
ECE276B: Planning & Learning in Robotics
Lecture 8: Sampling-based Planning

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Jinzhao Li: jil016@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:jil016@eng.ucsd.edu

Search-based vs Sampling-based Planning

I Search-based planning:
I Generates a systematic discrete representation (graph) of Cfree

I Searches the representation for a path guaranteeing to find one if it exists
(resolution complete)

I Can interleave the graph construction with the search, i.e., nodes added
only when necessary

I Provides finite-tiem suboptimality bounds on the solution
I Computationally expensive in high dimensions

2

Search-based vs. Sampling-based Planning
I Sampling-based planning:

I Generates a sparse sample-based graph of Cfree

I Searches the graph for a path guaranteeing that the probability of finding
one if it exists approaches 1 as the number of iterations →∞
(probabilistically complete)

I Can interleave the graph construction with the search, i.e., samples added
only when necessary

I Provides asymptotic suboptimality bounds on the solution
I Well-suited for high-dimensional planning: faster and requires less memory

than search-based planning in many domains

3

Motion Planning Problem

I Configuration space: C ; Obstacle space: Cobs ; Free space: Cfree

I Initial state: xs ∈ Cfree ; Goal state: xτ ∈ Cfree

I Path: a continuous function ρ : [0, 1]→ C ; Set of all paths: P

I Feasible path: a continuous function ρ : [0, 1]→ Cfree such that
ρ(0) = xs and ρ(1) = xτ ; Set of all feasible paths: Ps,τ

I Motion Planning Problem Given a path planning problem
(Cfree , xs , xτ) and a cost function J : P → R≥0, find a feasible path ρ∗

such that:
J(ρ∗) = min

ρ∈Ps,τ

J(ρ)

Report failure if no such path exists.

4

Primitive Procedures for Sampling-based Motion Planning
I Sample: returns iid samples from C

I SampleFree: returns iid samples from Cfree

I Nearest: given a graph G = (V ,E) with V ⊂ C and a point x ∈ C ,
returns a vertex v ∈ V that is closest to x:

Nearest((V ,E), x) := arg min
v∈V

‖x− v‖

I Near: given a graph G = (V ,E) with V ⊂ C , a point x ∈ C , and
r > 0, returns the vertices in V that are within a distance r from x:

Near((V ,E), x, r) := {v ∈ V | ‖x− v‖ ≤ r}
I Steer: given points x, y ∈ C and ε > 0, returns a point z ∈ C that

minimizes ‖z− y‖ while remaining within ε from x:

Steerε(x, y) := arg min
z:‖z−x‖≤ε

‖z− y‖

I CollisionFree: given points x, y ∈ C , returns True if the line
segment between x and y lies in Cfree and False otherwise.

5

Probabilistic Roadmap (PRM)
Step 1. Construction Phase: Build a roadmap

(graph) G which, hopefully, should be
accessible from any point in Cfree

I Nodes: randomly sampled valid
configurations xi ∈ Cfree

I Edges: added between samples that
are easy to connect with a simple local
controller (e.g., follow straight line)

Step 2. Query Phase: Given a start configuration xs and goal
configuration xτ , connect them to the roadmap G , then search the
augmented roadmap for a shortest path from xs to xτ

I Pros and Cons:
I Simple and highly effective in high dimensions
I Can result in suboptimal paths, no guarantees on suboptimality
I Difficulty with narrow passages
I Useful for multiple queries with different start and goal in the same

environment
6

Step 1: Construction Phase

7

Step 1: Construction Phase

Algorithm 1 PRM (construction phase)

1: V ← ∅; E ← ∅
2: for i = 1, . . . , n do
3: xrand ← SampleFree()
4: V ← V ∪ {xrand}
5: for x ∈ Near((V ,E), xrand , r) do . May use k nearest vertices
6: if (not G .same component(xrand , x)) and CollisionFree(xrand , x) then
7: E ← E ∪ {(xrand , x), (x, xrand)}
8: return G = (V ,E)

I G .same component(xrand , x)
I ensures that x and xrand are in different components of G
I every connection decreases the number of connected components in G
I efficient implementation using union-find algorithms
I may be replaced by G .vertex degree(x) < K for some fixed K (e.g.,

K = 15) if it is important to generate multiple alternative paths

8

Asymptotically Optimal Probabilistic Roadmap
I S. Karaman and E. Frazzoli, “Incremental Sampling-based Algorithms

for Optimal Motion Planning,” IJRR, 2010.

I To achieve an asymptotically optimal PRM, the connection radius r
should decrease such that the average number of connections attempted
from a roadmap vertex is proportional to log(n):

r∗ > 2

(
1 +

1

d

)1/d (Vol(Cfree)

Vol(Unit d-ball)

)1/d (log(n)

n

)1/d

Algorithm 2 PRM*

1: V ← {xs} ∪ {SampleFree()}ni=1; E ← ∅
2: for v ∈ V do
3: for x ∈ Near((V ,E), v, r∗) \ {v} do
4: if CollisionFree(v, x) then
5: E ← E ∪ {(v, x), (x, v)}
6: return G = (V ,E)

9

PRM vs RRT

I PRM: a graph constructed from random samples. It can be searched for
a path whenever a start node xs and goal node xτ are specified. PRMs
are well-suited for repeated planning between different pairs of xs and xτ
(multiple queries)

I RRT: a tree constructed from random samples with root xs . The tree is
grown until it contains a path to xτ . RRTs are well-suited for single-shot
planning between a single pair of xs and xτ (single query)

I Rapidly Exploring Random Tree (RRT):
I One of the most popular planning techniques
I Introduced by Steven LaValle in 1998
I Many, many, many extensions and variants (articulated robots,

kinematics, dynamics, differential constraints)
I There exist extensions of RRTs that try to reuse a previously constructed

tree when replanning in response to map updates

10

Rapidly Exploring Random Tree (RRT)
I Sample a new configuration xrand , find the nearest neighbor xnearest in G

and connect them:

I (Optional) if xnearest lies on an existing edge, then split the edge:

I If there is an obstacle, the edge travels up to the obstacle boundary, as
far as allowed by a collision detection algorithm

11

Rapidly Exploring Random Tree (RRT)

I What about the goal? Occasionally (e.g., every 100 iterations) add the
goal configuration xτ and see if it gets connected to the tree

I RRT can be implemented in the original workspace (need to do collision
checking) or in configuration space

I Challenges with a C-Space implementation:
I What distance function do we use to find the nearest configuration?

I e.g., distance along the surface of a torus for a 2 link manipulator

I An edge represents a path in C-Space. How do we construct a
collision-free path between two configurations?

I We do not have to connect the configurations all the way. Instead, use a
small step size ε and a local steering function to get closer to the second
configuration.

12

Rapidly Exploring Random Tree (RRT)

I No preprocessing: starting with an initial configuration xs build a
graph (actually, tree) until the goal configuration xτ is part of it

Algorithm 3 RRT

1: V ← {xs}; E ← ∅
2: for i = 1 . . . n do
3: xrand ← SampleFree()
4: xnearest ← Nearest((V ,E), xrand)
5: xnew ← Steer(xnearest , xrand)
6: if CollisionFree(xnearest , xnew) then
7: V ← V ∪{xnew}; E ← E ∪{(xnearest , xnew)}
8: return G = (V ,E)

13

Rapidly Exploring Random Tree (RRT)
I RRT without ε (called Rapidly Exploring Dense Tree (RDT)):

I RRT with ε

14

Example: RRT Algorithm

I Start node xs
I Goal node xτ
I Gray obstacles

15

Example: RRT Algorithm

I Sample xrand in the workspace

I Steer from xs towards xrand by a fixed distance ε to get x1

I If the segment from xs to x1 is collision-free, insert x1 into the tree

16

Example: RRT Algorithm

I Sample xrand in the workspace

I Find the closest node xnearest to xrand

I Steer from xnearest towards xrand by a fixed distance ε to get x2

I If the segment from xnearest to x2 is collision-free, insert x2 into the tree

17

Example: RRT Algorithm

I Sample xrand in the workspace

I Find the closest node xnearest to xrand

I Steer from xnearest towards xrand by a fixed distance ε to get x3

I If the segment from xnearest to x3 is collision-free, insert x3 into the tree

18

Example: RRT Algorithm

I Sample xrand in the workspace

I Find the closest node xnearest to xrand

I Steer from xnearest towards xrand by a fixed distance ε to get x3

I If the segment from xnearest to x3 is collision-free, insert x3 into the tree

19

Example: RRT Algorithm

I Continue until a node that is a distance ε from the goal is generated

I Either terminate the algorithm or search for additional feasible paths

20

Sampling in RRTs
I The vanilla RRT algorithm provides uniform coverage of space

I Alternatively, the growth may be biased by the largest Voronoi region

21

Sampling in RRTs

I Goal-biased sampling: with probability (1− pg), xrand is chosen as a
uniform sample in Cfree and with probability pg , xrand = xτ

(a) pg = 0 (b) pg = 0.1 (c) pg = 0.5

22

Handling Robot Dynamics with Steer()

I Steer() extends the tree towards a given random sample xrand

I Consider a car-like robot with non-holonomic constraints (can’t slide
sideways) in SE (2). Obtaining a feasible path from xrand = (0, 0, 90◦) to
xnearest = (1, 0, 90◦) is as hard as the original problem

I Steer() resolves this by not requiring the motion to get all the way to
xrand . We just apply the best control input for a fixed duration to obtain
xnew and a dynamically feasible trajectory to it

23

Example: 5 DOF Kinodynamic Planning for a Car

24

Bug Traps
I Growing two trees, one from start and one for goal, often has better

performance in practice.

25

Bi-directional RRT

Algorithm 4 Bi-directional RRT

1: Va ← {xs}; Ea ← ∅; Vb ← {xτ}; Eb ← ∅
2: for i = 1 . . . n do
3: xrand ← SampleFree()
4: xnearest ← Nearest((Va,Ea), xrand)
5: xnew ← Steer(xnearest , xrand)
6: if xnew 6= xnearest then
7: Va ← Va ∪ {xnew}; Ea ← {(xnearest , xnew), (xnew , xnearest)}
8: x′nearest ← Nearest((Vb,Eb), xnew)
9: x′new ← Steer(x′nearest , xnew)

10: if x′new 6= x′nearest then
11: Vb ← Vb ∪ {x′new}; Eb ← {(x′nearest , x′new), (x′new , x

′
nearest)}

12: if x′new = xnew then return SOLUTION

13: if |Vb| < |Va| then Swap((Va,Ea), (Vb,Eb))

14: return FAILURE

26

RRT-Connect (J. Kuffner and S. LaValle, ICRA, 2000)
I Bi-directional tree + attempts to connect the two trees at every iteration

Algorithm 5 RRT-Connect

1: Va ← {xs}; Ea ← ∅; Vb ← {xτ}; Eb ← ∅
2: for i = 1 . . . n do
3: xrand ← SampleFree()
4: if not Extend((Va,Ea), xrand) = Trapped then
5: if Connect((Vb,Eb), xnew) = Reached then . xnew was just added to (Va,Ea)
6: return Path((Va,Ea), (Vb,Eb))

7: Swap((Va,Ea), (Vb,Eb))

8: return Failure
9: function Extend((V ,E), x)

10: xnearest ← Nearest((V ,E), x)
11: xnew ← Steerε(xnearest , x)
12: if CollisionFree(xnearest , xnew) then
13: V ← {xnew}; E ← {(xnearest , xnew), (xnew , xnearest)}
14: if xnew = x then return Reached else return Advanced

15: return Trapped

16: function Connect((V ,E), x)
17: repeat status ← Extend((V ,E), x) until status 6= Advanced
18: return status 27

Example: Single RRT-Connect Iteration

28

Example: Single RRT-Connect Iteration

I One tree is grown to a random target

29

Example: Single RRT-Connect Iteration

I The new node becomes a target for the other tree

30

Example: Single RRT-Connect Iteration

I Determine the nearest node to the target

31

Example: Single RRT-Connect Iteration

I Try to add a new collision-free branch

32

Example: Single RRT-Connect Iteration

I If successful, keep extending the branch

33

Example: Single RRT-Connect Iteration

I If successful, keep extending the branch

34

Example: Single RRT-Connect Iteration

I If successful, keep extending the branch

35

Example: Single RRT-Connect Iteration

I If the branch reaches all the way to the target, a feasible path is found!

36

Example: Single RRT-Connect Iteration

I If the branch reaches all the way to the target, a feasible path is found!

37

Example: RRT-Connect

38

Example: RRT-Connect

39

Example: RRT-Connect

40

Why are RRTs so popular?

I The algorithm is very simple once the following subroutines are
implemented:
I Random sample generator
I Nearest neighbor
I Collision checker
I Steer

I Pros:
I A sparse graph requires little memory and computation
I RRTs find feasible paths quickly in practice
I Can add heuristics on top, e.g., bias the sampling towards the goal

(see Gammell et al., BIT*, IJRR, 2020.)

I Cons:
I Computed paths may be sub-optimal and require path smoothing as a

post-processing step
I Finding a feasible path in highly constrained environments (e.g., maze) is

challenging

41

Path Smoothing

I Start with the initial point (1)

I Make connections to subsequent points
in the path (2), (3), (4), ...

I When a connection collides with
obstacles, add the previous waypoint to
the smoothed path

I Continue smoothing from this point on

42

Search-based vs Sampling-based Planning
I RRT:

I A sparse graph requires little memory and computation
I Computed paths may be sub-optimal and require path smoothing

I Weighted A*:
I Systematic exploration may require a lot of memory and computation
I Returns a path with (sub-)optimality guarantees

43

RRT: Probabilistic Completeness but No Optimality

I RRT and RRT-Connect are probabilistically complete: the probability
that a feasible path will be found if one exists, approaches 1
exponentially as the number of samples approaches infinity

I Assuming Cfree is connected, bounded, and open, for any x ∈ Cfree ,
lim

N→∞
P(‖x−xnearest‖< ε) = 1, where xnearest is the closest node to x in G

I RRT is not optimal: the probability that RRT converges to an optimal
solution, as the number of samples approaches infinity, is zero under
reasonable technical assumptions (S. Karaman, E. Frazzoli, RSS’10)

I Problem: once we build an RRT we never modify it

I RRT* (S. Karaman and E. Frazzoli, “Incremental Sampling-based
Algorithms for Optimal Motion Planning,” IJRR, 2010)
I RRT + rewiring of the tree to ensure asymptotic optimality
I Contains two steps: extend (similar to RRT) and rewire (new)

44

RRT*: Extend Step
I Generate a new potential node xnew identically to RRT

I Instead of finding the closest node in the tree, find all nodes within a
neighborhood N of radius min{r∗, ε} where

r∗ > 2

(
1 +

1

d

)1/d (Vol(Cfree)

Vol(Unit d-ball)

)1/d (log |V |
|V |

)(1/d)

I Let xnearest = arg min
xnear∈N

g(xnear) + c(xnear , xnew) be the node in N on the

currently known shortest path from xs to xnew

I V ← V ∪ {xnew}

I E ← E ∪ {(xnearest , xnew)}

I Set the label of xnew to:

g(xnew) = g(xnearest)+c(xnearest , xnew)

45

RRT*: Rewire Step

I Check all nodes xnear ∈ N to see if re-routing through xnew reduces the
path length (label correcting!):

I If g(xnew) + c(xnew , xnear) < g(xnear), then remove the edge between
xnear and its parent and add a new edge between xnear and xnew

46

Algorithm 6 RRT*

1: V ← {xs}; E ← ∅
2: for i = 1 . . . n do
3: xrand ← SampleFree()
4: xnearest ← Nearest((V ,E), xrand)
5: xnew ← Steer(xnearest , xrand)
6: if CollisionFree(xnearest , xnew) then
7: Xnear ← Near((V ,E), xnew ,min{r∗, ε})
8: V ← V ∪ {xnew}
9: cmin ← Cost(xnearest) + Cost(Line(xnearest , xnew))

10: for xnear ∈ Xnear do . Extend along a minimum-cost path
11: if CollisionFree(xnear , xnew) then
12: if Cost(xnear) + Cost(Line(xnear , xnew)) < cmin then
13: xmin ← xnear
14: cmin ← Cost(xnear) + Cost(Line(xnear , xnew))

15: E ← E ∪ {(xmin, xnew}
16: for xnear ∈ Xnear do . Rewire the tree
17: if CollisionFree(xnew , xnear) then
18: if Cost(xnew) + Cost(Line(xnew , xnear)) < Cost(xnear) then
19: xparent ← Parent(xnear)
20: E ← (E \ {(xparent , xnear)}) ∪ {(xnew , xnear)}
21: return G = (V ,E)

47

RRT vs RRT*

(a) RRT (b) RRT*

I Same nodes in the tree, only the edge connections are different. Notice
how the RRT* edges are almost straight lines (optimal paths).

48

RRT vs RRT*

(a) RRT (b) RRT*

I Same nodes in the tree, only the edge connections are different. Notice
how the RRT* edges are almost straight lines (optimal paths).

49

