ECE276B: Planning & Learning in Robotics Lecture 4: Deterministic Shortest Path

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Zhichao Li: zhl355@eng.ucsd.edu Jinzhao Li: jil016@eng.ucsd.edu

The Deterministic Shortest Path (DSP) Problem

Consider a graph with a finite vertex space \mathcal{V} and a weighted edge space $\mathcal{C} := \{(i,j,c_{ij}) \in \mathcal{V} \times \mathcal{V} \times \mathbb{R} \cup \{\infty\}\}$ where c_{ij} denotes the arc length or cost from vertex i to vertex j.

- **Objective**: find the shortest path from a start node s to an end node au
- ▶ It turns out that the DSP problem is equivalent to a finite-horizon deterministic finite-state (DFS) optimal control problem

The Deterministic Shortest Path (DSP) Problem

- ▶ **Path**: a sequence $i_{1:q} := (i_1, i_2, ..., i_q)$ of nodes $i_k \in \mathcal{V}$.
- ▶ All paths from $s \in \mathcal{V}$ to $\tau \in \mathcal{V}$: $\mathbb{I}_{s,\tau} := \{i_{1:q} \mid i_k \in \mathcal{V}, i_1 = s, i_q = \tau\}.$
- **Path length**: sum of the arc lengths over the path: $J^{i_{1:q}} = \sum_{k=1}^{q-1} c_{i_k,i_{k+1}}$.
- ▶ **Objective**: find a path $i_{1:q}^* = \underset{i_{1:q} \in \mathbb{I}_{s,\tau}}{\arg\min} J^{i_{1:q}}$ that has the smallest length from node $s \in \mathcal{V}$ to node $\tau \in \mathcal{V}$
- **Assumption**: For all $i \in \mathcal{V}$ and for all $i_{1:q} \in \mathbb{I}_{i,i}$, $J^{i_{1:q}} \geq 0$, i.e., there are no negative cycles in the graph
- Solving DSP problems:
 - map to a deterministic finite-state problem and apply the (backward) DPA
 - ▶ label correcting methods (variants of a "forward" DPA)

Deterministic Finite State (DFS) Optimal Control Problem

- ▶ **DFS**: the optimal control problem with no disturbances, $\mathbf{w}_t \equiv 0$, and finite state space, $|\mathcal{X}| < \infty$
- ▶ Deterministic problem: closed-loop control does not offer any advantage over open-loop control
- ▶ Given $\mathbf{x}_0 \in \mathcal{X}$, construct an optimal control sequence $\mathbf{u}_{0:T-1}$ such that:

$$\begin{aligned} \min_{\mathbf{u}_{0:T-1}} & \mathbf{q}(\mathbf{x}_T) + \sum_{t=0}^{T-1} \ell(\mathbf{x}_t, \mathbf{u}_t) \\ \text{s.t.} & \mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t), \ t = 0, \dots, T-1 \\ & \mathbf{x}_t \in \mathcal{X}, \ \mathbf{u}_t \in \mathcal{U}(\mathbf{x}_t), \end{aligned}$$

► The DFS problem can be solved via the Dynamic Programming algorithm

Equivalence of DFS and DSP Problems (DFS to DSP)

- ▶ We can construct a graph representation of the DFS problem
- ▶ **Start node**: $s := (0, \mathbf{x}_0)$ given state $\mathbf{x}_0 \in \mathcal{X}$ at time 0
- ▶ Every state $\mathbf{x} \in \mathcal{X}$ at time t is represented by a node $i := (t, \mathbf{x})$:

$$\mathcal{V} := \{s\} \cup \left(igcup_{t=1}^{\mathcal{T}} \{(t, \mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\}
ight) \cup \{ au\}$$

▶ **End node**: an artificial node τ with arc length $c_{i,\tau}$ from node $i = (t, \mathbf{x})$ to τ equal to the terminal cost $\mathfrak{q}(\mathbf{x})$ of the DFS

Equivalence of DFS and DSP Problems (DFS to DSP)

- ▶ The arc length between two nodes $i = (t, \mathbf{x})$ and $j = (t', \mathbf{x}')$ is finite, $c_{ii} < \infty$, only if t' = t + 1 and $\mathbf{x}' = f(\mathbf{x}, \mathbf{u})$ for some $u \in \mathcal{U}(\mathbf{x})$.
- ▶ The arc length between two nodes $i = (t, \mathbf{x})$ and $j = (t + 1, \mathbf{x}')$ is the smallest stage cost between x and x':

Equivalence of DFS and DSP Problems (DSP to DFS)

- ▶ Consider a DSP problem with vertex space V, weighted edge space C, start node $s \in V$ and terminal node $\tau \in V$
- **No negative cycles assumption**: the optimal path need not have more than $|\mathcal{V}|$ elements
- lackbox We can formulate the DSP problem as a DFS with $T:=|\mathcal{V}|-1$ stages:
 - ▶ State space $\mathcal{X} = \mathcal{V}$, control space: $\mathcal{U} = \mathcal{V}$
 - Motion model: $x_{t+1} = f(x_t, u_t) := \begin{cases} x_t & \text{if } x_t = \tau \\ u_t & \text{otherwise} \end{cases}$
 - Costs:

$$\ell(x_t,u_t) := egin{cases} 0 & ext{if } x_t = au \ c_{x_t,u_t} & ext{otherwise} \end{cases} \quad \mathfrak{q}(x) := egin{cases} 0 & ext{if } x = au \ \infty & ext{otherwise} \end{cases}$$

Dynamic Programming Applied to DSP

Due to the equivalence, a DSP problem can be solved via the DPA

 \triangleright $V_t(i)$ is the optimal cost of getting from node i to node τ in T-t steps

▶ Upon termination, $V_0(s) = J_{1:q}^{i_{1:q}^*}$

▶ The algorithm can be terminated early if $V_t(i) = V_{t+1}(i)$, $\forall i \in V \setminus \{\tau\}$

```
Algorithm 1 Deterministic Shortest Path via Dynamic Programming
 1: Input: node set V, start s \in V, goal \tau \in V, and costs c_{ii} for i, j \in V
```

$$2: T = |\mathcal{V}| - 1$$

3: $V_T(\tau) = V_{T-1}(\tau) = \ldots = V_0(\tau) = 0$

4:
$$V_{\tau}(i) = \infty$$
, $\forall i \in \mathcal{V} \setminus \{\tau\}$

4:
$$V_{T}(I) = \infty$$
, $\forall I \in V \setminus \{\tau\}$
5: $V_{T-1}(i) = c_{i,\tau}$, $\forall i \in V \setminus \{\tau\}$

6:
$$\pi_{T-1}(i) = \tau$$
, $\forall i \in \mathcal{V} \setminus \{\tau\}$
7: **for** $t = (T-2), \dots, 0$ **do**
8: $Q_t(i,j) = c_{i,i} + V_{t+1}(j)$, $\forall i \in \mathcal{V} \setminus \{\tau\}, j \in \mathcal{V}$

9:
$$V_t(i) = \min_{j \in \mathcal{V}} Q_t(i,j), \quad \forall i \in \mathcal{V} \setminus \{\tau\}$$

10: $\pi_t(i) = \arg\min Q_t(i,j), \quad \forall i \in \mathcal{V} \setminus \{\tau\}$

10:
$$\pi_t(i) = \underset{j \in \mathcal{V}}{\arg\min} Q_t(i,j), \quad \forall i \in \mathcal{V} \setminus \{\tau\}$$
11: **if** $V_t(i) = V_{t+1}(i), \ \forall i \in \mathcal{V} \setminus \{\tau\}$ **then**

$$\text{if } V_t(i) = V_{t+1}(i), \ \forall i \in \mathcal{V} \setminus \{\tau\} \text{ then }$$

break

12:

Forward DP Algorithm

- ▶ The DSP problem is symmetric: a shortest path from s to τ is also a shortest path from τ to s, where all arc directions are flipped.
- ► This view leads to a forward Dynamic Programming algorithm.
- $ightharpoonup V_t^F(j)$ is the **optimal cost-to-arrive** to node j from node s in t moves

Algorithm 2 Deterministic Shortest Path via Forward Dynamic Programming 1: Input: node set V, start $s \in V$, goal $\tau \in V$, and costs c_{ii} for $i, j \in V$

```
2: T = |\mathcal{V}| - 1
```

3:
$$V_0^F(s) = V_1^F(s) = \dots V_T^F(s) = 0$$

4:
$$V_0^F(j) = \infty$$
, $\forall j \in \mathcal{V} \setminus \{s\}$

5:
$$V_1^F(j) = c_{s,j}, \quad \forall j \in \mathcal{V} \setminus \{s\}$$

6: **for**
$$t = 2, ..., T$$
 do

7:
$$V_t^F(j) = \min_{i \in \mathcal{V}} \left(c_{i,j} + V_{t-1}^F(i) \right), \quad \forall j \in \mathcal{V} \setminus \{s\}$$

8: if
$$V_t^F(i) = V_{t-1}^F(i), \forall i \in \mathcal{V} \setminus \{s\}$$
 then

Example: Forward DP Algorithm

$$ightharpoonup s=1$$
 and $au=5$

►
$$T = |\mathcal{V}| - 1 = 6$$

	1	2	3	4	5	6	7
V_0^F	0	∞	∞	∞	∞	∞	∞
V_1^F	0	5	3	∞	∞	5	∞
V_2^F	0	5	3	15	13	5	4
V_3^F	0	5	3	15	12	5	4
V_4^F	0	5	3	15	12	5	4

▶ Since $V_t^F(i) = V_{t-1}^F(i)$, $\forall i \in \mathcal{V}$ at time t = 4, the algorithm can terminate early, i.e., without computing $V_t^F(i)$ and $V_t^F(i)$

Label Correcting Methods for the SP Problem

- ▶ The (backward) DP algorithm applied to the DSP problem computes the shortest paths from all nodes to the goal τ
- ► The forward DP algorithm computes the shortest paths from the start *s* to *all* nodes
- lacktriangle Often many nodes are not part of the shortest path from s to au
- ► Label correcting (LC) algorithms for the DSP problem do not necessarily visit every node of the graph
- LC algorithms prioritize the visited nodes i using the **cost-to-arrive** values $V_t^F(i)$
- Key Ideas:
 - ▶ **Label** g_i : an estimate of the lowest cost from s to each visited node $i \in V$
 - ► Each time g_i is reduced, the labels g_j of the **children** of i can be corrected: $g_i = g_i + c_{ij}$
 - lackbox OPEN: set of nodes that can potentially be part of the shortest path to au

Label Correcting Algorithm

Algorithm 3 Label Correcting Algorithm

- 1: OPEN $\leftarrow \{s\}$, $g_s = 0$, $g_i = \infty$ for all $i \in \mathcal{V} \setminus \{s\}$
- 2: while OPEN is not empty do
- 3: Remove *i* from OPEN
- 4: **for** $j \in \text{Children}(i)$ **do**
- 5: if $(g_i + c_{ij}) < g_i$ and $(g_i + c_{ij}) < g_{\tau}$ then \triangleright Only when $c_{ij} \ge 0$ for all $i, j \in \mathcal{V}$
- 5: **If** $(g_i + c_{ij}) < g_j$ 6: $g_i = g_i + c_{ii}$
- 7: Parent(j) = i
- 8: if $j \neq \tau$ then
- 9: $OPEN = OPEN \cup \{j\}$

Theorem

If there exists at least one finite cost path from s to τ , then the Label Correcting (LC) algorithm terminates with $g_{\tau} = J^{i_{1:q}^*}$ (the shortest path from s to τ). Otherwise, the LC algorithm terminates with $g_{\tau} = \infty$.

Label Correcting Algorithm

Label Correcting Algorithm Proof

- 1. Claim: The LC algorithm terminates in a finite number of steps
 - ▶ Each time a node j enters OPEN, its label is decreased and becomes equal to the length of some path from s to j.
 - ► The number of distinct paths from s to j whose length is smaller than any given number is finite (no negative cycles assumption)
 - ▶ There can only be a finite number of label reductions for each node *j*
 - Since the LC algorithm removes nodes from OPEN in line 3, the algorithm will eventually terminate
- 2. **Claim**: The LC algorithm terminates with $g_{\tau}=\infty$ if there is no finite cost path from s to τ
 - ▶ A node $i \in V$ is in OPEN only if there is a finite cost path from s to i
 - If there is no finite cost path from s to τ , then for any node i in OPEN $c_{i,\tau}=\infty$; otherwise there would be a finite cost path from s to τ
 - Since $c_{i,\tau}=\infty$ for every i in OPEN, line 5 ensures that g_{τ} is never updated and remains ∞

Label Correcting Algorithm Proof

- 3. Claim: The LC algorithm terminates with $g_{ au}=J^{i_{1:q}^*}$ if there is at least one finite cost path from s to au
 - Let $i_{1:q}^* \in \mathbb{I}_{s,\tau}$ be a shortest path from s to τ with $i_1^* = s$, $i_q^* = \tau$, and length $J^{i_{1:q}^*}$
 - ▶ By the principle of optimality, $i_{1:m}^*$ is a shortest path from s to i_m^* with length $J^{i_{1:m}^*}$ for any $m=1,\ldots,q-1$
 - Suppose that $g_{ au} > J^{i_{1:q}^*}$ (proof by contradiction)
 - Since g_{τ} only decreases in the algorithm and every cost is nonnegative, $g_{\tau} > J^{i_{1:m}^*}$ for all $m=2,\ldots,q-1$
 - Thus, i_{q-1}^* does not enter OPEN with $g_{i_{q-1}^*} = J^{i_{1:q-1}^*}$ since if it did, then the next time i_{q-1}^* is removed from OPEN, g_{τ} would be updated to $J^{i_{1:q}^*}$
 - Similarly, i_{q-2}^* will not enter OPEN with $g_{i_{q-2}^*} = J^{i_{1:q-2}^*}$. Continuing this way, i_2^* will not enter open with $g_{i_2^*} = J^{i_{1:2}^*} = c_{s,i_2^*}$ but this happens at the first iteration of the algorithm, which is a contradiction!

Example: Deterministic Scheduling Problem

- Consider a deterministic scheduling problem where 4 operations A, B, C,
 D are used to produce a product
- Rules: Operation A must occur before B, and C before D
- Cost: there is a transition cost between each two operations:

Example: Deterministic Scheduling Problem

► The state transition diagram of the scheduling problem can be simplified in order to reduce the number of nodes

- ▶ This results in a DFS problem with T = 4, $\mathcal{X}_0 = \{I.C.\}$, $\mathcal{X}_1 = \{A,C\}$, $\mathcal{X}_2 = \{AB,AC,CA,CD\}$, $\mathcal{X}_3 = \{ABC,ACD \text{ or CAD},CAB \text{ or ACB},CDA\}$, $\mathcal{X}_T = \{DONE\}$
- We can map the DFS problem to a DSP problem

Example: Deterministic Scheduling Problem

- We can map the DFS problem to a DSP problem and apply the LC algorithm
- ▶ Keeping track of the parents when a child node is added to OPEN, it can be determined that a shortest path is (s, 2, 5, 9, \tau) with total cost 10, which corresponds to (C, CA, CAB, CABD) in the original problem

	Iteration	Remove	OPEN	gs	g ₁	g ₂	g ₃	g ₄	g ₅	g ₆	g ₇	g ₈	g ₉	g10	g_{τ}
	0	-	s	0	∞	∞	∞								
	1	s	1,2	0	5	3	∞	∞	∞						
τ	2	2	1, 5, 6	0	5	3	∞	∞	7	9	∞	∞	∞	∞	∞
	3	6	1, 5, 10	0	5	3	∞	∞	7	9	∞	∞	∞	12	∞
	4	10	1,5	0	5	3	∞	∞	7	9	∞	∞	∞	12	14
	5	5	1, 8, 9	0	5	3	∞	∞	7	9	∞	11	9	12	14
	6	9	1,8	0	5	3	∞	∞	7	9	∞	11	9	12	10
	7	8	1	0	5	3	∞	∞	7	9	∞	11	9	12	10
	8	1	3,4	0	5	3	7	8	7	9	∞	11	9	12	10
	9	4	3	0	5	3	7	8	7	9	∞	11	9	12	10
	10	3	-	0	5	3	7	8	7	9	∞	11	9	12	10

Specific Label Correcting Methods

- ► There is freedom in selecting the node to be removed from OPEN at each iteration, which gives rise to several different methods:
 - ▶ Breadth-first search (BFS) (Bellman-Ford Algorithm): "first-in, first-out" policy with OPEN implemented as a queue.
 - ▶ **Depth-first search** (DFS): "last-in, first-out" policy with OPEN implemented as a **stack**; often saves memory
 - **Best-first search (Dijkstra's Algorithm)**: the node with minimum label $i^* = \arg\min g_j$ is removed, which guarantees that a node will enter OPEN at most once. OPEN is implemented as a **priority queue**.
 - ▶ D'Esopo-Pape method: removes nodes at the top of OPEN. If a node has been in OPEN before it is inserted at the top; otherwise at the bottom.
 - ▶ **Small-label-first** (SLF): removes nodes at the top of OPEN. If $g_i \leq g_{TOP}$ node i is inserted at the top; otherwise at the bottom.
 - ► Large-label-last (LLL): the top node is compared with the average of OPEN and if it is larger, it is placed at the bottom of OPEN; otherwise it is removed.

A* Algorithm

► The **A* algorithm** is a modification to the LC algorithm in which the requirement for admission to OPEN is strengthened:

from
$$g_i + c_{ij} < g_{ au}$$
 to $g_i + c_{ij} + h_j < g_{ au}$

where h_j is a positive lower bound on the optimal cost to get from node j to τ , known as **heuristic**.

- ► The more stringent criterion can reduce the number of iterations required by the LC algorithm
- ▶ The heuristic is constructed depending on special knowledge about the problem. The more accurately h_j estimates the optimal cost from j to τ , the more efficient the A* algorithm becomes!