ECE276B: Planning & Learning in Robotics Lecture 8: Sampling-based Planning

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Zhichao Li: zhl355@eng.ucsd.edu Jinzhao Li: jil016@eng.ucsd.edu

UC San Diego JACOBS SCHOOL OF ENGINEERING

Electrical and Computer Engineering

Search-based vs Sampling-based Planning

Search-based planning:

- Generates a systematic discrete representation (graph) of C_{free}
- Searches the representation for a path guaranteeing to find one if it exists (resolution complete)
- Can interleave the graph construction with the search, i.e., nodes added only when necessary
- Provides finite-tiem suboptimality bounds on the solution
- Computationally expensive in high dimensions

Search-based vs. Sampling-based Planning

- Sampling-based planning:
 - Generates a sparse sample-based graph of C_{free}
 - Searches the graph for a path guaranteeing that the probability of finding one if it exists approaches 1 as the number of iterations → ∞ (probabilistically complete)
 - Can interleave the graph construction with the search, i.e., samples added only when necessary
 - Provides asymptotic suboptimality bounds on the solution
 - Well-suited for high-dimensional planning: faster and requires less memory than search-based planning in many domains

Motion Planning Problem

- ▶ Configuration space: C; Obstacle space: C_{obs}; Free space: C_{free}
- ▶ Initial state: $\mathbf{x}_s \in C_{free}$; Goal state: $\mathbf{x}_\tau \in C_{free}$
- ▶ **Path**: a continuous function $\rho : [0, 1] \rightarrow C$; Set of all paths: \mathcal{P}
- ▶ **Feasible path**: a continuous function $\rho : [0, 1] \rightarrow C_{free}$ such that $\rho(0) = \mathbf{x}_s$ and $\rho(1) = \mathbf{x}_{\tau}$; Set of all feasible paths: $\mathcal{P}_{s,\tau}$
- Motion Planning Problem Given a path planning problem (C_{free}, x_s, x_τ) and a cost function J : P → ℝ_{≥0}, find a feasible path ρ^{*} such that:

$$J(
ho^*) = \min_{
ho \in \mathcal{P}_{s, au}} J(
ho)$$

Report failure if no such path exists.

Primitive Procedures for Sampling-based Motion Planning

- SAMPLE: returns iid samples from C
- SAMPLEFREE: returns iid samples from C_{free}
- NEAREST: given a graph G = (V, E) with V ⊂ C and a point x ∈ C, returns a vertex v ∈ V that is closest to x:

NEAREST
$$((V, E), \mathbf{x}) := \underset{\mathbf{v} \in V}{\arg\min} \|\mathbf{x} - \mathbf{v}\|$$

NEAR: given a graph G = (V, E) with V ⊂ C, a point x ∈ C, and r > 0, returns the vertices in V that are within a distance r from x:

$$\operatorname{NEAR}((V, E), \mathbf{x}, r) := \{\mathbf{v} \in V \mid \|\mathbf{x} - \mathbf{v}\| \leq r\}$$

STEER: given points x, y ∈ C and ε > 0, returns a point z ∈ C that minimizes ||z − y|| while remaining within ε from x:

$$\text{STEER}_{\epsilon}(\mathbf{x}, \mathbf{y}) := \argmin_{\mathbf{z}: \|\mathbf{z} - \mathbf{x}\| \leq \epsilon} \|\mathbf{z} - \mathbf{y}\|$$

► COLLISIONFREE: given points x, y ∈ C, returns TRUE if the line segment between x and y lies in C_{free} and FALSE otherwise.

Probabilistic Roadmap (PRM)

- Step 1. **Construction Phase**: Build a roadmap (graph) *G* which, hopefully, should be accessible from any point in C_{free}
 - ► Nodes: randomly sampled valid configurations x_i ∈ C_{free}
 - Edges: added between samples that are easy to connect with a simple local controller (e.g., follow straight line)

Step 2. Query Phase: Given a start configuration \mathbf{x}_s and goal configuration \mathbf{x}_{τ} , connect them to the roadmap G, then search the augmented roadmap for a shortest path from \mathbf{x}_s to \mathbf{x}_{τ}

Pros and Cons:

- Simple and highly effective in high dimensions
- Can result in suboptimal paths, no guarantees on suboptimality
- Difficulty with narrow passages
- Useful for multiple queries with different start and goal in the same environment

Step 1: Construction Phase

Step 1: Construction Phase

Algorithm 1 PRM (construction phase)

1: $V \leftarrow \emptyset$; $E \leftarrow \emptyset$ 2: for i = 1, ..., n do 3: $\mathbf{x}_{rand} \leftarrow \text{SAMPLEFREE}()$ 4: $V \leftarrow V \cup \{\mathbf{x}_{rand}\}$ 5: for $\mathbf{x} \in \text{NEAR}((V, E), \mathbf{x}_{rand}, r)$ do \triangleright May use k nearest vertices 6: if (not G.same_component($\mathbf{x}_{rand}, \mathbf{x}$)) and COLLISIONFREE($\mathbf{x}_{rand}, \mathbf{x}$) then 7: $E \leftarrow E \cup \{(\mathbf{x}_{rand}, \mathbf{x}), (\mathbf{x}, \mathbf{x}_{rand})\}$ 8: return G = (V, E)

► G.same_component(**x**_{rand}, **x**)

- ensures that x and x_{rand} are in different components of G
- \blacktriangleright every connection decreases the number of connected components in G
- efficient implementation using union-find algorithms
- may be replaced by G.vertex_degree(x) < K for some fixed K (e.g., K = 15) if it is important to generate multiple alternative paths

Asymptotically Optimal Probabilistic Roadmap

- S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," IJRR, 2010.
- To achieve an asymptotically optimal PRM, the connection radius r should decrease such that the average number of connections attempted from a roadmap vertex is proportional to log(n):

$$r^* > 2\left(1 + \frac{1}{d}\right)^{1/d} \left(\frac{Vol(C_{free})}{Vol(\mathsf{Unit d-ball})}\right)^{1/d} \left(\frac{\log(n)}{n}\right)^{1/d}$$

Algorithm 2 PRM*

1:
$$V \leftarrow \{\mathbf{x}_s\} \cup \{\text{SAMPLEFREE}()\}_{i=1}^n; E \leftarrow \emptyset$$

2: for $\mathbf{v} \in V$ do

3: for
$$\mathbf{x} \in NEAR((V, E), \mathbf{v}, r^*) \setminus {\mathbf{v}}$$
 do

- 4: if CollisionFree(v, x) then
- 5: $E \leftarrow E \cup \{(\mathbf{v}, \mathbf{x}), (\mathbf{x}, \mathbf{v})\}$

6: return G = (V, E)

PRM vs RRT

- PRM: a graph constructed from random samples. It can be searched for a path whenever a start node x_s and goal node x_τ are specified. PRMs are well-suited for repeated planning between different pairs of x_s and x_τ (*multiple queries*)
- RRT: a tree constructed from random samples with root x_s. The tree is grown until it contains a path to x_τ. RRTs are well-suited for single-shot planning between a single pair of x_s and x_τ (single query)

Rapidly Exploring Random Tree (RRT):

- One of the most popular planning techniques
- Introduced by Steven LaValle in 1998
- Many, many, many extensions and variants (articulated robots, kinematics, dynamics, differential constraints)
- There exist extensions of RRTs that try to reuse a previously constructed tree when replanning in response to map updates

Sample a new configuration x_{rand}, find the nearest neighbor x_{nearest} in G and connect them:

If there is an obstacle, the edge travels up to the obstacle boundary, as far as allowed by a collision detection algorithm

- What about the goal? Occasionally (e.g., every 100 iterations) add the goal configuration x_τ and see if it gets connected to the tree
- RRT can be implemented in the original workspace (need to do collision checking) or in configuration space
- Challenges with a C-Space implementation:
 - What distance function do we use to find the nearest configuration?
 - e.g., distance along the surface of a torus for a 2 link manipulator
 - An edge represents a path in C-Space. How do we construct a collision-free path between two configurations?
 - We do not have to connect the configurations all the way. Instead, use a small step size e and a local steering function to get closer to the second configuration.

No preprocessing: starting with an initial configuration x_s build a graph (actually, tree) until the goal configuration x_τ is part of it

Algorithm 3 RRT 1: $V \leftarrow \{\mathbf{x}_s\}; E \leftarrow \emptyset$ Xnew 2: for i = 1 ... n do 3: $\mathbf{x}_{rand} \leftarrow \text{SAMPLEFREE}()$ Xrano 4: $\mathbf{x}_{nearest} \leftarrow \text{NEAREST}((V, E), \mathbf{x}_{rand})$ 5: $\mathbf{x}_{new} \leftarrow \text{STEER}(\mathbf{x}_{nearest}, \mathbf{x}_{rand})$ Xs 6: if COLLISIONFREE($\mathbf{x}_{nearest}, \mathbf{x}_{new}$) then $V \leftarrow V \cup \{\mathbf{x}_{new}\}; E \leftarrow E \cup \{(\mathbf{x}_{nearest}, \mathbf{x}_{new})\}$ 7: 8: return G = (V, E)

RRT without ϵ (called Rapidly Exploring Dense Tree (RDT)):

- Start node **x**_s
- Goal node \mathbf{x}_{τ}
- Gray obstacles

- Sample **x**_{rand} in the workspace
- Steer from \mathbf{x}_s towards \mathbf{x}_{rand} by a fixed distance ϵ to get \mathbf{x}_1
- If the segment from \mathbf{x}_s to \mathbf{x}_1 is collision-free, insert \mathbf{x}_1 into the tree

- Sample **x**_{rand} in the workspace
- Find the closest node x_{nearest} to x_{rand}
- Steer from $\mathbf{x}_{nearest}$ towards \mathbf{x}_{rand} by a fixed distance ϵ to get \mathbf{x}_2
- ▶ If the segment from $\mathbf{x}_{nearest}$ to \mathbf{x}_2 is collision-free, insert \mathbf{x}_2 into the tree

- Sample **x**_{rand} in the workspace
- Find the closest node x_{nearest} to x_{rand}
- Steer from $\mathbf{x}_{nearest}$ towards \mathbf{x}_{rand} by a fixed distance ϵ to get \mathbf{x}_3
- If the segment from $\mathbf{x}_{nearest}$ to \mathbf{x}_3 is collision-free, insert \mathbf{x}_3 into the tree

- Sample x_{rand} in the workspace
- Find the closest node x_{nearest} to x_{rand}
- Steer from $\mathbf{x}_{nearest}$ towards \mathbf{x}_{rand} by a fixed distance ϵ to get \mathbf{x}_3
- If the segment from $\mathbf{x}_{nearest}$ to \mathbf{x}_3 is collision-free, insert \mathbf{x}_3 into the tree

- \blacktriangleright Continue until a node that is a distance ϵ from the goal is generated
- Either terminate the algorithm or search for additional feasible paths

Sampling in RRTs

The vanilla RRT algorithm provides uniform coverage of space

Alternatively, the growth may be biased by the largest Voronoi region

Sampling in RRTs

Goal-biased sampling: with probability (1 − p_g), x_{rand} is chosen as a uniform sample in C_{free} and with probability p_g, x_{rand} = x_τ

Handling Robot Dynamics with Steer()

- Steer() extends the tree towards a given random sample x_{rand}
- Consider a car-like robot with non-holonomic constraints (can't slide sideways) in SE(2). Obtaining a feasible path from x_{rand} = (0,0,90°) to x_{nearest} = (1,0,90°) is as hard as the original problem
- Steer() resolves this by not requiring the motion to get all the way to x_{rand}. We just apply the best control input for a fixed duration to obtain x_{new} and a dynamically feasible trajectory to it

Example: 5 DOF Kinodynamic Planning for a Car

Bug Traps

Growing two trees, one from start and one for goal, often has better performance in practice.

Bi-directional RRT

Algorithm 4 Bi-directional RRT

1:
$$V_a \leftarrow \{\mathbf{x}_s\}; E_a \leftarrow \emptyset; V_b \leftarrow \{\mathbf{x}_\tau\}; E_b \leftarrow \emptyset$$

2: for $i = 1 \dots n$ do
3: $\mathbf{x}_{rand} \leftarrow \text{SAMPLEFREE}()$
4: $\mathbf{x}_{nearest} \leftarrow \text{NEAREST}((V_a, E_a), \mathbf{x}_{rand})$
5: $\mathbf{x}_{new} \leftarrow \text{STEER}(\mathbf{x}_{nearest}, \mathbf{x}_{rand})$
6: if $\mathbf{x}_{new} \neq \mathbf{x}_{nearest}$ then
7: $V_a \leftarrow V_a \cup \{\mathbf{x}_{new}\}; E_a \leftarrow \{(\mathbf{x}_{nearest}, \mathbf{x}_{new}), (\mathbf{x}_{new}, \mathbf{x}_{nearest})\}$
8: $\mathbf{x}'_{nearest} \leftarrow \text{NEAREST}((V_b, E_b), \mathbf{x}_{new})$
9: $\mathbf{x}'_{new} \leftarrow \text{STEER}(\mathbf{x}'_{nearest}, \mathbf{x}_{new})$
10: if $\mathbf{x}'_{new} \neq \mathbf{x}'_{nearest}$ then
11: $V_b \leftarrow V_b \cup \{\mathbf{x}'_{new}\}; E_b \leftarrow \{(\mathbf{x}'_{nearest}, \mathbf{x}'_{new}), (\mathbf{x}'_{new}, \mathbf{x}'_{nearest})\}$
12: if $\mathbf{x}'_{new} = \mathbf{x}_{new}$ then return SOLUTION
13: if $|V_b| < |V_a|$ then SWAP($(V_a, E_a), (V_b, E_b)$)
14: return FAILURE

RRT-Connect (J. Kuffner and S. LaValle, ICRA, 2000)

Bi-directional tree + attempts to connect the two trees at every iteration

Algorithm 5 RRT-Connect

1:
$$V_a \leftarrow \{\mathbf{x}_s\}; E_a \leftarrow \emptyset; V_b \leftarrow \{\mathbf{x}_\tau\}; E_b \leftarrow \emptyset$$

2: for
$$i = 1 ... n$$
 do

- 3: $\mathbf{x}_{rand} \leftarrow \text{SAMPLEFREE}()$
- 4: if not $EXTEND((V_a, E_a), \mathbf{x}_{rand}) = Trapped$ then
- 5: if $CONNECT((V_b, E_b), \mathbf{x}_{new}) = Reached then \triangleright \mathbf{x}_{new}$ was just added to (V_a, E_a) 6: return $PATH((V_a, E_a), (V_b, E_b))$
- 7: $SWAP((V_a, E_a), (V_b, E_b))$
- 8: return Failure
- 9: function EXTEND((V, E), x)
- 10: $\mathbf{x}_{nearest} \leftarrow \text{NEAREST}((V, E), \mathbf{x})$
- 11: $\mathbf{x}_{new} \leftarrow \text{STEER}_{\epsilon}(\mathbf{x}_{nearest}, \mathbf{x})$
- 12: if COLLISIONFREE(x_{nearest}, x_{new}) then
- 13: $V \leftarrow \{\mathbf{x}_{new}\}; E \leftarrow \{(\mathbf{x}_{nearest}, \mathbf{x}_{new}), (\mathbf{x}_{new}, \mathbf{x}_{nearest})\}$
- 14: if $\mathbf{x}_{new} = \mathbf{x}$ then return Reached else return Advanced
- 15: return Trapped
- 16: function CONNECT((V, E), x)
- 17: repeat status $\leftarrow \text{EXTEND}((V, E), x)$ until status $\neq Advanced$
- 18: return status

One tree is grown to a random target

The new node becomes a target for the other tree

Determine the nearest node to the target

Try to add a new collision-free branch

If successful, keep extending the branch

If successful, keep extending the branch

If successful, keep extending the branch

▶ If the branch reaches all the way to the target, a feasible path is found!

▶ If the branch reaches all the way to the target, a feasible path is found!

Example: RRT-Connect

Example: RRT-Connect

Example: RRT-Connect

Why are RRTs so popular?

- The algorithm is very simple once the following subroutines are implemented:
 - Random sample generator
 - Nearest neighbor
 - Collision checker
 - Steer
- Pros:
 - A sparse graph requires little memory and computation
 - RRTs find feasible paths quickly in practice
 - Can add heuristics on top, e.g., bias the sampling towards the goal (see Gammell et al., BIT*, IJRR, 2020.)
- Cons:
 - Computed paths may be sub-optimal and require path smoothing as a post-processing step
 - Finding a feasible path in highly constrained environments (e.g., maze) is challenging

Path Smoothing

- Start with the initial point (1)
- Make connections to subsequent points in the path (2), (3), (4), ...
- When a connection collides with obstacles, add the previous waypoint to the smoothed path
- Continue smoothing from this point on

Search-based vs Sampling-based Planning

RRT:

- A sparse graph requires little memory and computation
- Computed paths may be sub-optimal and require path smoothing

Weighted A*:

- Systematic exploration may require a lot of memory and computation
- Returns a path with (sub-)optimality guarantees

RRT: Probabilistic Completeness but No Optimality

- RRT and RRT-Connect are probabilistically complete: the probability that a feasible path will be found if one exists, approaches 1 exponentially as the number of samples approaches infinity
- Assuming C_{free} is connected, bounded, and open, for any $x \in C_{free}$, $\lim_{N \to \infty} \mathbb{P}(\|\mathbf{x} - \mathbf{x}_{nearest}\| < \epsilon) = 1$, where $\mathbf{x}_{nearest}$ is the closest node to \mathbf{x} in G
- RRT is not optimal: the probability that RRT converges to an optimal solution, as the number of samples approaches infinity, is zero under reasonable technical assumptions (S. Karaman, E. Frazzoli, RSS'10)
- **Problem**: once we build an RRT we never modify it
- RRT* (S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," IJRR, 2010)
 - RRT + rewiring of the tree to ensure asymptotic optimality
 - Contains two steps: extend (similar to RRT) and rewire (new)

RRT*: Extend Step

- Generate a new potential node x_{new} identically to RRT
- Instead of finding the closest node in the tree, find all nodes within a neighborhood N of radius min{r^{*}, €} where

$$r^* > 2\left(1 + \frac{1}{d}\right)^{1/d} \left(\frac{Vol(C_{free})}{Vol(\text{Unit d-ball})}\right)^{1/d} \left(\frac{\log|V|}{|V|}\right)^{(1/d)}$$

Let $\mathbf{x}_{nearest} = \underset{\mathbf{x}_{near} \in \mathcal{N}}{\arg (\mathbf{x}_{near})} + c(\mathbf{x}_{near}, \mathbf{x}_{new})$ be the node in \mathcal{N} on the currently known shortest path from \mathbf{x}_s to \mathbf{x}_{new}

$$\blacktriangleright V \leftarrow V \cup \{\mathbf{x}_{new}\}$$

- $\blacktriangleright E \leftarrow E \cup \{(\mathbf{x}_{nearest}, \mathbf{x}_{new})\}$
- ► Set the label of **x**_{new} to:

$$g(\mathbf{x}_{new}) = g(\mathbf{x}_{nearest}) + c(\mathbf{x}_{nearest}, \mathbf{x}_{new})$$

RRT*: Rewire Step

- Check all nodes x_{near} ∈ N to see if re-routing through x_{new} reduces the path length (label correcting!):
- ► If g(x_{new}) + c(x_{new}, x_{near}) < g(x_{near}), then remove the edge between x_{near} and its parent and add a new edge between x_{near} and x_{new}

Algorithm 6 RRT*

1: $V \leftarrow \{\mathbf{x}_s\}; E \leftarrow \emptyset$ 2: for i = 1 ... n do 3. $\mathbf{x}_{rand} \leftarrow \text{SAMPLEFREE}()$ $\mathbf{x}_{nearest} \leftarrow \text{NEAREST}((V, E), \mathbf{x}_{rand})$ 4: $\mathbf{x}_{new} \leftarrow \text{STEER}(\mathbf{x}_{nearest}, \mathbf{x}_{rand})$ 5: 6: if COLLISIONFREE(x_{nearest}, x_{new}) then 7: $X_{near} \leftarrow \text{NEAR}((V, E), \mathbf{x}_{new}, \min\{r^*, \epsilon\})$ 8: $V \leftarrow V \cup \{\mathbf{x}_{new}\}$ 9: $c_{min} \leftarrow \text{COST}(\mathbf{x}_{nearest}) + \text{COST}(Line(\mathbf{x}_{nearest}, \mathbf{x}_{new}))$ 10: for $\mathbf{x}_{near} \in X_{near}$ do ▷ Extend along a minimum-cost path if COLLISIONFREE(x_{near}, x_{new}) then 11: if $COST(\mathbf{x}_{near}) + COST(Line(\mathbf{x}_{near}, \mathbf{x}_{new})) < c_{min}$ then 12: 13: $\mathbf{x}_{min} \leftarrow \mathbf{x}_{near}$ $c_{min} \leftarrow \text{COST}(\mathbf{x}_{near}) + \text{COST}(Line(\mathbf{x}_{near}, \mathbf{x}_{new}))$ 14: 15: $E \leftarrow E \cup \{(\mathbf{x}_{min}, \mathbf{x}_{new}\}\}$ 16: for $\mathbf{x}_{near} \in X_{near}$ do Rewire the tree 17: if COLLISIONFREE(x_{new}, x_{near}) then if $COST(\mathbf{x}_{new}) + COST(Line(\mathbf{x}_{new}, \mathbf{x}_{near})) < COST(\mathbf{x}_{near})$ then 18: $\mathbf{x}_{narent} \leftarrow \text{PARENT}(\mathbf{x}_{near})$ 19: $E \leftarrow (E \setminus \{(\mathbf{x}_{narent}, \mathbf{x}_{near})\}) \cup \{(\mathbf{x}_{new}, \mathbf{x}_{near})\}$ 20: 21: return G = (V, E)

RRT vs RRT*

Same nodes in the tree, only the edge connections are different. Notice how the RRT* edges are almost straight lines (optimal paths).

RRT vs RRT*

Same nodes in the tree, only the edge connections are different. Notice how the RRT* edges are almost straight lines (optimal paths).