ECE276B: Planning & Learning in Robotics Lecture 11: Bellman Equations

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:

Hanwen Cao: h1cao@ucsd.edu

First-Exit Problem

- ▶ The infinite-horizon first-exit stochastic optimal control problem is a more general statement of the stochastic shortest path (SSP) problem
- ▶ **Terminal Set**: let $\mathcal{T} \subseteq \mathcal{X}$ be a set of terminal states with terminal cost $\mathfrak{q}(\mathbf{x})$ for $\mathbf{x} \in \mathcal{T}$
- ▶ First-Exit Time: trajectories terminate at $T := \inf\{t \ge 0 | \mathbf{x}_t \in \mathcal{T}\}$, the first passage time from an initial state \mathbf{x}_0 to a terminal state $\mathbf{x}_t \in \mathcal{T}$
- lacktriangle Note that T is a **random variable** unlike in the finite-horizon problem
- ► First-Exit Problem:

$$V^*(\mathbf{x}) = \min_{\pi} V^{\pi}(\mathbf{x}) := \mathbb{E} \left[\mathfrak{q}(\mathbf{x}_T) + \sum_{t=0}^{T-1} \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) \mid \mathbf{x}_0 = \mathbf{x} \right]$$
s.t. $\mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \pi(\mathbf{x}_t)),$
 $\mathbf{x}_t \in \mathcal{X},$
 $\pi(\mathbf{x}_t) \in \mathcal{U}(\mathbf{x}_t)$

Discounted Problem

- **Discount factor** $\gamma \in [0,1)$
- ▶ Episodes $\rho_0 := \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \ldots \sim \pi$ continue forever but the costs are discounted by γ
- **▶** Discounted Problem:

$$V^*(\mathbf{x}) = \min_{\pi} V^{\pi}(\mathbf{x}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) \mid \mathbf{x}_0 = \mathbf{x} \right]$$
s.t. $\mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \pi(\mathbf{x}_t)),$
 $\mathbf{x}_t \in \mathcal{X},$
 $\pi(\mathbf{x}_t) \in \mathcal{U}(\mathbf{x}_t)$

Bellman Equation

▶ First-Exit Problem: the optimal value function satisfies:

$$\begin{split} & V^*(\mathbf{x}) = \mathfrak{q}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{T} \\ & V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \Bigl(\ell(\mathbf{x}, \mathbf{u}) + \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^*(\mathbf{x}') \Bigr), \quad \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T} \end{split}$$

Discounted Problem: the optimal value function satisfies:

$$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \Big(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^*(\mathbf{x}') \Big), \quad \forall \mathbf{x} \in \mathcal{X}$$

- ► There exist several methods to solve the Bellman Equation for the Discounted and First-Exit problems:
 - ► Value Iteration (VI)
 - Policy Iteration (PI)
 - Linear Programming (LP)

Value Iteration (VI)

- ▶ Value Iteration: applies the Dynamic Programming recursion with an arbitrary initialization $V_0(\mathbf{x})$ to compute $V^*(\mathbf{x})$ for $\mathbf{x} \in \mathcal{X}$
- ▶ The VI algorithm is the infinite-horizon equivalent of the DP algorithm
- ▶ VI requires infinite iterations for $V_k(\mathbf{x})$ to converge to $V^*(\mathbf{x})$. In practice, define a threshold for $|V_{k+1}(\mathbf{x}) V_k(\mathbf{x})|$ for all $\mathbf{x} \in \mathcal{X}$
- ► First-Exit Problem:

$$\begin{aligned} V_k(\mathbf{x}) &= \mathfrak{q}(\mathbf{x}), \quad \forall k, \ \forall \mathbf{x} \in \mathcal{T} \\ V_{k+1}(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \Big[\ell(\mathbf{x}, \mathbf{u}) + \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_k(\mathbf{x}') \Big], \qquad \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T} \end{aligned}$$

▶ Discounted Problem:

$$V_{k+1}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \Big[\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_k(\mathbf{x}') \Big], \qquad \forall \mathbf{x} \in \mathcal{X}$$

Gauss-Seidel Value Iteration

A regular VI implementation stores the values from a previous iteration and updates them for all states simultaneously:

$$\hat{V}(\mathbf{x}) \leftarrow \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V(\mathbf{x}') \right), \qquad \forall \mathbf{x} \in \mathcal{X}$$

$$V(\mathbf{x}) \leftarrow \hat{V}(\mathbf{x}), \qquad \forall \mathbf{x} \in \mathcal{X}$$

► Gauss-Seidel Value Iteration updates the values in place:

$$V(\mathbf{x}) \leftarrow \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V(\mathbf{x}') \right), \qquad \forall \mathbf{x} \in \mathcal{X}$$

 Gauss-Seidel VI often leads to faster convergence and requires less memory than VI

Policy Evaluation

- ▶ The VI algorithm computes the optimal value function $V^*(\mathbf{x})$ for every state $\mathbf{x} \in \mathcal{X}$
- Instead of the optimal value function $V^*(\mathbf{x})$, is it possible to compute the value function $V^{\pi}(\mathbf{x})$ for a given policy π ?

Policy Evaluation Theorem (Discounted Problem)

The value function $V^{\pi}(\mathbf{x})$ for policy π is the unique solution of:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V^{\pi}(\mathbf{x}'), \qquad \forall \mathbf{x} \in \mathcal{X}$$

Furthermore, given any initial conditions $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^{\pi}(\mathbf{x})$:

$$V_{k+1}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V_k(\mathbf{x}'), \qquad \forall \mathbf{x} \in \mathcal{X}$$

Policy Evaluation

Policy Evaluation Theorem (First-Exit Problem)

The value function $V^{\pi}(\mathbf{x})$ at $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$ for policy π is the unique solution of:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \sum_{f \in \mathcal{F}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V^{\pi}(\mathbf{x}'). \qquad \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

Furthermore, given any initial conditions $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^{\pi}(\mathbf{x})$:

$$V_{k+1}(\mathsf{x}) = \ell(\mathsf{x}, \pi(\mathsf{x})) + \sum_{\mathsf{x}' \in \mathcal{X}} p_f(\mathsf{x}' \mid \mathsf{x}, \pi(\mathsf{x})) V_k(\mathsf{x}'), \qquad orall \mathsf{x} \in \mathcal{X} \setminus \mathcal{T}$$

▶ **Proof sketch**: This is a special case of the SSP Bellman Equation Theorem. Consider a modified problem, where the only allowable control at state \mathbf{x} is $\pi(\mathbf{x})$. Since the proper policy π is the only policy under consideration, the proper policy assumption is satisfied and the arg min over $\mathbf{u} \in \mathcal{U}(\mathbf{x})$ has to be $\pi(\mathbf{x})$.

Policy Evaluation as a Linear System

- Let $\mathcal{X} = \{1, \dots, n\}$ for the Discounted Problem
- ▶ Let $\mathcal{X} = \mathcal{N} \cup \mathcal{T}$ for the First-Exit Problem with $\mathcal{N} = \{1, ..., n\}$
- ▶ Let $\mathbf{v}_i := V^{\pi}(i)$, $\ell_i := \ell(i, \pi(i))$, $P_{ij} := p_f(j \mid i, \pi(i))$ for i, j = 1, ..., n
- ▶ Let $\mathfrak{q}_i := \mathfrak{q}(i)$ for $i \in \mathcal{T}$
- ▶ Policy evaluation requires solving a linear system:

Discounted:
$$\mathbf{v} = \ell + \gamma P \mathbf{v}$$
 \Rightarrow $(I - \gamma P) \mathbf{v} = \ell$
First-Exit: $\mathbf{v} = \ell + P_{\mathcal{N}\mathcal{N}} \mathbf{v} + P_{\mathcal{N}\mathcal{T}} \mathbf{q}$ \Rightarrow $(I - P_{\mathcal{N}\mathcal{N}}) \mathbf{v} = \ell + P_{\mathcal{N}\mathcal{T}} \mathbf{q}$

- **Existence of solution:**
 - **Discounted**: The matrix P has eigenvalues with modulus ≤ 1. All eigenvalues of γP have modulus < 1, so $(\gamma P)^T \to 0$ as $T \to \infty$ and $(I \gamma P)^{-1}$ exists.
 - **First-Exit**: a unique solution for \mathbf{v} exists as long as π is a proper policy. By the Chapman-Kolmogorov equation, $[P^k]_{ij} = \mathbb{P}(x_k = j \mid x_0 = i)$ and since π is proper, $[P^k]_{ij} \to 0$ as $k \to \infty$ for all $i, j \in \mathcal{X} \setminus \mathcal{T}$. Since $P^k_{\mathcal{N}\mathcal{N}}$ vanishes as $k \to \infty$, all eigenvalues of $P_{\mathcal{N}\mathcal{N}}$ must have modulus less than 1 and therefore $(I P_{\mathcal{N}\mathcal{N}})^{-1}$ exists.

Policy Evaluation as a Linear System

▶ The Policy Evaluation Thm. is an iterative solution to the linear system

$$\mathbf{v}_1 = \boldsymbol{\ell} + \gamma P \mathbf{v}_0$$
 $\mathbf{v}_2 = \boldsymbol{\ell} + \gamma P \mathbf{v}_1 = \boldsymbol{\ell} + \gamma P \boldsymbol{\ell} + (\gamma P)^2 \mathbf{v}_0$

 $\mathbf{v}_k = (I + \gamma P + (\gamma P)^2 + \ldots + (\gamma P)^{k-1})\ell + (\gamma P)^k \mathbf{v}_0$

$$\vdots$$
 $\mathbf{v}_{\infty} \to (I - \gamma P)^{-1} \ell$

► First-Exit:

$$egin{aligned} \mathbf{v}_1 &= \ell + P_{\mathcal{N}\mathcal{T}}\mathbf{q} + P_{\mathcal{N}\mathcal{N}}\mathbf{v}_0 \ \mathbf{v}_2 &= \ell + P_{\mathcal{N}\mathcal{T}}\mathbf{q} + P_{\mathcal{N}\mathcal{N}}\mathbf{v}_1 = \ell + P_{\mathcal{N}\mathcal{T}}\mathbf{q} + P_{\mathcal{N}\mathcal{N}}(\ell + P_{\mathcal{N}\mathcal{T}}\mathbf{q}) + P_{\mathcal{N}\mathcal{N}}^2\mathbf{v}_0 \end{aligned}$$

 $\vdots \qquad \qquad \vdots$

$$\mathbf{v}_{\infty}
ightarrow (I - P_{\mathcal{N}\mathcal{N}})^{-1} \left(\ell + P_{\mathcal{N}\mathcal{T}} \mathbf{q} \right)$$

Policy Iteration (PI)

- \triangleright PI is an alternative algorithm to VI for computing $V^*(\mathbf{x})$
- ▶ PI iterates over policies instead of values
- ▶ First-Exit Problem: repeat until $V^{\pi'}(\mathbf{x}) = V^{\pi}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$:
 - 1. **Policy Evaluation**: given a policy π , compute V^{π} :

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V^{\pi}(\mathbf{x}'), \qquad orall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

2. **Policy Improvement**: given V^{π} , obtain a new stationary policy π' :

$$\pi'(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\mathsf{arg\,min}} \Big[\ell(\mathbf{x}, \mathbf{u}) + \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^{\pi}(\mathbf{x}') \Big], \qquad \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

Policy Iteration (PI)

- \triangleright PI is an alternative algorithm to VI for computing $V^*(\mathbf{x})$
- ▶ PI iterates over policies instead of values
- ▶ Discounted Problem: repeat until $V^{\pi'}(\mathbf{x}) = V^{\pi}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$:
 - 1. **Policy Evaluation**: given a policy π , compute V^{π} :

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V^{\pi}(\mathbf{x}'), \qquad \forall \mathbf{x} \in \mathcal{X}$$

2. **Policy Improvement**: given V^{π} , obtain a new stationary policy π' :

$$\pi'(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg\min} \Big[\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^{\pi}(\mathbf{x}') \Big], \qquad \forall \mathbf{x} \in \mathcal{X}$$

Policy Improvement Theorem

Let π and π' be deterministic policies such that $V^{\pi}(\mathbf{x}) \geq Q^{\pi}(\mathbf{x}, \pi'(\mathbf{x}))$ for all $\mathbf{x} \in \mathcal{X}$. Then, π' is at least as good as π , i.e., $V^{\pi}(\mathbf{x}) \geq V^{\pi'}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$

Proof: $V^{\pi}(\mathbf{x}) \geq Q^{\pi}(\mathbf{x}, \pi'(\mathbf{x})) = \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{\ell}(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} \left[V^{\pi}(\mathbf{x}') \right]$ $\geq \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} \left[Q^{\pi}(\mathbf{x}', \pi'(\mathbf{x}')) \right]$

 $= \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} \left\{ \ell(\mathbf{x}', \pi'(\mathbf{x}')) + \gamma \mathbb{E}_{\mathbf{x}'' \sim p_f(\cdot | \mathbf{x}', \pi'(\mathbf{x}'))} V^{\pi}(\mathbf{x}'') \right\}$

$$\geq \cdots \geq \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi'(\mathbf{x}_{t})) \middle| \mathbf{x}_{0} = \mathbf{x}\right] = V^{\pi'}(\mathbf{x})$$
Theorem: Optimality of PI

Suppose that \mathcal{X} is finite and:

$$\sim \sim \in [0, 1)$$
 (Discounted Problem

 $\gamma \in [0,1)$ (Discounted Problem)

 \triangleright there exists a termination set \mathcal{T} and a proper policy (First-Exit Problem) Then, the Policy Iteration algorithm converges to an optimal policy after a finite number of steps.

Proof of Optimality of PI (First-Exit Problem)

- Let π be a proper policy with value V^{π} obtained from the Policy Evaluation step.
- Let π' be the policy obtained from the Policy Improvement step.
- ▶ By definition of the Policy Improvement step: $V^{\pi}(\mathbf{x}) \geq Q^{\pi}(\mathbf{x}, \pi'(\mathbf{x}))$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$
- $lackbox{
 ightharpoonup}$ By the Policy Improvement Thm., $V^{\pi}(\mathbf{x}) \geq V^{\pi'}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$
- Since π is proper, V^π(x) < ∞ for all x ∈ X, and hence π' is proper
 Since π' is proper, the Policy Evaluation step has a unique solution V^{π'}
- Since the number of stationary policies is finite, eventually $V^{\pi} = V^{\pi'}$ after a finite number of steps.
- Once V^{π} has converged, it follows from the Policy Improvement step:

$$V^{\pi'}(\mathbf{x}) = V^{\pi}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \sum_{\mathbf{x}' \in \mathcal{X}} \widetilde{p}_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^{\pi}(\mathbf{x}')
ight), \quad \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

Since this is the Bellman Equation for the First-Exit problem, we have converged to an optimal policy $\pi^* = \pi$ with optimal cost $V^* = V^{\pi}$.

Comparison between VI and PI

- PI and VI actually have a lot in common
- Rewrite VI as follows:
 - 2. **Policy Improvement**: Given $V_k(\mathbf{x})$ obtain a stationary policy:

$$\pi(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\min} \Big[\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_k(\mathbf{x}') \Big], \qquad \forall \mathbf{x} \in \mathcal{X}$$

1. Value Update: Given $\pi(\mathbf{x})$ and $V_k(\mathbf{x})$, compute

$$V_{k+1}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V_k(\mathbf{x}'), \quad \forall \mathbf{x} \in \mathcal{X}$$

- ► The Value Update step of VI is one step of an iterative solution to the linear system of equations in the Policy Evaluation Theorem
- ▶ PI solves the Policy Evaluation equation completely, which is equivalent to running the Value Update step of VI an infinite number of times!

Comparison between VI and PI

- ▶ Complexity of VI per Iteration: $O(|\mathcal{X}|^2|\mathcal{U}|)$: evaluating the expectation (i.e., sum over \mathbf{x}') requires $|\mathcal{X}|$ operations and there are $|\mathcal{X}|$ minimizations over $|\mathcal{U}|$ possible control inputs.
- ▶ Complexity of PI per Iteration: $O(|\mathcal{X}|^2(|\mathcal{X}|+|\mathcal{U}|))$: the Policy Evaluation step requires solving a system of $|\mathcal{X}|$ equations in $|\mathcal{X}|$ unknowns $(O(|\mathcal{X}|^3))$, while the Policy Improvement step has the same complexity as one iteration of VI.
- ▶ PI is more computationally expensive than VI
- ▶ Theoretically it takes an infinite number of iterations for VI to converge
- lacktriangle PI converges in $|\mathcal{U}|^{|\mathcal{X}|}$ iterations (all possible policies) in the worst case

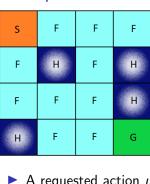
Generalized Policy Iteration

- Assuming that the Value Update and Policy Improvement steps are executed an infinite number of times for all states, all combinations of the following converge:
 - ▶ Any number of Value Update steps in between Policy Improvement steps
 - Any number of states updated at each Value Update step
 - Any number of states updated at each Policy Improvement step

Example: Frozen Lake Problem

- Winter is here.
- ➤ You and your friends were tossing around a frisbee at the park when you made a wild throw that left the frisbee out in the middle of the lake.
- ► The water is mostly frozen, but there are a few holes where the ice has melted.
- ▶ If you step into one of those holes, you'll fall into the freezing water.
- At this time, there's an international frisbee shortage, so it's absolutely imperative that you navigate across the lake and retrieve the disc.
- ► However, the ice is slippery, so you won't always move in the direction you intend.

Example: Frozen Lake Problem



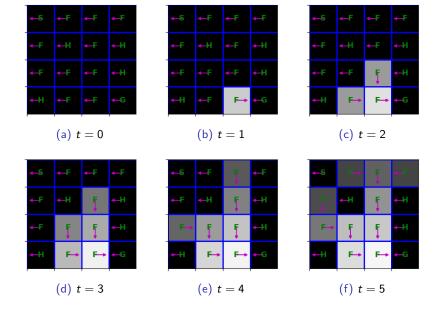
- S : starting point, safe
- F: frozen surface, safe
- ► H : hole, fall to your doom
- ▶ G : goal, where the frisbee is located
- $\mathcal{X} = \{0, 1, \dots, 15\}$
- $ightharpoonup \mathcal{U}(x) = \{ Left(0), Down(1), Right(2), Up(3) \}$
- ➤ You receive a reward of 1 if you reach the goal, and zero otherwise
- A requested action $u \in \mathcal{U}(x)$ succeeds 80% of the time. A neighboring action is executed in the other 50% of the time due to slip:

$$x' \mid x = 9, u = 1 =$$

$$\begin{cases}
13, & \text{with prob. } 0.8 \\
8, & \text{with prob. } 0.1 \\
10, & \text{with prob. } 0.1
\end{cases}$$

- ► The state remains unchanged if a control leads outside of the map
- An episode ends when you reach the goal or fall in a hole.

Value Iteration on Frozen Lake



Value Iteration on Frozen Lake Iteration $\max_{x} |V_{t+1}(x) - V_{t}(x)|$ 0.80000 0.60800

3

4 5

6

8

9

10

11

12

13

14 15

16

0.51984

0.39508 0.30026

0.25355

0.10478 0.09657

0.03656 0.02772

> 0.00190 0.00083

> 0.00049

0.00022

0.01111

0.00735

0.00310

changed actions

0.527 0.529

V(0)0.000

0.000

0.000

0.000

0.000

0.254

0.345

0.442

0.478

0.506

0.517

0.524

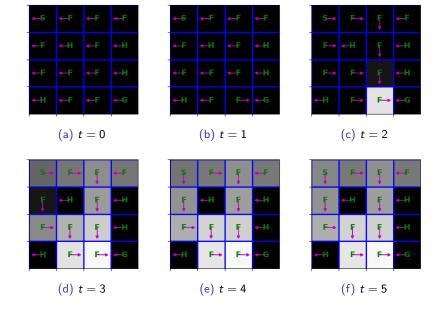
0.530

0.531

0.531

21

Policy Iteration on Frozen Lake



Policy Iteration on Frozen Lake Iteration $\max_{x} |V_{t+1}(x) - V_t(x)|$ 0 0.00000

changed actions

V(0)

0.000

0.000 0.398 0.455 0.531 0.531

0.531

0.531

0.531

0.531

0.531

0.531

0.531

0.531

0.531

0.531

23

0	0.00000
1	0.89296
2	0.88580
3	0.48504
4	0.07573
5	0.00000
6	0.00000

8

9

10

11

12

13

14 15

16

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

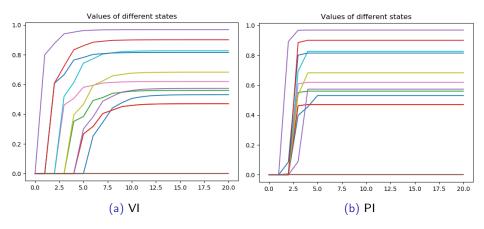
0.00000

0.00000

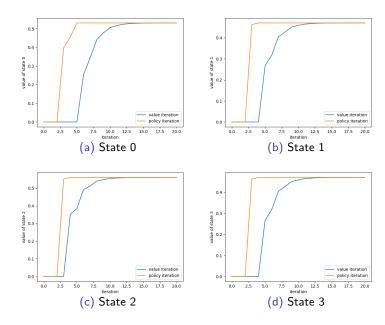
0.00000

0.00000

Value Iteration vs Policy Iteration



Value Iteration vs Policy Iteration



Linear Programming Solution to the Bellman Equation

▶ Suppose we initialize VI with V_0 that satisfies a relaxed Bellman Equation condition:

$$V_0(\mathbf{x}) \leq \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_0(\mathbf{x}') \right), \qquad \forall \mathbf{x} \in \mathcal{X}$$

ightharpoonup Applying VI to V_0 leads to:

$$V_{1}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_{0}(\mathbf{x}') \right) \geq V_{0}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X}$$

$$V_{2}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_{1}(\mathbf{x}') \right)$$

$$\begin{aligned} V_2(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_1(\mathbf{x}') \right) \\ &\geq \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_0(\mathbf{x}') \right) = V_1(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \end{aligned}$$

Linear Programming Solution to the Bellman Equation

- ▶ The above shows that $V_{k+1}(\mathbf{x}) \geq V_k(\mathbf{x})$ for all k and $\mathbf{x} \in \mathcal{X}$
- ▶ Since VI guarantees that $V_k(\mathbf{x}) \to V^*(\mathbf{x})$ as $k \to \infty$ we also have:

$$V^*(\mathbf{x}) \geq V_0(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \quad \Rightarrow \quad \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V^*(\mathbf{x}) \geq \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V_0(\mathbf{x})$$

for any $w(\mathbf{x}) > 0$ for all $\mathbf{x} \in \mathcal{X}$.

▶ The above holds for **any** V_0 that satisfies:

$$V_0(\mathbf{x}) \leq \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_0(\mathbf{x}') \right), \qquad \forall \mathbf{x} \in \mathcal{X}$$

Note that V^* also satisfies this condition with equality (Bellman Equation) and hence is the maximal V_0 (at each state) that satisfies the condition.

Linear Programming Solution to the Bellman Equation

LP Solution to the Bellman Equation

The solution $V^*(\mathbf{x})$ to the linear program with $w(\mathbf{x}) > 0$:

$$\max_{V} \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V(\mathbf{x})$$

s.t.
$$V(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V(\mathbf{x}')\right), \quad \forall \mathbf{u} \in \mathcal{U}(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}$$

also solves the Bellman Equation to yield the optimal value function for an infinite-horizon finite-state discounted stochastic optimal control problem.

▶ An equivalent result holds for the First-Exit Problem.

LP Solution to the BE (Proof)

▶ Let J^* be the solution to the linear program so that:

$$J^*(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) J^*(\mathbf{x}')\right), \qquad \forall \mathbf{u} \in \mathcal{U}(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}$$

- ▶ Since J^* is feasible, it satisfies $J^*(\mathbf{x}) \leq V^*(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$
- ▶ By contradiction, suppose that $J^* \neq V^*$. Then, there exists a state $\mathbf{y} \in \mathcal{X}$ such that:

$$J^*(\mathbf{y}) < V^*(\mathbf{y}) \quad \Rightarrow \quad \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) J^*(\mathbf{x}) < \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V^*(\mathbf{x})$$

for any positive w(x) but since V^* solves the Bellman Equation:

$$V^*(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^*(\mathbf{x}')\right), \qquad \forall \mathbf{u} \in \mathcal{U}(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}$$

▶ Thus, V^* is feasible and has higher value than J^* , which is a contradiction.

Bellman Equations (Summary)

Value Function

▶ Value Function: the expected long-term cost of following policy π starting from state \mathbf{x} :

$$V^{\pi}(\mathbf{x}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$$

$$= \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$$

$$= \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot \mid \mathbf{x}, \pi(\mathbf{x}))} \left[V^{\pi}(\mathbf{x}')\right]$$

Value Iteration: computes the optimal value function

$$V^*(\mathbf{x}) := \min_{\pi} V^{\pi}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \right\}$$

Action-Value (Q) Function

Q Function: the expected long-term cost of taking action u in state x and following policy π afterwards:

$$egin{aligned} Q^{\pi}(\mathbf{x},\mathbf{u}) := & \ell(\mathbf{x},\mathbf{u}) + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t},\pi(\mathbf{x}_{t})) \ \middle| \ \mathbf{x}_{0} = \mathbf{x}
ight] \ = & \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot|\mathbf{x},\mathbf{u})} \left[V^{\pi}(\mathbf{x}')
ight] \ = & \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{c}(\cdot|\mathbf{x},\mathbf{u})} \left[Q^{\pi}(\mathbf{x}',\pi(\mathbf{x}'))
ight] \end{aligned}$$

▶ **Q-Value Iteration**: computes the optimal Q function

$$egin{aligned} Q^*(\mathbf{x},\mathbf{u}) := \min_{\pi} Q^{\pi}(\mathbf{x},\mathbf{u}) = &\ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[\min_{\pi} V^{\pi}(\mathbf{x}')
ight] \ = &\ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}')
ight] \ = &\ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[\min_{\mathbf{u}' \in \mathcal{U}(\mathbf{x}')} Q^*(\mathbf{x}', \mathbf{u}')
ight] \end{aligned}$$

▶ $Q^*(\mathbf{x}, \mathbf{u})$ allows us to choose optimal actions without having to know anything about the dynamics $p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u})$: $\pi^*(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\min} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot \mid \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \right\} = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg\min} Q^*(\mathbf{x}, \mathbf{u})$ 32

Finite-Horizon Problem

▶ Trajectories terminate at fixed $T < \infty$

$$\min_{\pi} V^{\pi}_{ au}(\mathbf{x}) = \mathbb{E}\left[\mathfrak{q}(\mathbf{x}_{T}) + \sum_{t= au}^{T-1} \ell(\mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})) \middle| \mathbf{x}_{ au} = \mathbf{x}
ight]$$

The optimal value $V_t^*(\mathbf{x})$ can be found with a single backward pass through time, initialized from $V_T^*(\mathbf{x}) = \mathfrak{q}(\mathbf{x})$ and following the recursion:

Bellman Equations (Finite-Horizon Problem)

Hamiltonian:
$$H[\mathbf{x}, \mathbf{u}, V(\cdot)] = \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} [V(\mathbf{x}')]$$

Policy Evaluation:
$$V_t^{\pi}(\mathbf{x}) = Q_t^{\pi}(\mathbf{x}, \pi_t(\mathbf{x})) = H[\mathbf{x}, \pi_t(\mathbf{x}), V_{t+1}^{\pi}(\cdot)]$$

Bellman Equation:
$$V_t^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} Q_t^*(\mathbf{x}, \mathbf{u}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, V_{t+1}^*(\cdot)]$$

Optimal Policy:
$$\pi_t^*(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg\min} Q_t^*(\mathbf{x}, \mathbf{u}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg\min} H[\mathbf{x}, \mathbf{u}, V_{t+1}^*(\cdot)]$$

First-Exit Problem

▶ First-Exit Time: trajectories terminate at $T := \inf\{t \ge 1 | \mathbf{x}_t \in \mathcal{T}\}$, the first passage time from initial state \mathbf{x}_0 to a terminal state $\mathbf{x}_t \in \mathcal{T} \subseteq \mathcal{X}$

$$\min_{\pi} V^{\pi}(\mathbf{x}) = \mathbb{E}\left[\sum_{t=0}^{T-1} \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) + \mathfrak{q}(x_T) \middle| \mathbf{x}_0 = \mathbf{x} \right]$$

- lacksquare At terminal states, $V^*(\mathbf{x}) = V^\pi(\mathbf{x}) = \mathfrak{q}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{T}$
- At other states, the following are satisfied:

Bellman Equations (First-Exit Problem)

Hamiltonian:
$$H[\mathbf{x}, \mathbf{u}, V(\cdot)] = \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} [V(\mathbf{x}')]$$

Policy Evaluation:
$$V^{\pi}(\mathbf{x}) = Q^{\pi}(\mathbf{x}, \pi(\mathbf{x})) = H[\mathbf{x}, \pi(\mathbf{x}), V^{\pi}(\cdot)]$$

Bellman Equation:
$$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} Q^*(\mathbf{x}, \mathbf{u}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$$

Optimal Policy:
$$\pi^*(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg \min} Q^*(\mathbf{x}, \mathbf{u}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg \min} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$$

Discounted Problem

▶ Trajectories continue forever but costs are discounted via $\gamma \in [0,1)$:

$$\min_{\pi} V^{\pi}(\mathbf{x}) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \middle| \mathbf{x}_{0} = \mathbf{x} \right]$$

Bellman Equations (Discounted Problem)

Hamiltonian:
$$H[\mathbf{x}, \mathbf{u}, V(\cdot)] = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} [V(\mathbf{x}')]$$

Policy Evaluation:
$$V^{\pi}(\mathbf{x}) = Q^{\pi}(\mathbf{x}, \pi(\mathbf{x})) = H[\mathbf{x}, \pi(\mathbf{x}), V^{\pi}(\cdot)]$$

Bellman Equation:
$$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} Q^*(\mathbf{x}, \mathbf{u}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$$

Optimal Policy:
$$\pi^*(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\operatorname{arg \, min}} \, Q^*(\mathbf{x}, \mathbf{u}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\operatorname{arg \, min}} \, H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$$

Every discounted problem can be converted to a first-exit problem by scaling the transition probabilities by γ , introducing a terminal state with zero cost, and setting all transition probabilities to that state to $1-\gamma$

Bellman Backup Operators

► Policy Evaluation Backup Operator:

$$\mathcal{B}_{\pi}[V](\mathbf{x}) := H[\mathbf{x}, \pi(\mathbf{x}), V] = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V(\mathbf{x}') \right]$$

► Value Iteration Backup Operator:

$$\mathcal{B}_*[V](\mathbf{x}) := \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, V] = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\}$$

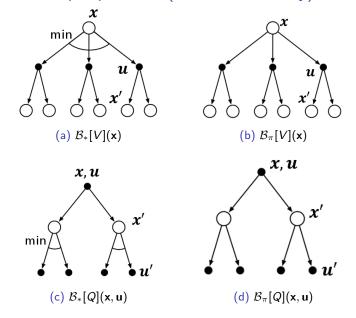
► Policy Q-Evaluation Backup Operator:

$$\mathcal{B}_{\pi}[Q](\mathbf{x},\mathbf{u}) := \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[Q(\mathbf{x}', \pi(\mathbf{x}')) \right]$$

Q-Value Iteration Backup Operator:

$$\mathcal{B}_*[Q](\mathbf{x},\mathbf{u}) := \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[\min_{\mathbf{u}' \in \mathcal{U}(\mathbf{x}')} Q(\mathbf{x}', \mathbf{u}')
ight]$$

Bellman Backup Operators (Stochastic Policy)



Contraction in Discounted Problems

Contraction Mapping

Let $\mathcal{F}(\mathcal{X})$ denote the linear space of bounded functions $V: \mathcal{X} \mapsto \mathbb{R}$ with associated norm $\|V\|_{\infty} := \max_{\mathbf{x} \in \mathcal{X}} |V(\mathbf{x})|$. A function $\mathcal{B}: \mathcal{F}(\mathcal{X}) \mapsto \mathcal{F}(\mathcal{X})$ is called a *contraction mapping* if there exists a scalar $\alpha < 1$ such that:

$$\|\mathcal{B}[V] - \mathcal{B}[V']\|_{\infty} \le \alpha \|V - V'\|_{\infty} \qquad \forall V, V' \in \mathcal{F}(\mathcal{X})$$

Contraction Mapping Theorem

If $\mathcal{B}: \mathcal{F}(\mathcal{X}) \mapsto \mathcal{F}(\mathcal{X})$ is a contraction mapping, then there exists a unique function $V^* \in \mathcal{F}(\mathcal{X})$ such that:

$$\mathcal{B}[V^*] = V^*.$$

Contraction in Discounted Problems

Properties of $\mathcal{B}_*[V]$

- 1. Monotonicity: $V(\mathbf{x}) \leq V'(\mathbf{x}) \Rightarrow \mathcal{B}_*[V](\mathbf{x}) \leq \mathcal{B}_*[V'](\mathbf{x})$
- 2. γ -Additivity: $\mathcal{B}_*[V(\cdot) + d](\mathbf{x}) = \mathcal{B}_*[V](\mathbf{x}) + \gamma d$
- 3. Contraction: $\|\mathcal{B}_*[V](\mathbf{x}) \mathcal{B}_*[V'](\mathbf{x})\|_{\infty} \leq \gamma \|V(\mathbf{x}) V'(\mathbf{x})\|_{\infty}$
- **Proof of Contraction**: Let $d = \max_{\mathbf{x}} |V(\mathbf{x}) V'(\mathbf{x})|$. Then:

$$V(\mathbf{x}) - d \le V'(\mathbf{x}) \le V(\mathbf{x}) + d, \quad \forall \mathbf{x} \in \mathcal{X}$$

Apply \mathcal{B}_* to both sides and use monotonicity and γ -additivity:

$$\mathcal{B}_*[V](\mathbf{x}) - \gamma d \leq \mathcal{B}_*[V'](\mathbf{x}) \leq \mathcal{B}_*[V](\mathbf{x}) + \gamma d, \quad \forall \mathbf{x} \in \mathcal{X}$$

Contraction in Discounted Problems

► Value Iteration Backup Operator:

$$\mathcal{B}_*[V](\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\}$$

- \triangleright \mathcal{B}_* is monotone, γ -additive, and a contraction mapping
- ▶ By the contraction mapping theorem, there exists $V^*(\mathbf{x})$ such that $\mathcal{B}_*[V^*](\mathbf{x}) = V^*(\mathbf{x})$
- ▶ Value Iteration Algorithm for the Discounted problem:

$$egin{aligned} V_0(\mathbf{x}) &\equiv 0 \ V_{k+1}(\mathbf{x}) &= \mathcal{B}_*[V_k](\mathbf{x}) \end{aligned}$$

- ▶ Since $||V_{k+1} V_k||_{\infty} \le \gamma^k ||V_1 V_0||_{\infty}$, the sequence V_k is Cauchy
- If $(\mathcal{F}(\mathcal{X}), \|\cdot\|_{\infty})$ is a complete metric space, then V_k has a limit $V^* \in \mathcal{F}(\mathcal{X})$ and V^* is a fixed point of \mathcal{B}_*

VI and PI Revisited

- Value Iteration:
 - $ightharpoonup V^*$ is the solution to $V=\mathcal{B}_*[V]$ (Bellman Equation)
 - Since \mathcal{B}_* is a contraction, the fixed-point equation has a unique solution (Contraction Mapping Theorem), which can be determined iteratively:

$$V_{k+1} = \mathcal{B}_*[V_k]$$
 (Value Iteration)

- ► Initialization:
 - ▶ Discounted: arbitrary
 - First exit: $V_k(\mathbf{x}) = \mathfrak{q}(\mathbf{x})$ for all k and all $\mathbf{x} \in \mathcal{B}$
- ► Policy Iteration:
 - **Policy Evaluation**: Given π compute V^{π} via

$$\mathbf{v} = (I - \gamma P)^{-1} \ell$$
 OR $V_{k+1} = \mathcal{B}_{\pi}[V_k]$ (Policy Evaluation Thm)

▶ **Policy Improvement**: choose the action that minimizes the Hamiltonian:

$$\pi'(\mathbf{x}) = \operatorname*{arg\;min}_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, V^{\pi}(\cdot)] = \operatorname*{arg\;min}_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}') \right] \right\}$$

▶ **Initialization**: arbitrary as long as V^{π} is finite

Value Iteration

 $ightharpoonup V^*$ is a fixed point of \mathcal{B}_* : V_0 , $\mathcal{B}_*[V_0]$, $\mathcal{B}_*^2[V_0]$, $\mathcal{B}_*^3[V_0]$,... $\rightarrow V^*$

 $ightharpoonup Q^*$ is a fixed point of \mathcal{B}_* : Q_0 , $\mathcal{B}_*[Q_0]$, $\mathcal{B}_*^2[Q_0]$, $\mathcal{B}_*^3[Q_0]$, ... $\to Q^*$

Algorithm 1 Value Iteration

- 1: Initialize V_0 2: **for** k = 0, 1, 2, ... **do**
- 3: $V_{k+1} = \mathcal{B}_* [V_k]$

- **AL '11 2** 0 1/ 1 1: ::
- Algorithm 2 Q-Value Iteration
- 2: **for** $k = 0, 1, 2, \dots$ **do**

1: Initialize *Q*∩

2: **IOF** K = 0, 1, 2, ... **u** 3: $Q_{k+1} = \mathcal{B}_* [Q_k]$

Policy Iteration

3:

4:

Policy Evaluation: V_0 , $\mathcal{B}_{\pi}[V_0]$, $\mathcal{B}_{\pi}^2[V_0]$, $\mathcal{B}_{\pi}^3[V_0]$,... $ightarrow V^{\pi}$

Algorithm 3 Policy Iteration

1: Initialize V_0

2: **for**
$$k = 0, 1, 2, \dots$$
 do

$$\pi_{k+1}(\mathbf{x}) = \operatorname{arg\,min} H[\mathbf{x}, \mathbf{u}, V_k(\cdot)]$$

4: $V_{k+1} = \mathcal{B}_{\pi_{k+1}}^{\infty} [V_k]$

Policy Q-Evaluation:
$$Q_0,~\mathcal{B}_\pi[Q_0],~\mathcal{B}_\pi^2[Q_0],~\mathcal{B}_\pi^3[Q_0],\dots
ightarrow Q^\pi$$

- **Algorithm 4** Q-Policy Iteration

 - $\pi_{k+1}(\mathbf{x}) = \arg\min Q_k(\mathbf{x}, \mathbf{u})$
 - 3: $u \in \mathcal{U}(x)$
 - 1: Initialize Q_0 2: **for** $k = 0, 1, 2 \dots$ **do**

 $Q_{k+1} = \mathcal{B}_{\pi_{k+1}}^{\infty} \left[Q_k \right]$

- ▶ Policy Improvement

 - ▶ Policy Evaluation

▶ Policy Evaluation

- ▶ Policy Improvement
 - 43

Generalized Policy Iteration

Algorithm 5 Generalized Policy Iteration

1: Initialize V_∩ 2: **for** $k = 0, 1, 2, \dots$ **do**

3:

4:

$$\pi_{k+1}(\mathbf{x}) = \arg\min H[\mathbf{x}, \mathbf{u}, V_k(\cdot)]$$

 $u \in \mathcal{U}(x)$

4:
$$V_{k+1} = \mathcal{B}_{\pi_{k+1}}^{\mathbf{u} \in \mathcal{U}(\mathbf{x})}$$
, for $n \geq 1$

1: Initialize
$$Q_0$$

2: **for**
$$k = 0, 1, 2, \dots$$
 do

2: **for**
$$k = 0, 1, 2, ...$$
 do
3: $\pi_{k+1}(\mathbf{x}) = \arg \min Q_k(\mathbf{x}, \mathbf{u})$

arg min
$$Q_k$$
 $u \in \mathcal{U}(x)$

$$Q_k$$

$$egin{aligned} \pi_{k+1}(\mathbf{x}) &= rg \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} Q_k(\mathbf{x}, \mathbf{u}) \ Q_{k+1} &= \mathcal{B}^n_{\pi_{k+1}} \left[Q_k
ight], & ext{for } n \geq 1 \end{aligned}$$

$$_{k}(\mathbf{x},\mathbf{u})$$

▶ Policy Improvement

▶ Policy Evaluation

▶ Policy Evaluation