ECE276B: Planning & Learning in Robotics Lecture 2: Markov Decision Processes

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Zhichao Li: zhl355@eng.ucsd.edu Jinzhao Li: jil016@eng.ucsd.edu

UC San Diego JACOBS SCHOOL OF ENGINEERING

Electrical and Computer Engineering

Notation and Terminology

 $\begin{array}{ll} t \in \{0, \dots, T\} & \mbox{discrete time} \\ \mathbf{x} \in \mathcal{X} & \mbox{discrete/continuous state} \\ \mathbf{u} \in \mathcal{U}(\mathbf{x}) & \mbox{control/action available in state } \mathbf{x} \end{array}$

 $\begin{array}{ll} p_0(\mathbf{x}) & \text{prior probability density/mass function defined on } \mathcal{X} \\ p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) & \text{motion model, i.e., control-dependent transition pdf} \end{array}$

- $\begin{array}{ll} \ell(\textbf{x},\textbf{u}) & \text{stage cost/reward of choosing control } \textbf{u} \text{ in state } \textbf{x} \\ \mathfrak{q}(\textbf{x}) & \text{terminal cost/reward at state } \textbf{x} \end{array}$
- $\pi_t(\mathbf{x})$ control policy: **function** from state \mathbf{x} at time t to control $\mathbf{u} \in \mathcal{U}(\mathbf{x})$

 $V_t^{\pi}(\mathbf{x})$ value function: **cumulative cost/reward** of starting at state \mathbf{x} at time t and acting according to π thereafter

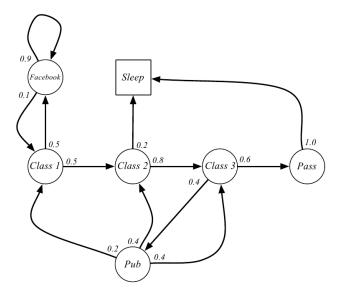
 $\pi^*_t(\mathbf{x}), \ V^*_t(\mathbf{x})$ optimal control policy and corresponding value function

Markov Chain

A Markov Chain is a stochastic process defined by a tuple $(\mathcal{X}, p_0, p_f, T)$:

- X is discrete/continuous set of states
- p_0 is a prior pmf/pdf defined on \mathcal{X}
- *p_f*(· | **x**) is a conditional pmf/pdf defined on X for given **x** ∈ X that specifies the stochastic process transitions.
- T is a finite/infinite time horizon
- In a finite-dimensional case, the transition pmf is summarized by a matrix P_{ij} := ℙ(x_{t+1} = j | x_t = i) = p_f(j | x_t = i)

Example: Student Markov Chain

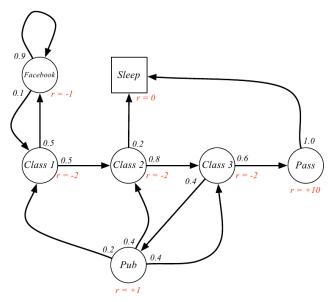


Markov Reward Process

A Markov Reward Process (MRP) is a Markov chain with costs/rewards defined by a tuple $(\mathcal{X}, p_0, p_f, T, \ell, \mathfrak{q}, \gamma)$:

- \mathcal{X} is a discrete/continuous set of states
- p_0 is a prior pmf/pdf defined on \mathcal{X}
- *p_f*(· | **x**) is a conditional pmf/pdf defined on X for given **x** ∈ X that specifies the stochastic process transitions.
- T is a finite/infinite time horizon
- ▶ $\ell(x)$ is a function specifying the stage cost/reward of state $x \in \mathcal{X}$
- q(x) is a terminal cost of being in state x at time T
- ▶ $\gamma \in [0, 1]$ is a discount factor

Example: Student Markov Reward Process



Cumulative Cost

Value function: the cumulative cost/reward of an MRP starting from state $\mathbf{x} \in \mathcal{X}$ at time 0: Г

Finite-horizon:
$$V_0(\mathbf{x}) := \mathbb{E} \left[\underbrace{\mathfrak{q}(\mathbf{x}_T)}_{\text{terminal cost}} + \sum_{t=0}^{T-1} \ell(\mathbf{x}_t) \mid \mathbf{x}_0 = \mathbf{x} \right]$$

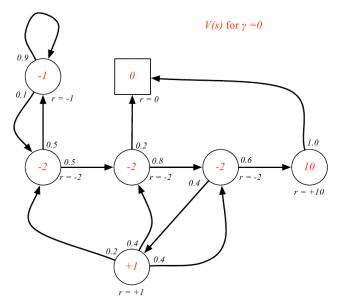
b Discounted Infinite-horizon: $V(\mathbf{x}) := \mathbb{E} \left| \sum_{t=0}^{\infty} \gamma^t \ell(\mathbf{x}_t) \mid \mathbf{x}_0 = \mathbf{x} \right|$

• Average-reward:
$$V(\mathbf{x}) := \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \ell(\mathbf{x}_t) \mid \mathbf{x}_0 = \mathbf{x} \right]$$

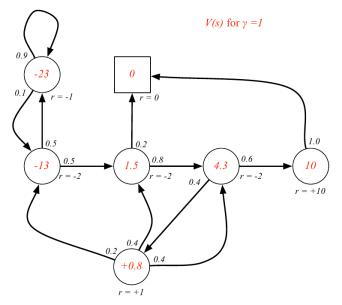
• The **discount factor** γ specifies the present value of future costs:

- \triangleright γ close to 0 leads to myopic/greedy evaluation
- \triangleright γ close to 1 leads to nonmyopic/far-sighted evaluation
- Mathematically convenient since it avoids infinite costs as $T \to \infty$
- The long-term future may be hard to model anyways
- Animal/human behavior shows preference for immediate reward
- It is possible to use an undiscounted MRP if all sequences terminate (first-exit formulation). The finite-horizon formulation is a special case of the first-exit formulation.

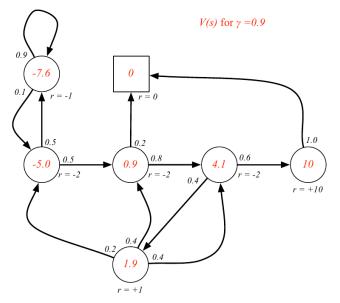
Example: Cumulative Reward of the Student MRP



Example: Cumulative Reward of the Student MRP



Example: Cumulative Reward of the Student MRP



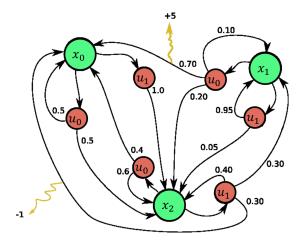
Markov Decision Process

A Markov Decision Process (MDP) is a Markov Reward Process with controlled transitions defined by a tuple $(\mathcal{X}, \mathcal{U}, p_0, p_f, T, \ell, \mathfrak{q}, \gamma)$

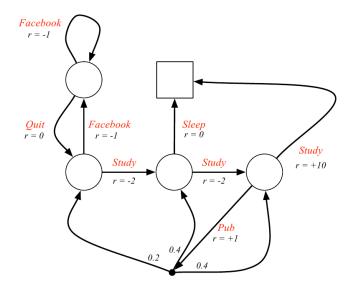
- \mathcal{X} is a discrete/continuous set of states
- U is a discrete/continuous set of controls
- p_0 is a prior pmf/pdf defined on \mathcal{X}
- ▶ $p_f(\cdot | \mathbf{x}_t, \mathbf{u}_t)$ is a conditional pmf/pdf defined on \mathcal{X} for given $\mathbf{x}_t \in \mathcal{X}$ and $\mathbf{u}_t \in \mathcal{U}$ and summarized by a matrix $P_{ij}^u := p_f(j | x_t = i, u_t = u)$ in the finite-dimensional case.
- T is a finite/infinite time horizon
- ℓ(x, u) is a function specifying the cost/reward of applying control u ∈ U in state x ∈ X
- q(x) is a terminal cost of being in state x at time T
- ▶ $\gamma \in [0, 1]$ is a discount factor

Example: Markov Decision Process

An action u_t ∈ U(x_t) applied in state x_t ∈ X determines the next state x_{t+1} and the obtained cost/reward ℓ(x_t, u_t)



Example: Student Markov Decision Process



Control Policy and Cumulative Cost

- Admissible control policy: a sequence π_{0:T−1} of functions π_t that map a state x_t ∈ X to a feasible control input u_t ∈ U(x_t)
- Value function: the cumulative cost/reward of a policy π applied to an MDP with initial state x ∈ X at time t = 0:

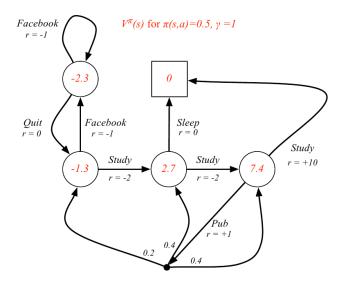
Finite-horizon:
$$V_0^{\pi}(\mathbf{x}) := \mathbb{E} \left[\underbrace{\mathfrak{q}(\mathbf{x}_T)}_{\text{terminal cost}} + \sum_{t=0}^{T-1} \ell(\mathbf{x}_t, \pi_t(\mathbf{x}_t)) \mid \mathbf{x}_0 = \mathbf{x} \right]$$

b Discounted Infinite-horizon: $V^{\pi}(\mathbf{x}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$

• Average-reward:
$$V^{\pi}(\mathbf{x}) := \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) \mid \mathbf{x}_0 = \mathbf{x} \right]$$

Note: we will show that as T → ∞, optimal policies become stationary, i.e., π := π₀ ≡ π₁ ≡ · · · , and independent of x₀

Example: Value Function of Student MDP



Alternative Cost Formulations

Noise-dependent costs: a more general model allows the stage costs l' to depend on the motion noise w_t:

$$V_0^{\pi}(\mathbf{x}) := \mathbb{E}_{\mathbf{w}_{0:T}, \mathbf{x}_{1:T}} \left[\mathfrak{q}(\mathbf{x}_T) + \sum_{t=0}^{T-1} \ell'(\mathbf{x}_t, \pi_t(\mathbf{x}_t), \mathbf{w}_t) \mid \mathbf{x}_0 = \mathbf{x} \right]$$

► Using the pdf $p_w(\cdot | \mathbf{x}_t, \mathbf{u}_t)$ of \mathbf{w}_t , this is equivalent to our formulation: $\ell(\mathbf{x}_t, \mathbf{u}_t) := \mathbb{E}_{\mathbf{w}_t | \mathbf{x}_t, \mathbf{u}_t} \left[\ell'(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \right] = \int \ell(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) p_w(\mathbf{w}_t | \mathbf{x}_t, \mathbf{u}_t) d\mathbf{w}_t$

The expectation can be computed if p_w is known or approximated.

▶ Joint cost-state pdf: a more general model allows random costs ℓ' by specifying the joint pdf p(x', ℓ' | x, u). This is equivalent to our formulation as follows:

$$p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) := \int p(\mathbf{x}', \ell' \mid \mathbf{x}, \mathbf{u}) d\ell'$$
$$\ell(\mathbf{x}, \mathbf{u}) := \mathbb{E} \left[\ell' \mid \mathbf{x}, \mathbf{u} \right] = \int \int \ell' p(\mathbf{x}', \ell' \mid, \mathbf{x}, \mathbf{u}) dx' d\ell'$$

Alternative Motion-Model Formulations

- Fine-lag motion model: $\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{u}_t, \mathbf{u}_{t-1}, \mathbf{w}_t)$
- Can be converted to the standard form via state augmentation
- Let $\mathbf{y}_t := \mathbf{x}_{t-1}$ and $\mathbf{s}_t := \mathbf{u}_{t-1}$ and define the augmented dynamics:

$$\tilde{\mathbf{x}}_{t+1} := \begin{bmatrix} \mathbf{x}_{t+1} \\ \mathbf{y}_{t+1} \\ \mathbf{s}_{t+1} \end{bmatrix} = \begin{bmatrix} f_t(\mathbf{x}_t, \mathbf{y}_t, \mathbf{u}_t, \mathbf{s}_t, \mathbf{w}_t) \\ \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} =: \tilde{f}_t(\tilde{\mathbf{x}}_t, \mathbf{u}_t, \mathbf{w}_t)$$

 Note that this procedure works for an arbitrary number of time lags but the dimension of the state space grows and increases the computational burden exponentially ("curse of dimensionality")

Alternative Motion-Model Formulations

System dynamics: $\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t)$

Correlated Disturbance: w_t correlated across time (colored noise):

$$egin{aligned} \mathbf{y}_{t+1} &= \mathcal{A}_t \mathbf{y}_t + m{\xi}_t \ \mathbf{w}_t &= \mathcal{C}_t \mathbf{y}_{t+1} \end{aligned}$$

where A_t , C_t are known and ξ_t are independent random variables

• Augmented state: $\tilde{\mathbf{x}}_t := (\mathbf{x}_t, \mathbf{y}_t)$ with dynamics:

$$\tilde{\mathbf{x}}_{t+1} = \begin{bmatrix} \mathbf{x}_{t+1} \\ \mathbf{y}_{t+1} \end{bmatrix} = \begin{bmatrix} f_t(\mathbf{x}_t, \mathbf{u}_t, C_t(A_t\mathbf{y}_t + \boldsymbol{\xi}_t)) \\ A_t\mathbf{y}_t + \boldsymbol{\xi}_t \end{bmatrix} =: \tilde{f}_t(\tilde{\mathbf{x}}_t, \mathbf{u}_t, \boldsymbol{\xi}_t)$$

State estimator: note that y_t must be observed at time t, which can be done using a state estimator

Hidden Markov Model

A Hidden Markov Model (HMM) is a Markov Chain with partially observable states defined by a tuple $(\mathcal{X}, \mathcal{Z}, p_0, p_f, p_h, T)$

- \mathcal{X} is a discrete/continuous set of states
- \mathcal{Z} is a discrete/continuous set of observations
- p_0 is a prior pmf/pdf defined on \mathcal{X}
- *p_f*(· | **x**_t) is a conditional pmf/pdf defined on X for given **x**_t ∈ X and summarized by a matrix *P_{ij}* := *p_f*(*j* | *x_t* = *i*) in the finite-dimensional case.
- ▶ $p_h(\cdot | \mathbf{x}_t)$ is a conditional pmf/pdf defined on \mathcal{Z} for given $\mathbf{x}_t \in \mathcal{X}$ and summarized by a matrix $O_{ij} := p_h(j | x_t = i)$ in the finite-dim case.
- T is a finite/infinite time horizon

Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process (POMDP) is an MDP with partially observable states defined by a tuple $(\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_0, p_f, p_h, T, \ell, \mathfrak{q}, \gamma)$

- \mathcal{X} is a discrete/continuous set of states
- \mathcal{U} is a discrete/continuous set of controls
- $\blacktriangleright~\mathcal{Z}$ is a discrete/continuous set of observations
- p_0 is a prior pmf/pdf defined on \mathcal{X}
- *p_f*(· | **x**_t, **u**_t) is a conditional pmf/pdf defined on *X* for given **x**_t ∈ *X* and **u**_t ∈ *U* and summarized by a matrix *P^u_{ij}* := *p_f*(*j* | *x*_t = *i*, *u*_t = *u*) in the finite-dimensional case.
- ▶ $p_h(\cdot | \mathbf{x}_t)$ is a conditional pmf/pdf defined on \mathcal{Z} for given $\mathbf{x}_t \in \mathcal{X}$ and summarized by a matrix $O_{ij} := p_h(j | x_t = i)$ in the finite-dim case.
- ► *T* is a finite/infinite time horizon
- ℓ(x, u) is a function specifying the cost/reward of applying control u ∈ U in state x ∈ X
- $q(\mathbf{x})$ is a terminal cost of being in state \mathbf{x} at time T
- $\gamma \in [0,1]$ is a discount factor

Comparison of Markov Models

	observed	partially observed
uncontrolled	Markov Chain/MRP	HMM
controlled	MDP	POMDP

- Markov Chain + Partial Observability = HMM
- Markov Chain + Control = MDP
- Markov Chain + Partial Observability + Control = HMM + Control = MDP + Partial Observability = POMDP

Bayes Filter

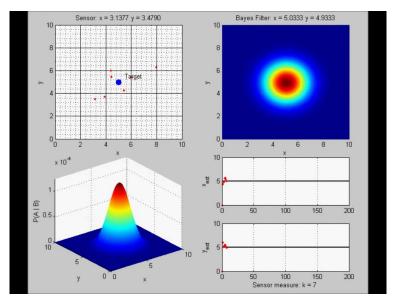
▶ A probabilistic inference technique for summarizing information $\mathbf{i}_t := (\mathbf{z}_{0:t}, \mathbf{u}_{0:t-1}) \in \mathcal{I}$ about a partially observable state \mathbf{x}_t

► The Bayes filter keeps track of:
$$\frac{p_{t|t}(\mathbf{x}_t) := p(\mathbf{x}_t \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1})}{p_{t+1|t}(\mathbf{x}_{t+1}) := p(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t})}$$

- Derived using total probability, conditional probability, and Bayes rule based on the motion and observation models of the system
- Motion model: $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \sim p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$
- Observation model: $\mathbf{z}_t = h(\mathbf{x}_t, \mathbf{v}_t) \sim p_h(\cdot \mid \mathbf{x}_t)$
- **Bayes filter**: consists of **predict** and **update** steps:

$$p_{t+1|t+1}(\mathbf{x}_{t+1}) = \underbrace{\frac{1}{p(\mathbf{z}_{t+1}|\mathbf{z}_{0:t}, \mathbf{u}_{0:t})}^{\frac{1}{\eta_{t+1}}} p_{h}(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1})}_{\mathbf{Update}} \underbrace{\int p_{f}(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}) p_{t|t}(\mathbf{x}_{t}) d\mathbf{x}_{t}}_{\mathbf{Update}}$$

Bayes Filter Example



Information Space and Sufficient Statistics

- The information available at time t to estimate a partially observable state x_t is i_t := (z_{0:t}, u_{0:t-1}) ∈ I
- The information space I is the space of sequences of observations and controls
- A statistic y_t = s(i_t) is a function summarizing the information available at time t
- A statistic y_t = s(i_t) is sufficient for estimating x_t if the conditional distribution of x_t given the statistic y_t does not depend on the information i_t
- Under the Markov and measurement and motion noise independence (over time, from the state, and from each other) assumptions, the distribution of the state x_t conditioned on the information state i_t is a sufficient statistic for estimating x_t.
- Informally, $p_{t|t}(\mathbf{x}_t) := p(\mathbf{x}_t | \mathbf{i}_t)$ is a compact representation of \mathbf{i}_t .

Equivalence of POMDPs and MDPs

> The **Bayes filter** ψ tracks precisely the needed sufficient statistic:

$$p(\cdot \mid \mathbf{i}_t) = p_{t|t}(\cdot) = \psi(p_{t-1|t-1}(\cdot), \mathbf{u}_{t-1}, \mathbf{z}_t)$$
$$p_{t|t}(\mathbf{x}_t) = \frac{1}{\eta_t} p_h(\mathbf{z}_t \mid \mathbf{x}_t) \int p_f(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) p_{t-1|t-1}(\mathbf{x}_{t-1}) d\mathbf{x}_{t-1}$$

Because p_{t|t} is a sufficient statistic for x_t, we can convert a POMDP (X,U, Z, p₀, p_f, p_h, T, ℓ, q, γ) into an MDP (P(X), U, p₀, p_ψ, T, ℓ, q, γ) defined over the space of probability density functions P(X) over X

Equivalence of POMDPs and MDPs

- A POMDP (X, U, Z, p₀, p_f, p_h, T, ℓ, q, γ) is equivalent to an MDP (P(X), U, p₀, p_ψ, T, ℓ̄, q̄, γ) such that:
 - ▶ State space: $\mathcal{P}(\mathcal{X})$ is the continuous space of pdfs/pmfs over \mathcal{X}
 - ▶ If \mathcal{X} is continuous, then $\mathcal{P}(\mathcal{X}) := \left\{ p : \mathcal{X} \to \mathbb{R} \mid \int p(\mathbf{x}) d\mathbf{x} = 1 \right\}$

• If
$$|\mathcal{X}| = N$$
, then $\mathcal{P}(\mathcal{X}) := \{\mathbf{p} \in [0, 1]^N \mid \mathbf{1}^\top \mathbf{p} = 1\}$

- Initial state: $p_0 \in \mathcal{P}(\mathcal{X})$
- Motion model: the Bayes filter p_{t+1|t+1} = ψ(p_{t|t}, u_t, z_{t+1}) plays the role of a motion model with the observations z_{t+1} acting as noise with density:

$$\eta(\mathbf{z} \mid p_{t|t}, \mathbf{u}_t) := \int \int p_h(\mathbf{z} \mid \mathbf{x}_{t+1}) p_f(\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{u}_t) p_{t|t}(\mathbf{x}_t) d\mathbf{x}_t d\mathbf{x}_{t+1}$$

Cost: the transformed stage and terminal cost/reward functions are the expected values of the original ones:

$$\bar{\ell}(p,\mathbf{u}) := \int \ell(\mathbf{x},\mathbf{u})p(\mathbf{x})d\mathbf{x} \qquad \bar{\mathfrak{q}}(p) := \int \mathfrak{q}(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

The Problem of Acting Optimally in a POMDP

- An infinite-dimensional stochastic optimization problem defined for a POMDP $(\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_0, p_f, p_h, T, \ell, \mathfrak{q}, \gamma)$: $\min_{\pi_{0:T-1}} \mathbb{E} \left[\gamma^T \mathfrak{q}(\mathbf{x}_T) + \sum_{t=0}^{T-1} \gamma^t \ell(\mathbf{x}_t, \mathbf{u}_t) \right]$ s.t. $\mathbf{x}_{t+1} \sim p_f(\cdot | \mathbf{x}_t, \mathbf{u}_t), \quad t = 0, \dots, T-1$
 - $\mathbf{z}_{t+1} \sim p_t(\cdot \mid \mathbf{x}_t), \qquad t = 0, \dots, T-1$ $\mathbf{u}_t \sim \pi_t(\cdot \mid \mathbf{i}_t), \qquad t = 0, \dots, T-1$ $\mathbf{u}_t \sim p_0(\cdot)$
- The equivalent MDP (P(X), U, p₀, p_ψ, T, l̄, q̄, γ) with sufficient statistic p_{t|t} leads to the problem:

$$\min_{\boldsymbol{\pi}_{0:T-1}} V_0^{\boldsymbol{\pi}}(\boldsymbol{p}_0) = \mathbb{E} \left[\gamma^T \bar{\mathfrak{q}}(\boldsymbol{p}_{T|T}) + \sum_{t=0}^{T-1} \gamma^t \bar{\ell}(\boldsymbol{p}_{t|t}, \mathbf{u}_t) \right]$$
s.t. $\boldsymbol{p}_{t+1|t+1} = \psi(\boldsymbol{p}_{t|t}, \mathbf{u}_t, \mathbf{z}_{t+1}), \ t = 0, \dots, T-1$
 $\mathbf{z}_{t+1} \sim \eta(\cdot \mid \boldsymbol{p}_{t|t}, \mathbf{u}_t), \quad t = 0, \dots, T-1$
 $\boldsymbol{u}_t \sim \boldsymbol{\pi}_t(\cdot \mid \boldsymbol{p}_{t|t}), \quad t = 0, \dots, T-1$

Final Problem Statement

- Due to the equivalence between POMDPs and MDPs, we will focus exclusively on MDPs
- First, we will consider the **finite-horizon** formulation:

$$\min_{\substack{\pi_0: \tau - 1 \\ \mathbf{x}_0: \tau = 1}} V_0^{\pi}(\mathbf{x}_0) := \mathbb{E}_{\mathbf{x}_{1:T}} \left[\mathfrak{q}(\mathbf{x}_T) + \sum_{t=0}^{T-1} \ell(\mathbf{x}_t, \pi_t(\mathbf{x}_t)) \mid \mathbf{x}_0 \right]$$
s.t. $\mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \pi_t(\mathbf{x}_t)), \quad t = 0, \dots, T-1$
 $\mathbf{x}_t \in \mathcal{X}, \ \pi_t(\mathbf{x}_t) \in \mathcal{U}(\mathbf{x}_t)$

Then, we will consider the discounted infinite-horizon formulation:

$$\min_{\pi} V^{\pi}(\mathbf{x}_{0}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} \right]$$
s.t. $\mathbf{x}_{t+1} \sim p_{f}(\cdot \mid \mathbf{x}_{t}, \pi(\mathbf{x}_{t})), \quad \forall t$
 $\mathbf{x}_{t} \in \mathcal{X}, \ \pi(\mathbf{x}_{t}) \in \mathcal{U}(\mathbf{x}_{t})$

Open-Loop vs Closed-Loop Control

- There are two different control methodologies:
 - Open loop: control inputs u_{0:T-1} are determined at once at time 0 as a function of x₀ and do not change online depending on x_t
 - Closed loop: control inputs are determined "just-in-time" as a function π_t of the current state x_t
- A special case of closed-loop control is to simply disregard the new state x_t information. Thus, open-loop control is a special case of closed-loop control and can never give better performance.
- In the absence of disturbances (and in the special linear quadratic Gaussian case), the two give theoretically the same performance.
- When good models are available, open-loop control is a viable strategy for short-time horizons

Open-Loop vs Closed-Loop Control

- Open-loop feedback control (OLFC) recomputes a new open-loop sequence u_{t:T-1} online, whenever the updated system state x_t is available. OLFC is guaranteed to perform better than open-loop control and is computationally more efficient than closed-loop control.
- Open-loop control is computationally much cheaper than closed-loop control
- Consider a discrete-space example with N_x = 10 states, N_u = 10 control inputs, planning horizon T = 4, and given x₀:
 - There are $N_u^T = 10^4$ different open-loop strategies
 - ▶ There are $N_u(N_u^{N_x})^{T-1} = N_u^{N_x(T-1)+1} = 10^{31}$ different closed-loop strategies (10 orders of magnitude larger than the number of stars in the observable universe!)

Example: Chess Strategy Optimization

 Objective: come up with a strategy that maximizes the chances of winning a 2 game chess match.

Possible outcomes:

- Win/Lose: 1 point for the winner, 0 for the loser
- Draw: 0.5 points for each player
- If the score is equal after 2 games, the players continue playing until one wins (sudden death)

Playing styles:

- **Timid**: draw with probability p_d and lose with probability $(1 p_d)$
- **Bold**: win with probability p_w and lose with probability $(1 p_w)$
- Assumption: $p_d > p_w$

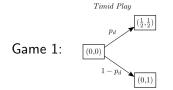
Finite-state Model of the Chess Match

- The state x_t is a 2-D vector with our and the opponent's score after the t-th game
- The control u_t is the play style: timid or bold
- The **noise** w_t is the score of the next game
- Since timid play does not make sense during the sudden death stage, the planning horizon is T = 2
- We can construct a time-dependent motion model P^u_{ijt} for t ∈ {0,1} (shown on the next slide)

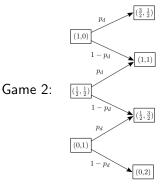
• **Cost**: minimize loss probability: $-P_{win} = \mathbb{E}_{\mathbf{x}_{1:2}} \left[\mathfrak{q}(\mathbf{x}_2) + \sum_{t=0}^{1} \ell(\mathbf{x}_t, u_t) \right],$ where

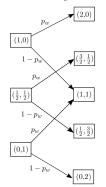
$$\ell(\mathbf{x}, u) = 0 \text{ and } q(\mathbf{x}) = \begin{cases} -1 & \text{if } \mathbf{x} = \left(\frac{3}{2}, \frac{1}{2}\right) \text{ or } (2, 0) \\ -\rho_w & \text{if } \mathbf{x} = (1, 1) \\ 0 & \text{if } \mathbf{x} = \left(\frac{1}{2}, \frac{3}{2}\right) \text{ or } (0, 2) \end{cases}$$

Chess Transition Probabilities



Bold Play





Open-Loop Chess Strategy

There are 4 admissible open-loop policies:

- 1. timid-timid: $P_{win} = p_d^2 p_w$ 2. bold-bold: $P_{win} = p_w^2 + p_w(1-p_w)p_w + (1-p_w)p_w p_w = p_w^2(3-2p_w)$ 3. bold-timid: $P_{win} = p_w p_d + p_w (1 - p_d) p_w$
- 4. timid-bold: $P_{win} = p_d p_w + (1 p_d) p_w^2$

Since $p_d^2 p_w \leq p_d p_w \leq p_d p_w + (1 - p_d) p_w^2$, timid-timid is not optimal

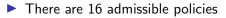
The best achievable winning probability is:

$$P_{win}^{*} = \max\{p_{w}^{2}(3-2p_{w}), p_{d}p_{w} + (1-p_{d})p_{w}^{2}\} = p_{w}^{2} + p_{w}(1-p_{w})\max\{2p_{w}, p_{d}\}$$
spen-loop case, if $p_{w} \leq 0.5$, then $P_{win}^{*} \leq 0.5$

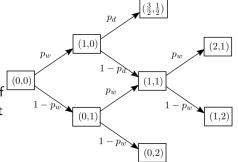
In the o For $p_w = 0.45$ and $p_d = 0.9$, $P^*_{win} = 0.43$ For $p_w = 0.5$ and $p_d = 1.0$, $P^*_{win} = 0.5$

lf $p_d > 2p_w$, bold-timid and timid-bold are optimal open-loop policies; otherwise bold-bold is optimal

Closed-Loop Chess Strategy



 Consider one option: play timid if and only if ahead (it will turn out that this is optimal)



- The probability of winning is: $P_{win} = p_d p_w + p_w ((1-p_d)p_w + p_w (1-p_w)) = p_w^2 (2-p_w) + p_w (1-p_w)p_d$
- Note that in the closed-loop case we can achieve P_{win} larger than 0.5 even when p_w is less than 0.5:

For
$$p_w = 0.45$$
 and $p_d = 0.9$, $P_{win} = 0.5$

For $p_w = 0.5$ and $p_d = 1.0$, $P_{win} = 0.625$