ECE276B: Planning \& Learning in Robotics Lecture 4: Deterministic Shortest Path

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Jinzhao Li: jil016@eng.ucsd.edu

UCSanDiego
JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

The Deterministic Shortest Path (DSP) Problem

- Consider a graph with a finite vertex space \mathcal{V} and a weighted edge space $\mathcal{C}:=\left\{\left(i, j, c_{i j}\right) \in \mathcal{V} \times \mathcal{V} \times \mathbb{R} \cup\{\infty\}\right\}$ where $c_{i j}$ denotes the arc length or cost from vertex i to vertex j.

- Objective: find the shortest path from a start node s to an end node τ
- It turns out that the DSP problem is equivalent to a finite-horizon deterministic finite-state (DFS) optimal control problem

The Deterministic Shortest Path (DSP) Problem

- Path: a sequence $i_{1: q}:=\left(i_{1}, i_{2}, \ldots, i_{q}\right)$ of nodes $i_{k} \in \mathcal{V}$.
- All paths from $s \in \mathcal{V}$ to $\tau \in \mathcal{V}: \mathbb{I}_{s, \tau}:=\left\{i_{1: q} \mid i_{k} \in \mathcal{V}, i_{1}=s, i_{q}=\tau\right\}$.
- Path length: sum of the arc lengths over the path: $J^{i_{1: q}}=\sum_{k=1}^{q-1} c_{i_{k}, i_{k+1}}$.
- Objective: find a path $i_{1: q}^{*}=\underset{i_{1, ~} \in \mathbb{I}_{s, \tau}}{\arg \min } J^{i_{1: q}}$ that has the smallest length from node $s \in \mathcal{V}$ to node $\tau \in \mathcal{V}$
- Assumption: For all $i \in \mathcal{V}$ and for all $i_{1: q} \in \mathbb{I}_{i, i}, J^{i_{1: q}} \geq 0$, ie., there are no negative cycles in the graph
- Solving DSP problems:
- map to a deterministic finite-state problem and apply the (backward) DPA
- label correcting methods (variants of a "forward" DPA)

Deterministic Finite State (DFS) Optimal Control Problem

- DFS: the optimal control problem with no disturbances, $\mathbf{w}_{t} \equiv 0$, and finite state space, $|\mathcal{X}|<\infty$
- Deterministic problem: closed-loop control does not offer any advantage over open-loop control
- Given $\mathbf{x}_{0} \in \mathcal{X}$, construct an optimal control sequence $\mathbf{u}_{0: T-1}$ such that:

$$
\begin{array}{rl}
\min _{\mathbf{u}_{0: T-1}} & \mathfrak{q}\left(\mathbf{x}_{T}\right)+\sum_{t=0}^{T-1} \ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right) \\
\text { s.t. } & \mathbf{x}_{t+1}=f\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right), t=0, \ldots, T-1 \\
& \mathbf{x}_{t} \in \mathcal{X}, \mathbf{u}_{t} \in \mathcal{U}\left(\mathbf{x}_{t}\right)
\end{array}
$$

- The DFS problem can be solved via the Dynamic Programming algorithm

Equivalence of DFS and DSP Problems (DFS to DSP)

- We can construct a graph representation of the DFS problem
- Start node: $s:=\left(0, x_{0}\right)$ given state $\mathbf{x}_{0} \in \mathcal{X}$ at time 0
- Every state $\mathbf{x} \in \mathcal{X}$ at time t is represented by a node $i:=(t, \mathbf{x})$:

$$
\mathcal{V}:=\{s\} \cup\left(\bigcup_{t=1}^{T}\{(t, \mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\}\right) \cup\{\tau\}
$$

- End node: an artificial node τ with arc length $c_{i, \tau}$ from node $i=(t, \mathbf{x})$ to τ equal to the terminal cost $\mathfrak{q}(\mathbf{x})$ of the DFS

Equivalence of DFS and DSP Problems (DFS to DSP)

- The arc length between two nodes $i=(t, \mathbf{x})$ and $j=\left(t^{\prime}, \mathbf{x}^{\prime}\right)$ is finite, $c_{i j}<\infty$, only if $t^{\prime}=t+1$ and $\mathbf{x}^{\prime}=f(\mathbf{x}, \mathbf{u})$ for some $u \in \mathcal{U}(\mathbf{x})$.
- The arc length between two nodes $i=(t, \mathbf{x})$ and $j=\left(t+1, \mathbf{x}^{\prime}\right)$ is the smallest stage cost between \mathbf{x} and \mathbf{x}^{\prime} :

$$
\mathcal{C}:=\left\{\left((t, \mathbf{x}),\left(t+1, \mathbf{x}^{\prime}\right), c\right) \mid c=\min _{\substack{\mathbf{u} \in \mathcal{U}(\mathbf{x}) \\ \text { s.t. } \mathbf{x}^{\prime}=f(\mathbf{x}, \mathbf{u})}} \ell(\mathbf{x}, \mathbf{u})\right\} \bigcup\{((T, \mathbf{x}), \tau, \mathfrak{q}(\mathbf{x}))\}
$$

Equivalence of DFS and DSP Problems (DSP to DFS)

- Consider a DSP problem with vertex space \mathcal{V}, weighted edge space \mathcal{C}, start node $s \in \mathcal{V}$ and terminal node $\tau \in \mathcal{V}$
- No negative cycles assumption: the optimal path need not have more than $|\mathcal{V}|$ elements
- We can formulate the DSP problem as a DFS with $T:=|\mathcal{V}|-1$ stages:
- State space $\mathcal{X}=\mathcal{V}$, control space: $\mathcal{U}=\mathcal{V}$
- Motion model: $x_{t+1}=f\left(x_{t}, u_{t}\right):= \begin{cases}x_{t} & \text { if } x_{t}=\tau \\ u_{t} & \text { otherwise }\end{cases}$
- Costs:

$$
\ell\left(x_{t}, u_{t}\right):=\left\{\begin{array}{ll}
0 & \text { if } x_{t}=\tau \\
c_{x_{t}, u_{t}} & \text { otherwise }
\end{array} \quad \mathfrak{q}(x):= \begin{cases}0 & \text { if } x=\tau \\
\infty & \text { otherwise }\end{cases}\right.
$$

Dynamic Programming Applied to DSP

- Due to the equivalence, a DSP problem can be solved via the DPA
- $V_{t}(i)$ is the optimal cost of getting from node i to node τ in $T-t$ steps
- Upon termination, $V_{0}(s)=J_{1: q}^{i_{1: q}}$
- The algorithm can be terminated early if $V_{t}(i)=V_{t+1}(i), \forall i \in \mathcal{V} \backslash\{\tau\}$

```
\begin{tabular}{l} 
Algorithm 1 Deterministic Shortest \\
\hline 1: Input: node set \(\mathcal{V}\), start \(s \in \mathcal{V}\), goal \(\tau\) \\
2: \(T=|\mathcal{V}|-1\) \\
3: \(V_{T}(\tau)=V_{T-1}(\tau)=\ldots=V_{0}(\tau)=0\)
\end{tabular}
    4: \(\quad V_{T}(i)=\infty, \quad \forall i \in \mathcal{V} \backslash\{\tau\}\)
    5: \(\quad V_{T-1}(i)=c_{i, \tau}, \quad \forall i \in \mathcal{V} \backslash\{\tau\}\)
    \(\pi_{T-1}(i)=\tau, \quad \forall i \in \mathcal{V} \backslash\{\tau\}\)
    for \(t=(T-2), \ldots, 0\) do
    \(Q_{t}(i, j)=c_{i, j}+V_{t+1}(j), \quad \forall i \in \mathcal{V} \backslash\{\tau\}, j \in \mathcal{V}\)
    \(V_{t}(i)=\min _{j \in \mathcal{V}} Q_{t}(i, j), \quad \forall i \in \mathcal{V} \backslash\{\tau\}\)
    \(\pi_{t}(i)=\arg \min Q_{t}(i, j), \quad \forall i \in \mathcal{V} \backslash\{\tau\}\)
    if \(V_{t}(i)=V_{t+1}(i), \forall i \in \mathcal{V} \backslash\{\tau\}\) then
```

12: break

Forward DP Algorithm

- The DSP problem is symmetric: a shortest path from s to τ is also a shortest path from τ to s, where all arc directions are flipped.
- This view leads to a forward Dynamic Programming algorithm.
- $V_{t}^{F}(j)$ is the optimal cost-to-arrive to node j from node s in t moves

Algorithm 2 Deterministic Shortest Path via Forward Dynamic Programming
1: Input: node set \mathcal{V}, start $s \in \mathcal{V}$, goal $\tau \in \mathcal{V}$, and costs $c_{i j}$ for $i, j \in \mathcal{V}$

```
T=|\mathcal{V}|-1
    V}\mp@subsup{V}{0}{F}(s)=\mp@subsup{V}{1}{F}(s)=\ldots\mp@subsup{V}{T}{F}(s)=
    V
    V
    for }t=2,\ldots,T\mathrm{ do
    Vt
    if }\mp@subsup{V}{t}{F}(i)=\mp@subsup{V}{t-1}{F}(i),\foralli\in\mathcal{V}\{s}\mathrm{ then
        break
```


Example: Forward DP Algorithm

- $s=1$ and $\tau=5$
- $T=|\mathcal{V}|-1=6$

	1	2	3	4	5	6	7
V_{0}^{F}	0	∞	∞	∞	∞	∞	∞
V_{1}^{F}	0	5	3	∞	∞	5	∞
V_{2}^{F}	0	5	3	15	13	5	4
V_{3}^{F}	0	5	3	15	12	5	4
V_{4}^{F}	0	5	3	15	12	5	4

- Since $V_{t}^{F}(i)=V_{t-1}^{F}(i), \forall i \in \mathcal{V}$ at time $t=4$, the algorithm can terminate early, i.e., without computing $V_{5}^{F}(i)$ and $V_{6}^{F}(i)$

Label Correcting Methods for the SP Problem

- The (backward) DP algorithm applied to the DSP problem computes the shortest paths from all nodes to the goal τ
- The forward DP algorithm computes the shortest paths from the start s to all nodes
- Often many nodes are not part of the shortest path from s to τ
- Label correcting (LC) algorithms for the DSP problem do not necessarily visit every node of the graph
- LC algorithms prioritize the visited nodes i using the cost-to-arrive values $V_{t}^{F}(i)$
- Key Ideas:
- Label g_{i} : an estimate of the lowest cost from s to each visited node $i \in \mathcal{V}$
- Each time g_{i} is reduced, the labels g_{j} of the children of i can be corrected: $g_{j}=g_{i}+c_{i j}$
- OPEN: set of nodes that can potentially be part of the shortest path to τ

Label Correcting Algorithm

Algorithm 3 Label Correcting Algorithm

```
1: OPEN \(\leftarrow\{s\}, g_{s}=0, g_{i}=\infty\) for all \(i \in \mathcal{V} \backslash\{s\}\)
while OPEN is not empty do
Remove \(i\) from OPEN
for \(j \in\) Children \((i)\) do
    if \(\left(g_{i}+c_{i j}\right)<g_{j}\) and \(\left(g_{i}+c_{i j}\right)<g_{\tau}\) then \(\quad \triangleright\) Only when \(c_{i j} \geq 0\) for all \(i, j \in \mathcal{V}\)
    \(g_{j}=g_{i}+c_{i j}\)
    \(\operatorname{Parent}(j)=i\)
    if \(j \neq \tau\) then
        OPEN \(=\) OPEN \(\cup\{j\}\)
```


Theorem

If there exists at least one finite cost path from s to τ, then the Label Correcting (LC) algorithm terminates with $g_{\tau}=J_{1: q}^{i_{1}^{*}}$ (the shortest path from s to τ). Otherwise, the LC algorithm terminates with $g_{\tau}=\infty$.

Label Correcting Algorithm

Label Correcting Algorithm Proof

1. Claim: The LC algorithm terminates in a finite number of steps

- Each time a node j enters OPEN, its label is decreased and becomes equal to the length of some path from s to j.
- The number of distinct paths from s to j whose length is smaller than any given number is finite (no negative cycles assumption)
- There can only be a finite number of label reductions for each node j
- Since the LC algorithm removes nodes from OPEN in line 3, the algorithm will eventually terminate

2. Claim: The LC algorithm terminates with $g_{\tau}=\infty$ if there is no finite cost path from s to τ

- A node $i \in \mathcal{V}$ is in OPEN only if there is a finite cost path from s to i
- If there is no finite cost path from s to τ, then for any node i in OPEN $c_{i, \tau}=\infty$; otherwise there would be a finite cost path from s to τ
- Since $c_{i, \tau}=\infty$ for every i in OPEN, line 5 ensures that g_{τ} is never updated and remains ∞

Label Correcting Algorithm Proof

3. Claim: The LC algorithm terminates with $g_{\tau}=J_{1: q}^{i_{1: q}^{*}}$ if there is at least one finite cost path from s to τ

- Let $i_{1: q}^{*} \in \mathbb{I}_{s, \tau}$ be a shortest path from s to τ with $i_{1}^{*}=s, i_{q}^{*}=\tau$, and length $J_{1: \text { is }}^{i_{s}}$
- By the principle of optimality, $i_{1: m}^{*}$ is a shortest path from s to i_{m}^{*} with length $J_{i: m}^{i: m}$ for any $m=1, \ldots, q-1$
- Suppose that $g_{\tau}>J_{i: q}^{i_{1: q}}$ (proof by contradiction)
- Since g_{τ} only decreases in the algorithm and every cost is nonnegative, $g_{\tau}>J_{i=m}^{{ }^{*} m}$ for all $m=2, \ldots, q-1$
- Thus, i_{q-1}^{*} does not enter OPEN with $g_{i q-1}^{*}=J_{1: q-1}^{*}$ since if it did, then the next time i_{q-1}^{*} is removed from OPEN, g_{τ} would be updated to $J^{i_{1: q}^{*}}$
- Similarly, i_{q-2}^{*} will not enter OPEN with $g_{i q-2}^{*}=J_{1: q-2}^{*}$. Continuing this way, i_{2}^{*} will not enter open with $g_{i_{2}^{*}}=J_{1: 2}^{i_{1}^{*}}=c_{s, i_{2}^{i_{2}}}$ but this happens at the first iteration of the algorithm, which is a contradiction!

Example: Deterministic Scheduling Problem

- Consider a deterministic scheduling problem where 4 operations A, B, C, D are used to produce a product
- Rules: Operation A must occur before B, and C before D
- Cost: there is a transition cost between each two operations:

Example: Deterministic Scheduling Problem

- The state transition diagram of the scheduling problem can be simplified in order to reduce the number of nodes

- This results in a DFS problem with $T=4, \mathcal{X}_{0}=\{\mathrm{I} . \mathrm{C}\},. \mathcal{X}_{1}=\{\mathrm{A}, \mathrm{C}\}$, $\mathcal{X}_{2}=\{\mathrm{AB}, \mathrm{AC}, \mathrm{CA}, \mathrm{CD}\}, \mathcal{X}_{3}=\{\mathrm{ABC}, \mathrm{ACD}$ or CAD, CAB or $\mathrm{ACB}, \mathrm{CDA}\}$, $\mathcal{X}_{T}=\{D O N E\}$
- We can map the DFS problem to a DSP problem

Example: Deterministic Scheduling Problem

- We can map the DFS problem to a DSP problem and apply the LC algorithm
- Keeping track of the parents when a child node is added to OPEN, it can
 be determined that a shortest path is ($s, 2,5,9, \tau$) with total cost 10, which corresponds to $(C, C A, C A B, C A B D)$ in the original problem

Iteration	Remove	OPEN	g_{s}	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g_{8}	g_{9}	g_{10}	g_{τ}
0	-	s	0	∞										
1	s	1,2	0	5	3	∞								
2	2	$1,5,6$	0	5	3	∞	∞	7	9	∞	∞	∞	∞	∞
3	6	$1,5,10$	0	5	3	∞	∞	7	9	∞	∞	∞	12	∞
4	10	1,5	0	5	3	∞	∞	7	9	∞	∞	∞	12	14
5	5	$1,8,9$	0	5	3	∞	∞	7	9	∞	11	9	12	14
6	9	1,8	0	5	3	∞	∞	7	9	∞	11	9	12	10
7	8	1	0	5	3	∞	∞	7	9	∞	11	9	12	10
8	1	3,4	0	5	3	7	8	7	9	∞	11	9	12	10
9	4	3	0	5	3	7	8	7	9	∞	11	9	12	10
10	3	-	0	5	3	7	8	7	9	∞	11	9	12	10

Specific Label Correcting Methods

- There is freedom in selecting the node to be removed from OPEN at each iteration, which gives rise to several different methods:
- Breadth-first search (BFS) (Bellman-Ford Algorithm): "first-in, first-out" policy with OPEN implemented as a queue.
- Depth-first search (DFS): "last-in, first-out" policy with OPEN implemented as a stack; often saves memory
- Best-first search (Dijkstra's Algorithm): the node with minimum label $i^{*}=\arg \min g_{j}$ is removed, which guarantees that a node will enter OPEN $j \in$ OPEN at most once. OPEN is implemented as a priority queue.
- D'Esopo-Pape method: removes nodes at the top of OPEN. If a node has been in OPEN before it is inserted at the top; otherwise at the bottom.
- Small-label-first (SLF): removes nodes at the top of OPEN. If $g_{i} \leq g_{\text {TOP }}$ node i is inserted at the top; otherwise at the bottom.
- Large-label-last (LLL): the top node is compared with the average of OPEN and if it is larger, it is placed at the bottom of OPEN; otherwise it is removed.

A* Algorithm

- The \mathbf{A}^{*} algorithm is a modification to the LC algorithm in which the requirement for admission to OPEN is strengthened:

$$
\text { from } g_{i}+c_{i j}<g_{\tau} \text { to } g_{i}+c_{i j}+h_{j}<g_{\tau}
$$

where h_{j} is a positive lower bound on the optimal cost to get from node j to τ, known as heuristic.

- The more stringent criterion can reduce the number of iterations required by the LC algorithm
- The heuristic is constructed depending on special knowledge about the problem. The more accurately h_{j} estimates the optimal cost from j to τ, the more efficient the A^{*} algorithm becomes!

