
ECE276B: Planning & Learning in Robotics
Lecture 1: Introduction

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Thai Duong: tduong@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:tduong@eng.ucsd.edu

What is this class about?

I ECE276A: sensing and estimation in robotics:
I how to model robot motion and observations
I how to estimate (a distribution of) the robot/environment state xt from

the history of observations z0:t and control inputs u0:t−1

I ECE276B: planning and decision making in robotics:
I how to select control inputs u0:t−1 to accomplish a task

I References (not required):
I Dynamic Programming and Optimal Control: Bertsekas

I Planning Algorithms: LaValle (http://planning.cs.uiuc.edu)

I Reinforcement Learning: Sutton & Barto
(http://incompleteideas.net/book/the-book.html)

I Calculus of Variations and Optimal Control Theory: Liberzon
(http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)

2

http://planning.cs.uiuc.edu
http://incompleteideas.net/book/the-book.html
http://liberzon.csl.illinois.edu/teaching/cvoc.pdf

Logistics

I Course website: https://natanaso.github.io/ece276b

I Includes links to (sign up!):
I Canvas: Zoom meeting schedule and lecture recordings
I Piazza: discussion – check Piazza regularly because class announcements,

updates, etc., will be posted there
I Gradescope: homework submission and grades

I Assignments:
I 3 theoretical homework sets (16% of grade)
I 3 programming assignments in python + project report:

I Project 1: Dynamic Programming (18% of grade)
I Project 2: Motion Planning (18% of grade)
I Project 3: Optimal Control (18% of grade)

I Final exam (30% of grade)

I Grades:
I assigned based on the class performance, i.e., there will be a curve
I no late policy: work submitted past the deadline will receive 0 credit

3

https://natanaso.github.io/ece276b

Prerequisites

I Probability theory: random vectors, probability density functions,
expectation, covariance, total probability, conditioning, Bayes rule

I Linear algebra/systems: eigenvalues, positive definiteness, linear
systems of ODEs, matrix exponential

I Optimization: gradient descent

I Programming: experience with at least one language
(python/C++/Matlab), classes/objects, data structures (e.g., queue,
list), data input/output, plotting

I It is up to you to judge if you are ready for this course!
I Consult with your classmates who took ECE276A
I Take a look at the material from last year:

https://natanaso.github.io/ece276b2020
I If the first assignment seems hard, the rest will be hard as well

4

https://natanaso.github.io/ece276b2020

Syllabus (Tentative)

I Check the course website for updates:
https://natanaso.github.io/ece276b

5

https://natanaso.github.io/ece276b

Markov Chain

I A Markov Chain (MC) is a probabilistic
model used to represent the evolution of
a robot system

I The state xt can be discrete or
continuous and is fully observed

I The state transitions are random and
uncontrolled, determined by a transition
matrix or function

I A Markov Decision Process (MDP) is
a Markov chain, whose transitions are
controlled

P =

0.6 0.2 0.2
0.3 0.4 0.3
0.0 0.3 0.7

Pij = P(xt+1 = j | xt = i)

6

Motion Planning

7

A* Search

I Invented by Hart, Nilsson and
Raphael of Stanford Research
Institute in 1968 for the Shakey
robot

I Video: https://youtu.be/

qXdn6ynwpiI?t=3m55s

8

https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s

Search-based Motion Planning

I CMU’s autonomous car used search-based motion planning in the
DARPA Urban Challenge in 2007

I Likhachev and Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,” IJRR’09

I Video: https://www.youtube.com/watch?v=4hFhl0Oi8KI

I Video: https://www.youtube.com/watch?v=qXZt-B7iUyw

I Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

9

https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=qXZt-B7iUyw
http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

Sampling-based Motion Planning

I RRT algorithm on the PR2 – planning with both arms (12 DOF)
I Karaman and Frazzoli, “Sampling-based algorithms for optimal motion

planning,” IJRR’11
I Video: https://www.youtube.com/watch?v=vW74bC-Ygb4
I Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

10

https://www.youtube.com/watch?v=vW74bC-Ygb4
https://www.youtube.com/watch?v=vW74bC-Ygb4
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Sampling-based Motion Planning

I RRT* algorithm on a high-fidelity car model – 270 degree turn
I Karaman and Frazzoli, “Sampling-based algorithms for optimal motion

planning,” IJRR’11
I Video: https://www.youtube.com/watch?v=p3nZHnOWhrg
I Video: https://www.youtube.com/watch?v=LKL5qRBiJaM
I Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761 11

https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=LKL5qRBiJaM
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Dynamic Programming and Optimal Control

I Tassa, Mansard and Todorov, “Control-limited Differential Dynamic
Programming,” ICRA’14

I Video: https://www.youtube.com/watch?v=tCQSSkBH2NI
I Paper: http://ieeexplore.ieee.org/document/6907001/ 12

https://www.youtube.com/watch?v=tCQSSkBH2NI
https://www.youtube.com/watch?v=tCQSSkBH2NI
http://ieeexplore.ieee.org/document/6907001/

Model-free Reinforcement Learning

I A robot learns to flip pancakes

I Kormushev, Calinon and Caldwell, “Robot Motor Skill Coordination with
EM-based Reinforcement Learning,” IROS’10

I Video: https://www.youtube.com/watch?v=W_gxLKSsSIE

I Paper: http://www.dx.doi.org/10.1109/IROS.2010.5649089

13

https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=W_gxLKSsSIE
http://www.dx.doi.org/10.1109/IROS.2010.5649089

Applications of Optimal Control & Reinforcement Learning

(a) Autonomous Driving (b) Marketing (c) Computational Biology

(d) Games (e) Character Animation (f) Robotics
14

Models
I Motion model: specifies how a dynamical system evolves

xt+1 = f (xt ,ut ,wt) ∼ pf (· | xt ,ut), t = 0, . . . ,T − 1

I discrete time t ∈ {0, . . . ,T}
I state xt ∈ X
I control ut ∈ U(xt) and U :=

⋃
x∈X U(x)

I motion noise wt : random vector with known probability density function
(pdf) and assumed conditionally independent of other disturbances wτ for
τ 6= t for given xt and ut

I the motion model is specified by the nonlinear function f or equivalently
by the pdf pf of xt+1 conditioned on xt and ut

I Observation model: the state xt might not be observable but
perceived through measurements:

zt = h(xt , vt) ∼ ph(· | xt), t = 0, . . . ,T

I measurement noise vt : random vector with known pdf and conditionally
independent of other disturbances vτ for τ 6= t and wt for all t for given xt

I the observation model is specified by the nonlinear function h or
equivalently by the pdf ph of zt conditioned on xt 15

Problem Structure

I Markov Assumptions
I The state xt+1 only depends on

the previous input ut and state xt

I The observation zt only depends
on the state xt

I Problem structure: due to the Markov assumptions, the joint
distribution of the robot states x0:T , observations z0:T , and controls
u0:T−1 satisfies:

p(x0:T , z0:T ,u0:T−1) =

p0(x0)︸ ︷︷ ︸
prior

T∏
t=0

ph(zt | xt)︸ ︷︷ ︸
observation model

T∏
t=1

pf (xt | xt−1,ut−1)︸ ︷︷ ︸
motion model

T−1∏
t=0

p(ut | xt)︸ ︷︷ ︸
control policy

16

Problem Statement

I In general, the states xt are partially observable via the noisy
observations zt

I A partially obserable problem can always be converted to a fully
observed one by changing the state from xt to the probability density
function pt|t(xt) := p(xt | z0:t ,u0:t−1)

I Without loss of generality, consider fully observable states xt

I Given an initial state x0, determine control inputs u0:T−1 that minimize
(maximize) the expected long-term cost (reward) along the state
trajectory x1:T determined by the motion model pf :

V
u0:T−1

0 (x0) := Ex1:T

[
q(xT)︸ ︷︷ ︸

terminal cost

+
T−1∑
t=0

`(xt ,ut)︸ ︷︷ ︸
stage cost

∣∣∣∣ x0,u0:T−1]

17

Problem Solution

I The solution to an optimal control problem is a policy π

I Let πt be a function that maps a state xt ∈ X to a feasible control
input ut ∈ U(xt)

I An admissible control policy is a sequence of functions
π0:T−1 := {π0, π1, . . . , πT−1}

I To simplify notation, we informally denote π0:T−1 by π

I The expected long-term cost (reward) V π
t (x) of a policy π starting at

time t at state x is called the value function of π:

V π
t (x) := Ext+1:T

[
q(xT) +

T−1∑
τ=t

`(xτ , πτ (xτ))

∣∣∣∣ xt = x

]
I A policy π∗ is optimal if V π∗

0 (x) ≤ V π
0 (x) for all admissible π and all x

and its value function is denoted V ∗0 (x) := V π∗
0 (x)

18

Naming Conventions

I The problem of acting optimally is called:
I Optimal Control (OC): when the models pf , ph and cost functions `, q

are known

I Reinforcement Learning (RL): when the models pf , ph and cost
functions `, q are unknown but samples xt , zt , `(xt ,ut), q(xt) can be
obtained from them

I Conventions differ in optimal control and reinforcement learning:
I OC: minimization, cost, state x, control u, policy µ

I RL: maximization, reward, state s, action a, policy π

I ECE276B: minimization, cost, state x, control u, policy π

19

Policy Types

I Controls may have long-term consequences, e.g., delayed cost/reward

I It may be better to sacrifice immediate rewards to gain long-term
rewards:
I A financial investment may take months to mature
I Re-fueling a helicopter now might prevent a crash in several hours
I Blocking an opponent move now might help winning chances many moves

from now

I A policy fully defines, at any given point in time t and any given state
xt , which control ut to apply.

I A policy can be:
I stationary (π ≡ π0 ≡ π1 ≡ · · ·) ⊂ non-stationary (time-dependent)

I deterministic (ut = πt(xt)) ⊂ stochastic (ut ∼ πt(· | xt))

I open-loop (a sequence u0:T−1 regardless of xt) ⊂ closed-loop (πt
depends on xt)

20

Problem Variations
I deterministic (no noise) vs stochastic
I fully observable (zt = xt) vs partially observable (zt ∼ ph(·|xt))

I Markov Decision Process (MDP) vs Partially Observable Markov Decision
Process (POMDP)

I stationary vs nonstationary (time-dependent pf ,t , ph,t , `t)
I discrete vs continuous state space X

I tabular approach vs function approximation (linear, SVM, neural nets,...)
I discrete vs continuous control space U :

I tabular approach vs optimization problem to select next-best control
I discrete vs continuous time:

I finite-horizon discrete time: dynamic programming
I infinite-horizon discrete time: Bellman equation (first-exit vs discounted

vs average-reward formulation)
I continuous time: Hamilton-Jacobi-Bellman (HJB) Partial Differential

Equation (PDE)
I reinforcement learning (pf , ph, `, q are unknown):

I Model-based RL: explicitly approximate the models p̂f , p̂h, ˆ̀, q̂ from
data and apply optimal control algorithms

I Model-free RL: directly approximate V ∗t and π∗t without approximating
the motion, observation, or cost models 21

Example: Inventory Control
I Consider keeping an item stocked in a warehouse:

I If there is too little, we may run out (not preferred).
I If there is too much, the storage cost will be high (not preferred).

I This scenario can be modeled as a discrete-time system:
I xt ∈ R: stock available in the warehouse at the beginning of the t-th time

period

I ut ∈ R≥0: stock ordered and immediately delivered at the beginning of
the t-th time period (supply)

I wt : random demand during the t-th time period with known pdf. Note
that excess demand is back-logged, i.e., corresponds to negative stock xt

I Motion model: xt+1 = xt + ut − wt

I Cost function: E
[
R(xT) +

∑T−1
t=0 (r(xt) + cut − pwt)

]
where

I pwt : revenue
I cut : cost of items
I r(xt): penalizes too much stock or negative stock
I R(xT): remaining items we cannot sell or demand that we cannot meet

22

Example: Rubik’s Cube

I Invented in 1974 by Ernõ Rubik

I Formalization:
I State space: ∼ 4.33× 1019

I Actions: 12
I Reward: −1 for each time step
I Deterministic, Fully Observable

I The cube can be solved in 20 or fewer moves

23

Example: Cart-Pole Problem

I Move a cart left and right in order to keep a pole
balanced

I Formalization:
I State space: 4-D continuous (x , ẋ , θ, θ̇)
I Actions: {−N,N}
I Reward:

I 0 when in the goal region
I −1 when outside the goal region
I −100 when outside the feasible region

I Deterministic, Fully Observable

24

Example: Chess

I Formalization:
I State space: ∼ 1047

I Actions: from 0 to 218
I Reward: 0 each step, {−1, 0, 1} at the end of

the game
I Deterministic, opponent-dependent state

transitions (can be modeled as a game)

I The size of the game tree is 10123

25

Example: Grid World Navigation

I Navigate to a goal without crashing into
obstacles

I Formalization:
I State space: robot pose, e.g., 2-D position
I Actions: allowable robot movement, e.g.,
{left, right, up, down}

I Reward: −1 until the goal is reached; −∞ if an
obstacles is hit

I Can be deterministic or stochastic; fully or
partially observable

26

