ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space

Instructor:

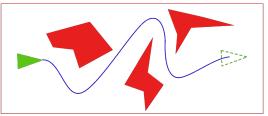
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

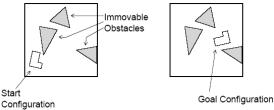
Zhichao Li: zhl355@eng.ucsd.edu Jinzhao Li: jil016@eng.ucsd.edu

Motion Planning

Motion planning in robotics is a deterministic shortest path (DSP) problem with continuous state and control spaces

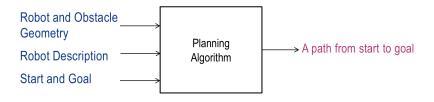


Early on the problem was known as the Piano Movers Problem

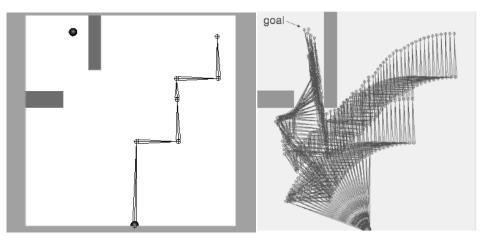


What is Motion Planning?

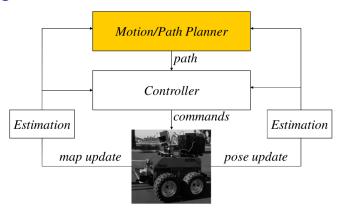
- Objective: find a feasible and cost-minimal path from the current configuration of the robot to a goal region
- Cost function: distance, time, energy, risk, etc.
- Constraints:
 - environmental constraints (e.g., obstacles)
 - dynamics/kinematics constraints of the robot



Example



Planning vs Control



- Distinction between planning and control
 - ▶ Planning: the automatic generation of global collision-free trajectories (global reasoning)
 - Control: the automatic generation of control inputs for local, reactive trajectory tracking (local reasoning)

Analyzing Motion Planning Algorithms

- Completeness: a planning algorithm is called complete if it:
 - returns a feasible solution, if one exists;
 - returns FAIL in finite time, otherwise

Optimality:

- a planning algorithm is optimal if it returns a path with shortest length J* among all possible paths from start to goal
- ▶ a planning algorithm is ϵ -suboptimal if it returns a path with length $J \le \epsilon J^*$ for $\epsilon \ge 1$ where J^* is the optimal length
- ▶ Efficiency: a planning algorithm is efficient if it finds a solution in the least possible time (for all inputs)
- ► **Generality**: can handle high-dimensional robots or environments and various obstacle or dynamics/kinematics constraints

Motion Planning Approaches

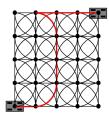
- Exact algorithms in continuous space
 - Either find a solution or prove none exist
 - Very computationally expensive
 - Unsuitable for high-dimensional spaces

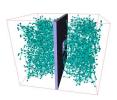
Search-based Planning

- Discretize the configuration space into a graph
- Solve the DSP problem via label correcting
- Computationally expensive in high-dim spaces
- Resolution completeness and suboptimality guarantees

Sampling-based Planning

- Sample the configuration space to construct a graph incrementally and construct a path from the samples
- Efficient in high-dim spaces but problems with "narrow passages"
- Probabilistic completeness and optimality guarantees





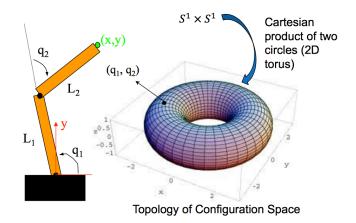
Configuration Space

- A configuration is a specification of the position of every point on a robot body
- ▶ A configuration **q** is usually expressed as a vector of the Degrees Of Freedom (DOF) of the robot:

$$\mathbf{q}=(q_1,\ldots,q_n)$$

- ▶ 3 DOF: Differential drive robot $(x, y, \theta) \in SE(2)$
- ▶ 6 DOF: Rigid body with pose $T \in SE(3)$
- ▶ 7 DOF: 7-link manipulator (humanoid arm): $(\theta_1, ..., \theta_7) \in [-\pi, \pi)^7$
- ► **Configuration space** *C* is the set of all possible robot configurations. The dimension of *C* is the minimum number of DOF needed to completely specify a robot configuration.

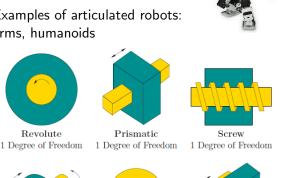
Example: C-Space of a Two Link Manipulator



Degrees of Freedom for Robots with Joints

► An articulated object is a set of rigid bodies connected by joints.

Examples of articulated robots: arms, humanoids



2 Degrees of Freedom

Planar 3 Degrees of Freedom 3 Degrees of Freedom

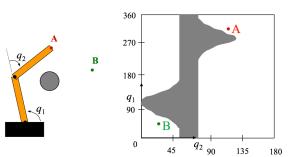
 $q=(q_1, q_2,...,q_n)$

Obstacles in C-Space

- ▶ A configuration q is collision-free, or free, if the robot placed at q does not intersect any obstacles in the workspace
- ▶ The **free space** $C_{free} \subseteq C$ is the set of all free configurations

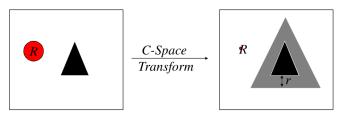


▶ The **occupied space** $C_{obs} \subseteq C$ is the set of all configurations in which the robot collides either with an obstacle or with itself (self-collision)



How do we compute C_{obs} ?

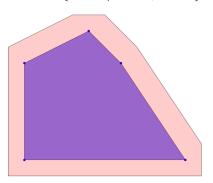
- ▶ **Input**: polygonal robot body *R* and polygonal obstacle *O* in environment
- ▶ Output: polygonal obstacle CO in configuration space
- ► **Assumption**: the robot translates only
- ► Idea:
 - Circular robot: expand all obstacles by the radius of the robot
 - Symmetric robot: Minkowski (set) sum
 - Asymmetric robot: Minkowski (set) difference



*C*_{obs} for Symmetric Robots

► The obstacle *CO* in C-Space is obtained via the Minkowski sum of the obstacle set *O* and the robot set *R*:

$$CO = O \oplus R := \{a+b \mid a \in O, b \in R\}$$

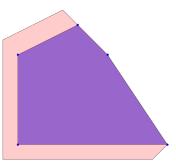


Cobs for Asymmetric Robots

▶ In the general case when the robot is not symmetric about the origin, it turns out that the correct operation is the **Minkowski difference**:

$$CO = O \ominus R := \{a - b \mid a \in O, b \in R\}$$

This means "flip" the robot and then take Minkowski sum

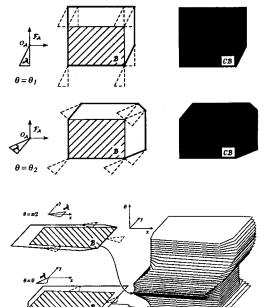


Properties of Cobs

- Properties of Cobs
 - ▶ If O and R are **convex**, then C_{obs} is **convex**
 - ▶ If O and R are closed, then C_{obs} is closed
 - ▶ If O and R are **compact**, then C_{obs} is **compact**
 - ▶ If O and R are algebraic, then C_{obs} is algebraic
 - ▶ If O and R are connected, then C_{obs} is connected
- After a C-Space transform, planning can be done for a point robot
 - Advantage: planning for a point robot is very efficient
 - ▶ **Disadvantage**: need to transform the obstacles every time the map is updated (e.g., if the robot is circular, O(n) methods exist to compute distance transforms)
 - ▶ **Disadvantage**: very expensive to compute in higher dimensions
 - Alternative: plan in the original space and only check configurations of interest for collisions

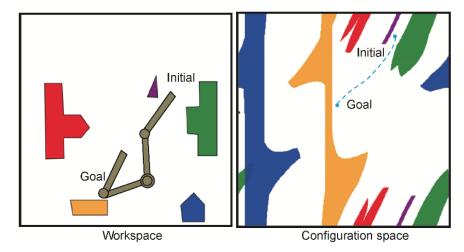
Minkowski Sums in Higher Dimensions

► The configuration space for a rigid non-circular robot in a 2D world is 3 dimensional



Configuration Space for Articulated Robots

- ► The configuration space for a *N*-DOF robot arm is *N*-dimensional
- Computing exact C-Space obstacles becomes complicated!



Motion Planning as Graph Search Problem

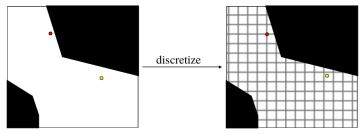
- Motion planning as a shortest path problem on a graph:
 - 1. Decide:
 - a) pre-compute the C-Space
 - b) perform collision checking on the fly
 - 2. Construct a graph representing the planning problem
 - 3. Search the graph for a (close-to) optimal path
- Often collision checking, graph construction, and planning are all interleaved and performed on the fly

Graph Construction

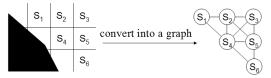
- Cell decomposition: decompose the free space into simple cells and represent its connectivity by the adjacency graph of these cells
 - X-connected grids
 - Tree decompositions
 - Lattice-based graphs
- ▶ Skeletonization: represent the connectivity of free space by a network of 1-D curves:
 - Visibility graphs
 - Generalized Voronoi diagrams
 - Other Roadmaps

X-connected Grid

1. Overlay a uniform grid over the C-space

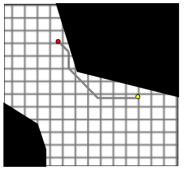


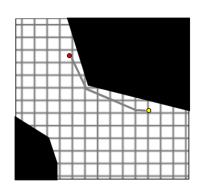
2. Convert the grid into a graph:



X-connected Grid

- How many neighbors?
 - ▶ 8-connected grid: paths restricted to 45° turns
 - ▶ 16-connected grid: paths restricted to 22.5° turns
 - ▶ 3-D (x, y, θ) discretization of SE(2)

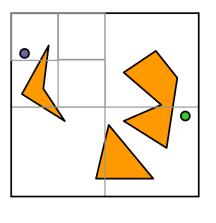


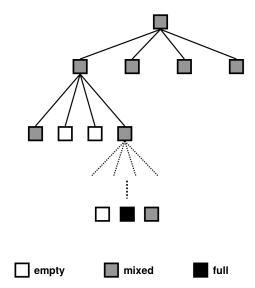


► Problems:

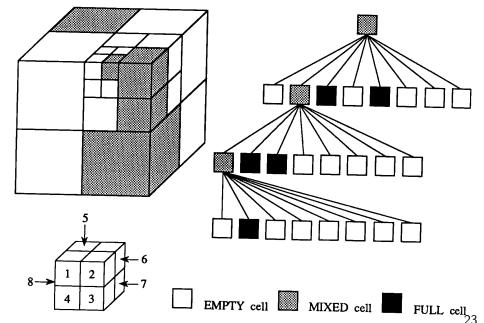
- 1. What should we do with partially blocked cells?
- 2. Discretization leads to a very dense graph in high dimensions and many of the transitions are difficult to execute due to dynamics constraints

Quadtree Adaptive Decomposition



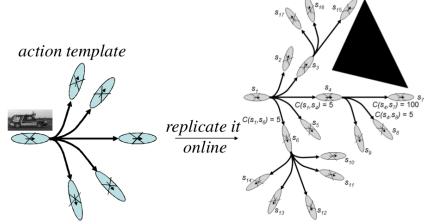


Octree Adaptive Decomposition



Lattice-based Graph

- ▶ Instead of dense discretization, construct a graph by a recursive application of a finite set of dynamically feasible motions (e.g., action template, motion primitive, movement primitive, macro action, etc.)
- ▶ **Pros**: sparse graph, feasible paths
- ► Cons: possible incompleteness

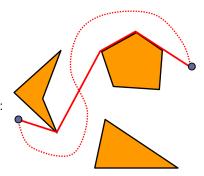


Visibility Graph

- Shakey Project, SRI [Nilsson, 1969]
- Also called Shortest Path Roadmap
- Shortest paths are like rubber-bands: if there is a collision-free path between two points, then there is a piecewise linear path that bends only at the obstacle vertices.

Visibility Graph:

- Nodes: start, goal, and all obstacle vertices
- Edges: between any two vertices that "see" each other, i.e., the edge does not intersect obstacles or is an obstacle edge



Visibility Graph Construction

Algorithm 1 Visibility Graph Construction

- 1: **Input**: \mathbf{q}_I , \mathbf{q}_G , polygonal obstacle vertices \mathcal{P}
- 2: **Output**: visibility graph G
- 3: **for** every pair of vertices u, v in $\mathcal{P} \cup \{\mathbf{q}_I, \mathbf{q}_G\}$ **do**
- if segment(u, v) is an obstacle edge then 4: insert edge(u, v) into G5:
- 6: else
- 7: **for** every obstacle edge *e* **do**
- if segment(u, v) intersects e then 8:
- break and go to line 3 9: insert edge(u, v) into G

10:

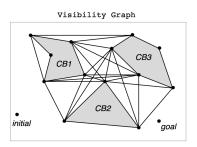
- ▶ Space complexity: $O(n^2)$
- ▶ **Time complexity**: $O(n^3)$ but can be reduced to $O(n^2 \log n)$ with rotational sweep or even to $O(n^2)$ with an optimal algorithm

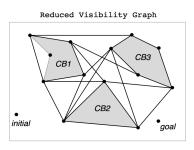
 $\triangleright O(n^2)$ $\triangleright O(n)$

 $\triangleright O(n)$

Reduced Visibility Graph

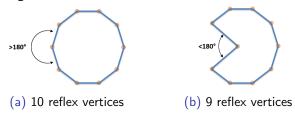
- In fact, not all edges are needed
- Reduced visibility graph keep only edges between consecutive reflex vertices and bitangents
- A vertex of a polygonal obstacle is **reflex** if the exterior angle (computed in C_{free}) is larger than π
- ightharpoonup A **bitangent edge** must touch two **reflex vertices** that are mutually visible from each other, and the line must extend outward past each of them without poking into C_{obs}





Reflex Vertices and Bitangents

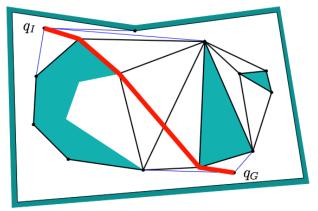
A vertex of a polygonal obstacle is **reflex** if the exterior angle (computed in C_{free}) is larger than π



▶ A **bitangent edge** must touch two **reflex vertices** that are mutually visible from each other, and the line must extend outward past each of them without poking into C_{obs}

Reduced Visibility Graph

- ► The reduced visibility graph includes edges between consecutive reflex vertices on C_{obs} and bitangent edges
- ► The shortest path in a reduced visibility graph is the shortest path between start \mathbf{q}_I and goal \mathbf{q}_G



Reduced Visibility Graph

- What do we need to construct a reduced visibility graph?
 - Subroutine to check if a vertex is reflex
 - Subroutine to check if two vertices are visible
 - Subroutine to check if there exists a bitangent

Pros:

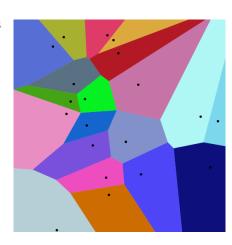
- independent of the size of the environment
- can make multiple shortest path queries for the same graph, i.e., the environment remains the same but the start and goal change

Cons:

- shortest paths always graze the obstacles
- hard to deal with a non-uniform cost function
- hard to deal with non-polygonal obstacles
- can get expensive in high dimensions with a lot of obstacles

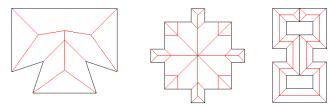
Voronoi Diagram

- Suppose there are n point obstacles \mathbf{o}_k for $k = 1, \dots, n$
- **Voronoi diagram**: a collection of Voronoi cells V_k for k = 1, ..., n
- ▶ **Voronoi cell of o**_k: a set of points \mathbf{x} such that $d(\mathbf{x}, \mathbf{o}_k) \leq d(\mathbf{x}, \mathbf{o}_j)$ for all $j \neq k$
- Example: the points may represent fire stations and the Voronoi cells specify their serving areas

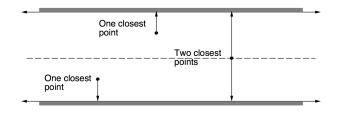


Maximum Clearance Roadmap

- ► Maximize clearance instead of minimizing travel distance
- ▶ Maintains a set of points that are equidistant to two nearest obstacles



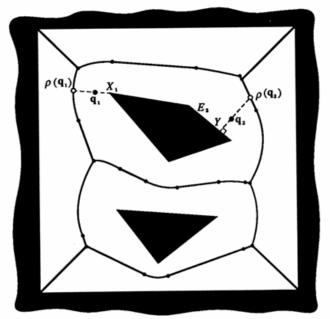
▶ Suppose we have just two line obstacles. What is the set of points that keeps the robots as far away from the obstacles as possible?



Maximum Clearance Roadmap

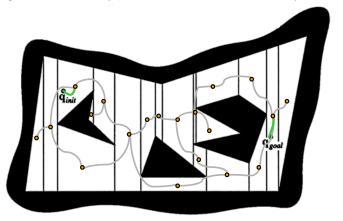
- Construction:
 - Naive implementation: take every pair of obstacle features, compute locus of equally spaced points, and take the intersection
 - Efficient algorithms available, e.g., CGAL, distance transform + skeletonization
- ► Motion Planning:
 - ▶ Add a shortest path from start to the nearest segment of the diagram
 - ▶ Add a shortest path from goal to the nearest segment of the diagram
- Complexity:
 - ▶ Time complexity for *n* points in \mathbb{R}^d : $O(n \log n + n^{\lceil d/2 \rceil})$
 - ightharpoonup Space complexity: O(n)
- Pros:
 - paths tend to stay away from obstacles
 - independent of the size of the environment
- Cons:
 - difficult to construct in higher dimensions
 - can result in highly suboptimal paths

Maximum Clearance Roadmap



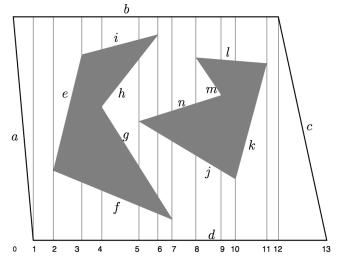
Trapezoidal Decomposition

- ▶ The free space C_{free} is represented by a collection of non-overlapping trapezoids whose union is exactly C_{free} :
- Draw a vertical line from every vertex until you hit an obstacle
 - ▶ **Nodes**: trapezoid centroids and line midpoints
 - **Edges**: between every pair of nodes whose cells are adjacent

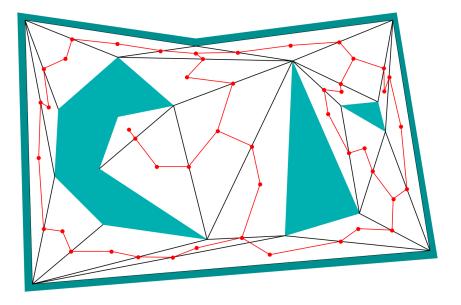


Cylindrical Decomposition

- Similar to trapezoidal decomposition, except the vertical lines continue after obstacles
- Generalizes better to high dimensions and complex configuration spaces



Triangular Decomposition



Probabilistic Roadmaps

- Construction:
 - Randomly sample valid configurations
 - Add edges between samples that are easy to connect with a simple local controller (e.g., follow straight line)
 - Add start and goal configurations to the graph with appropriate edges
- Pros and Cons:
 - ► Simple and highly effective in high dimensions
 - Can result in suboptimal paths, no guarantees on suboptimality
 - Difficulty with narrow passages

