf{1} \mathbf{w}^T$

• Mean first passage time: $m_{ij} := \mathbb{E}[\tau_j \mid x_0 = i] = \frac{Z_{jj}^E - Z_{ij}^E}{w_i}$



Stationary distribution: $w^T = \begin{bmatrix} 0.4 & 0.2 & 0.4 \end{bmatrix}$

Fundamental matrix:

$$I - P + \mathbf{1}w^{T} = \begin{bmatrix} 0.9 & -0.05 & 0.15 \\ -0.1 & 1.2 & -0.1 \\ 0.15 & -0.05 & 0.9 \end{bmatrix} \xrightarrow{0.5} \xrightarrow{\text{Rain}} \xrightarrow{0.5} \xrightarrow{0.25} \xrightarrow{0.5} \xrightarrow{0.5} \xrightarrow{0.5} \xrightarrow{0.5} \xrightarrow{0.25} \xrightarrow{0.5} \xrightarrow{0.5} \xrightarrow{0.5} \xrightarrow{0.25} \xrightarrow{0.5} \xrightarrow{0.5} \xrightarrow{0.25} \xrightarrow{0.25} \xrightarrow{0.25} \xrightarrow{0.5} \xrightarrow{0.25} \xrightarrow{0$$

0.25

• Mean first passage time: $m_{12} = \frac{Z_{22}^E - Z_{12}^E}{w_2} = \frac{0.84 - 0.04}{0.2} = 4$