ECE276B: Planning & Learning in Robotics Lecture 10: Stochastic Shortest Path

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:

Thai Duong: tduong@eng.ucsd.edu

Finite-Horizon Stochastic Optimal Control (Recap)

Recall the **finite-horizon** stochastic optimal control problem:

$$\min_{\pi_{\tau:T-1}} V_{\tau}^{\pi}(\mathbf{x}_{\tau}) := \mathbb{E}_{\mathbf{x}_{\tau+1:T}} \left[\gamma^{T-\tau} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau}^{I-1} \gamma^{t-\tau} \ell(\mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})) \mid \mathbf{x}_{\tau} \right]$$
s.t. $\mathbf{x}_{t+1} \sim p_{f}(\cdot \mid \mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})), \qquad t = \tau, \dots, T-1$

$$\mathbf{x}_{t} \in \mathcal{X},$$

$$\pi_{t}(\mathbf{x}_{t}) \in \mathcal{U}(\mathbf{x}_{t})$$

$$\mathbf{x} \in \mathcal{X} \qquad \text{state}$$

$$\mathbf{u} \in \mathcal{U}(\mathbf{x})$$
 admissible control at state \mathbf{x} $p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u})$ motion model $\mathbf{x}' = f(\mathbf{x}, \mathbf{u}, \mathbf{w})$ motion model $\ell(\mathbf{x}, \mathbf{u})$ stage cost

q(x)

planning horizon and discount factor

 T, γ $\pi_t(\mathbf{x})$ policy function at time t

terminal cost

value function at state x, time t, under policy $\pi_{t:T-1}$

Finite-Horizon Stochastic Optimal Control (Recap)

▶ **Episode**: a sequence ρ_{τ} of random states and controls from the start state \mathbf{x}_{τ} , following the motion model to termination under policy π :

$$\rho_{\tau} := \mathbf{x}_{\tau}, \mathbf{u}_{\tau}, \mathbf{x}_{\tau+1}, \mathbf{u}_{\tau+1}, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{x}_{T} \sim \pi$$

▶ **Long-term cost**: a random variable defined as the sum of the discounted stage costs along an episode ρ_{τ} :

$$L_{\tau}(\rho_{\tau}) := \gamma^{T-\tau} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell_{t}(\mathbf{x}_{t}, \mathbf{u}_{t})$$

- ▶ Value function: $V_t^{\pi}(\mathbf{x}) := \mathbb{E}_{\rho_t \sim \pi} [L_t(\rho_t) \mid \mathbf{x}_t = \mathbf{x}]$
- ▶ Optimal value function: $V_t^*(\mathbf{x}) := \min_{\pi} V_t^{\pi}(\mathbf{x})$
- ▶ Optimal policy: $\pi^*_{t:T-1} := \underset{\pi}{\arg\min} \ V^{\pi}_t(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$
- ► The optimal value function and policy can be computed via the Dynamic Programming algorithm

Finite-Horizon Deterministic Optimal Control (Recap)

▶ Deterministic finite-state (DFS) optimal control problem:

$$\begin{aligned} \min_{\mathbf{u}_{\tau:T-1}} & V_{\tau}^{\mathbf{u}_{\tau:T-1}}(\mathbf{x}_{\tau}) := \gamma^{T-\tau} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell_{t}(\mathbf{x}_{t}, \mathbf{u}_{t}) \\ \text{s.t.} & \mathbf{x}_{t+1} = f(\mathbf{x}_{t}, \mathbf{u}_{t}), \qquad t = \tau, \dots, T-1 \\ & \mathbf{x}_{t} \in \mathcal{X}, \\ & \mathbf{u}_{t} \in \mathcal{U}(\mathbf{x}_{t}) \end{aligned}$$

- lacktriangle An open-loop control sequence $oldsymbol{u}^*_{ au:T-1}$ is optimal for the DFS problem
- ▶ The DFS problem is equivalent to the deterministic shortest path (DSP) problem, which led to the forward DP and label correcting algorithms

Infinite-Horizon Discounted Stochastic Optimal Control

▶ In this lecture, we will consider what happens with the stochastic optimal control problem as the planning horizon T goes to infinity

$$\begin{aligned} \min_{\pi_{\tau:T-1}} & V_{\tau}^{\pi}(\mathbf{x}_{\tau}) \coloneqq \lim_{T \to \infty} \mathbb{E}_{\mathbf{x}_{\tau+1:T}} \left[\sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell(\mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})) \ \middle| \ \mathbf{x}_{\tau} \right] \\ \text{s.t.} & \mathbf{x}_{t+1} \sim p_{f}(\cdot \mid \mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})), \quad t = \tau, \dots, T-1 \\ & \mathbf{x}_{t} \in \mathcal{X}, \\ & \pi_{t}(\mathbf{x}_{t}) \in \mathcal{U}(\mathbf{x}_{t}) \end{aligned}$$

- ► The terminal cost $q(\mathbf{x}_T)$ is no longer necessary since we never reach a terminal time-step
- As $T \to \infty$, the time-invariant motion model and stage costs lead to a **time-invariant** optimal value function $V^*(\mathbf{x}) = \min_{\pi} V^{\pi}(\mathbf{x})$ and associated optimal policy $\pi^*(\mathbf{x}) = \arg\min V^{\pi}(\mathbf{x})$.

4

Infinite-Horizon Discounted Stochastic Optimal Control

- As $T \to \infty$, it is sufficient to optimize over stationary value functions $V^{\pi}(\mathbf{x})$ and stationary policites $\pi(\mathbf{x}) \in \mathcal{U}(\mathbf{x})$
- ► Infinite-Horizon Discounted Stochastic Optimal Control Problem:

$$\begin{split} V^*(\mathbf{x}) &= \min_{\pi} \ V^{\pi}(\mathbf{x}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) \ \middle| \ \mathbf{x}_0 = \mathbf{x} \right] \\ \text{s.t.} \ \mathbf{x}_{t+1} &\sim p_f(\cdot \mid \mathbf{x}_t, \pi(\mathbf{x}_t)), \\ \mathbf{x}_t &\in \mathcal{X}, \\ \pi(\mathbf{x}_t) &\in \mathcal{U}(\mathbf{x}_t) \end{split}$$

Infinite-Horizon Dynamic Programming

Recall the Dynamic Programming algorithm for fixed T:

$$\begin{aligned} V_{T}(\mathbf{x}) &= 0, \quad \forall \mathbf{x} \in \mathcal{X} \\ V_{t}(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[V_{t+1}(\mathbf{x}') \right], \quad \forall \mathbf{x} \in \mathcal{X}, t = T - 1, \dots, \tau \end{aligned}$$

▶ Bellman Equation: as $T \to \infty$, the sequence ..., $V_{t+1}(\mathbf{x}), V_t(\mathbf{x}), \ldots$ converges to a fixed point $V(\mathbf{x})$ and the DP algorithm reduces to:

$$V(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\}, \quad \forall \mathbf{x} \in \mathcal{X}$$

- Assuming this convergence, $V(\mathbf{x})$ is equal to the optimal value function $V^*(\mathbf{x})$
- ▶ Both $V^*(\mathbf{x})$ and the associated opitmal policy $\pi^*(\mathbf{x})$ are **stationary**.

Value Iteration Algorithm

- ▶ The Bellman Equation needs to be solved for all $x \in \mathcal{X}$ simultaneously, which can be done analytically only for very few problems (e.g., the Linear Quadratic Regulator (LQR) problem).
- ▶ Change the time index to $\bar{V}_t(\mathbf{x}) := V_{T-t}(\mathbf{x})$ so that $\bar{V}_0(\mathbf{x})$ corresponds to the terminal value function as $T \to \infty$
- **Value Iteration** (VI) algorithm: applies the dynamic programming recursion with an arbitrary initialization $\bar{V}_0(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$:

$$ar{V}_{t+1}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \Big[\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) ar{V}_t(\mathbf{x}') \Big], \qquad orall \mathbf{x} \in \mathcal{X}$$

- ightharpoonup VI requires infinite iterations for $\bar{V}_t(\mathbf{x})$ to converge to $V^*(\mathbf{x})$
- ▶ In practice, the VI algorithm is terminated when $|\bar{V}_{t+1}(\mathbf{x}) \bar{V}_t(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in \mathcal{X}$ and some threshold ϵ

Finite-State Stochastic Shortest Path Problem

- lacktriangle The VI algorithm does not always converge when $\gamma=1$
- ▶ The **stochastic shortest path** (SSP) problem is one instance in which the VI algorithm converges to the optimal value function and corresponding optimal policy.
- ▶ State space: $\tilde{\mathcal{X}} := \{0, 1, ..., n\}$ (finite)
- ▶ Control space: $\tilde{\mathcal{U}}(x)$ (finite) for all $x \in \tilde{\mathcal{X}}$
- ▶ Stage cost: $\tilde{\ell}(x, u)$
- ▶ **Motion model**: specified by matrices \tilde{P}^u for each u with elements:

$$\tilde{P}_{ij}^{u} = \mathbb{P}(x_{t+1} = j \mid x_t = i, u_t = u) = \tilde{p}_f(j \mid x_t = i, u_t = u)$$

▶ **Terminal State Assumption**: Suppose that state 0 is a cost-free termination state (the goal), i.e., $\tilde{P}_{0,0}^u = \tilde{p}_f(0 \mid 0, u) = 1$ and $\tilde{\ell}(0, u) = 0$, $\forall u \in \tilde{\mathcal{U}}(0)$

Existence of Solutions to the Finite-State SSP Problem

- ▶ **Proper Stationary Policy**: a policy π for which there exists an integer m such that $\mathbb{P}(x_m = 0 \mid x_0 = x) > 0$ for all $x \in \tilde{\mathcal{X}}$ subject to transitions governed by the motion model and policy π .
- ▶ **Proper Policy Assumption**: there exists at least one proper policy π . Furthermore, for every improper policy π' , the corresponding value function $V^{\pi'}(x)$ is infinite for at least one state $x \in \tilde{\mathcal{X}}$.
- ▶ The above assumption is required to ensure that:
 - there exists a unique solution to the Bellman Equation for the SSP
 - \blacktriangleright a policy exists for which the probability of reaching the termination state goes to 1 as $\mathcal{T}\to\infty$
 - policies that do not reach the termination state incur infinite cost (i.e., there are no non-positive cycles as in the DSP problem)

Finite-State Stochastic Shortest Path Problem

$$V^*(x) = \min_{\pi} V^{\pi}(x) := \mathbb{E}\left[\sum_{t=0}^{\infty} \tilde{\ell}(x_t, \pi_t(x_t)) \mid x_0 = x\right]$$
s.t. $x_{t+1} \sim \tilde{p}_f(\cdot \mid x_t, \pi(x_t)),$
 $x_t \in \tilde{\mathcal{X}} := \{0, 1, \dots, n\},$
 $\pi(x_t) \in \tilde{\mathcal{U}}(x_t)$

- Assumptions:
 - ▶ **Terminal State**: $\tilde{p}_f(0 \mid 0, u) = 1$ and $\tilde{\ell}(0, u) = 0$, $\forall u \in \tilde{\mathcal{U}}(0)$
 - **Proper Policy**: there exists at least one proper policy π such that $\mathbb{P}(x_m=0\mid x_0=x)>0$ for some integer m under π . For every improper policy π' , $V^{\pi'}(x)=\infty$ for some $x\in\tilde{\mathcal{X}}$.

Theorem: Bellman Equation for the Finite-State SSP

Under the termination state and proper policy assumptions, the following are true for the finite-state SSP problem: 1. Given any initial conditions $\bar{V}_0(1), \ldots, \bar{V}_0(n)$, the sequence $\bar{V}_t(x)$

generated by the iteration:

generated by the iteration:
$$\bar{V}_{t+1}(x) = \min_{u \in \tilde{\mathcal{U}}(x)} \left[\tilde{\ell}(x,u) + \sum_{x' \in \tilde{\mathcal{X}} \setminus \{0\}} \tilde{p}_f(x'\mid,x,u) \bar{V}_t(x') \right], \quad \forall x \in \tilde{\mathcal{X}} \setminus \{0\}$$

converges to the optimal value function $V^*(x)$ for all $x \in \tilde{\mathcal{X}} \setminus \{0\}$ 2. The optimal value function satisfies the **Bellman Equation**:

$$V^*(x) = \min_{u \in \tilde{\mathcal{U}}(x)} \left[\tilde{\ell}(x, u) + \sum_{x' \in \tilde{\mathcal{X}} \setminus \{0\}} \tilde{p}_f(x' \mid, x, u) V^*(x') \right], \quad \forall x \in \tilde{\mathcal{X}} \setminus \{0\}$$

3. The solution to the Bellman Equation is unique 4. The minimizing u of the Bellman Equation for each $x \in \mathcal{X} \setminus \{0\}$ gives an optimal policy, which is stationary

Theorem Intuition

- We give intuition under a stronger assumption: $\exists m \in \mathbb{N}$ such that for **any** admissible policy $\mathbb{P}(x_m = 0 \mid x_0 = x) > 0$, subject to transitions governed by the motion model and π , i.e., there is a positive probability that the termination state will be reached regardless of the initial state.
- 1. Let $\bar{V}_0(0) = 0$ and consider the following finite-horizon problem:

$$V_0^\pi(x) = \mathbb{E}\left[\left.\sum_{t=0}^{T-1} ilde{\ell}(x_t,\pi_t(x_t)) + ar{V}_0(x_T)\;
ight|\,x_0=x
ight]$$

where $\bar{V}_0(x_T)$ is the terminal cost. As $T \to \infty$, the probability that state 0 is reached approaches 1 for all policies and, since $\bar{V}_0(0) = 0$, the terminal cost does not influence the solution. The DP algorithm with re-labeled time index k := T - t applied to this problem is:

$$\bar{V}_{k+1}(x) = \min_{u \in \tilde{\mathcal{U}}(x)} \left(\tilde{\ell}(x, u) + \sum_{x' \in \tilde{\mathcal{X}} \setminus \{0\}} \tilde{p}_f(x' \mid x, u) \bar{V}_k(x') \right), \ \forall x \in \tilde{\mathcal{X}} \setminus \{0\}, \quad (*)$$

for $k=0,\ldots,T$. State 0 can be excluded because $\tilde{\ell}(0,u)=0$ by assumption and $\tilde{p}_f(x'\mid 0,u)=0$ for all $x'\in\tilde{\mathcal{X}}\setminus\{0\}$.

Theorem Intuition

- 1. Thus, $\bar{V}_T(x) = V_0^*(x)$ is the optimal cost for the finite horizon problem and, as $T \to \infty$, it converges to the optimal cost of the infinite horizon problem due to the assumption that the terminal state is reached in finite time.
- 2. Follows from taking limits of both sides of (*) above.
- 3. Let $\bar{J_0}(1),\ldots,\bar{J_0}(n)$ and $\bar{V_0}(1),\ldots,\bar{V_0}(n)$ be two different solutions to the Bellman Equation. If both are used as initial conditions for (*) above, they both converge after 1 iteration. This leads to two different optimal costs which is a contradiction.

- It turns out that the infinite-horizon discounted problem with $\gamma \in [0,1)$ is equivalent to the SSP problem.
- Given a Discounted problem, we can define an auxiliary SSP problem and show that it is equivalent
- ▶ Discounted Problem: $\mathcal{X} := \{1, ..., n\}$, $\mathcal{U}(x)$, $p_f(x' \mid x, u)$, $\ell(x, u)$
- ▶ **SSP**: $\tilde{\mathcal{X}} := \mathcal{X} \cup \{0\}$, where 0 is a virtual terminal state,

$$\tilde{\mathcal{U}}(x) := \begin{cases} \mathcal{U}(x), & x \in \mathcal{X} \\ \{stay\}, & x = 0 \end{cases}$$

SSP motion model:

$$\begin{split} \tilde{p}_f(x'\mid x,u) &= \gamma p_f(x'\mid x,u) & \text{for } u \in \tilde{\mathcal{U}}(x) \text{ and } x,x' \in \mathcal{X} \\ \tilde{p}_f(0\mid x,u) &= 1-\gamma, & \text{for } u \in \tilde{\mathcal{U}}(x) \text{ and } x \in \mathcal{X} \\ \tilde{p}_f(x'\mid 0,u) &= 0, & \text{for } u = stay \text{ and } x' \in \mathcal{X} \\ \tilde{p}_f(0\mid 0,u) &= 1, & \text{for } u = stay \end{split}$$

▶ Terminal state and proper policy assumptions: since $\gamma < 1$, there is a non-zero probability to go to state 0 regardless of the control input and initial state and hence the SSP assumptions are satisfied.

► SSP Cost:
$$\tilde{\ell}(x,u) = \ell(x,u),$$
 for $u \in \tilde{\mathcal{U}}(x), x \in \mathcal{X}$ $\tilde{\ell}(0, stay) = 0$

- There is a one-to-one mapping between a policy $\tilde{\pi}$ of the auxiliary SSP to a policy π of the discounted problem since $\tilde{\pi}$ just trivially assigns $\tilde{\pi}_t(0) = stay$ while the rest remains the same
- ▶ Next, we show that for all $x \in \mathcal{X}$:

$$\tilde{V}^{\tilde{\pi}}(x) = \mathbb{E}\left[\sum_{t=0}^{T-1} \tilde{\ell}(\tilde{x}_t, \tilde{\pi}_t(\tilde{x}_t)) \mid x_0 = x\right] = V^{\pi}(x) = \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^t \ell(x_t, \pi_t(x_t)) \mid x_0 = x\right]$$

where the expectations are over $\tilde{x}_{1:T}$ and $x_{1:T}$ and subject to transitions induced by $\tilde{\pi}$ and π , respectively.

Conclusion: since $\tilde{V}^{\tilde{\pi}}(x) = V^{\pi}(x)$ for all $x \in \mathcal{X}$ and the mapping of $\tilde{\pi}$ to π minimizes $V^{\pi}(x)$, by solving the Bellman Equation for the auxiliary SSP, we can obtain an optimal policy and the optimal cost-to-go for the infinite-horizon discounted problem.

$$\mathbb{E}_{\tilde{x}_{1:T}}[\tilde{\ell}(\tilde{x}_{t},\tilde{\pi}_{t}(\tilde{x}_{t})) \mid x_{0} = x] = \sum_{\bar{x}_{1:T} \in \tilde{\mathcal{X}}^{T}} \tilde{\ell}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{1:T} = \bar{x}_{1:T} \mid x_{0} = x)$$

$$= \sum_{\bar{x}_{t} \in \tilde{\mathcal{X}}} \tilde{\ell}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{t} = \bar{x}_{t} \mid x_{0} = x)$$

$$= \sum_{\bar{x}_{t} \in \mathcal{X}} \tilde{\ell}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{t} = \bar{x}_{t},\tilde{x}_{t} \neq 0 \mid x_{0} = x)$$

$$= \sum_{\bar{x}_{t} \in \mathcal{X}} \tilde{\ell}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{t} = \bar{x}_{t} \mid x_{0} = x,\tilde{x}_{t} \neq 0) \mathbb{P}(\tilde{x}_{t} \neq 0 \mid x_{0} = x)$$

$$\stackrel{(?)}{=} \sum_{\bar{x}_{t} \in \mathcal{X}} \tilde{\ell}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(x_{t} = \bar{x}_{t} \mid x_{0} = x) \gamma^{t}$$

$$= \sum_{\bar{x}_{t} \in \mathcal{X}} \ell(\bar{x}_{t},\pi_{t}(\bar{x}_{t})) \mathbb{P}(x_{t} = \bar{x}_{t} \mid x_{0} = x) \gamma^{t}$$

$$= \mathbb{E}_{x_{1:T}} \left[\gamma^{t} \ell(x_{t},\pi_{t}(x_{t})) \mid x_{0} = x \right]$$

- (?) Show that for transitions $\tilde{p}_f(x' \mid x, u)$ under $\tilde{\pi}$, $\mathbb{P}(\tilde{x}_t \neq 0 \mid x_0 = x) = \gamma^t$
 - For any $x \in \mathcal{X}$ and $u \in \tilde{\mathcal{U}}(x)$:

$$\mathbb{P}(\tilde{x}_{t+1} \neq 0 \mid \tilde{x}_t = x) = 1 - p_f(0 \mid x, u) = \gamma$$

ightharpoonup Similarly, for any $x \in \mathcal{X}$

$$\mathbb{P}(\tilde{x}_{t+2} \neq 0 \mid \tilde{x}_t = x) = \sum_{x' \in \mathcal{X}} \mathbb{P}(\tilde{x}_{t+2} \neq 0 \mid \tilde{x}_{t+1} = x', \tilde{x}_t = x) \mathbb{P}(\tilde{x}_{t+1} = x' \mid \tilde{x}_t = x)$$

$$= \sum_{x' \in \mathcal{X}} \mathbb{P}(\tilde{x}_{t+2} \neq 0 \mid \tilde{x}_{t+1} = x') \mathbb{P}(\tilde{x}_{t+1} = x' \mid \tilde{x}_t = x)$$

$$= \gamma \sum_{x' \in \mathcal{X}} \tilde{p}_f(x' \mid x, \tilde{\pi}(x)) = \gamma^2$$

▶ Similarly, we can show that for any m > 0: $\mathbb{P}(\tilde{x}_{t+m} \neq 0 \mid x_t = x) = \gamma^m$

- (?) Show that $\mathbb{P}(\tilde{x}_t = \bar{x}_t \mid x_0 = x, \tilde{x}_t \neq 0) = \mathbb{P}(x_t = \bar{x}_t \mid x_0 = x)$
 - For any $x, x' \in \mathcal{X}$ and $u = \tilde{\pi}_t(x) = \pi_t(x)$, we have

$$\mathbb{P}(\tilde{x}_{t+1} = x' \mid \tilde{x}_{t+1} \neq 0, \tilde{x}_t = x, \tilde{u}_t = u) = \frac{\mathbb{P}(\tilde{x}_{t+1} = x', \tilde{x}_{t+1} \neq 0 \mid \tilde{x}_t = x, \tilde{u}_t = u)}{\mathbb{P}(\tilde{x}_{t+1} \neq 0 \mid \tilde{x}_t = x, \tilde{u}_t = u)}$$

$$= \frac{\tilde{p}_f(x' \mid x, u)}{\gamma} = p_f(x' \mid x, u) = \mathbb{P}(x_{t+1} = x' \mid x_t = x, u_t = u)$$

▶ Similarly, it can be shown that for $\bar{x}_t \in \mathcal{X}$:

$$\mathbb{P}(\tilde{x}_t = \bar{x}_t \mid x_0 = x, \tilde{x}_t \neq 0) = \mathbb{P}(x_t = \bar{x}_t \mid x_0 = x)$$

Bellman Equation for the Discounted Problem

► Infinite-Horizon Discounted Problem:

$$V^*(\mathbf{x}) = \min_{\pi} V^{\pi}(\mathbf{x}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) \mid \mathbf{x}_0 = \mathbf{x} \right]$$
s.t. $\mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \pi(\mathbf{x}_t)),$
 $\mathbf{x}_t \in \mathcal{X},$
 $\pi(\mathbf{x}_t) \in \mathcal{U}(\mathbf{x}_t)$

► The optimal value function of the Discounted problem satisfies the **Bellman Equation** via the equivalence to the SSP problem:

$$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \Big(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^*(\mathbf{x}') \Big), \quad \forall \mathbf{x} \in \mathcal{X}$$

- There exist several methods to solve the Bellman Equation for the Discounted and SSP problems:
 - Value Iteration
 - Policy Iteration
 - Linear Programming