ECE276B: Planning & Learning in Robotics
Lecture 13: Model-free Control

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Hanwen Cao: hlcaoQucsd.edu
Zhichao Li: zhl355Q@ucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu
mailto:h1cao@ucsd.edu
mailto:zhl355@ucsd.edu

Model-free Generalized Policy lteration

» Model-based case: our main tool for solving a stochastic
infinite-horizon problem was Generalized Policy Iteration (GPI):

» Policy Evaluation: Given 7, compute V™:
VT(x) = €(x, 1(x)) + VB opy (xn)) [V (X)], VX EX
» Policy Improvement: Given V™ obtain a new policy 7'

7' (x) = arg min {£(x, u) + VB wp () [V (X)]}, VX EX
ucl(x)

Q™ (x,u)

» Model-free case: is it still possible to implement the GPI algorithm?
» Policy Evaluation: given 7, we saw in the previous lecture that MC or
TD learning can be used to estimate V™ or Q™

> Policy Improvement: computing 7’ based on V™ requires access to
£(x,u) but based on Q™ can be done without knowing £(x, u):

7' (x) = argmin Q" (x, u)
uel(x)

Policy Evaluation (Recap)

» Given T, iterate B, to compute V™ or Q™ via Dynamic Programming
(DP), Temporal Difference (TD), or Monte Carlo (MC)

» DP needs a model but TD and MC are model-free

» Value function:

DP : Br[V](xt) = £(x¢, m(x¢)) + YB3~ (- [xem(x2)) [V(xe41)]
TD : B:[V](xt) = V(xt) + a[l(x¢,ut) + vV (xe41) — V(xt)]

MC : B[V](x¢) = V(x¢) + «

Tot-1
> AU ke ko ve) + T talxr) - V(Xt)]
k=0

» Q function:
DP : B‘n’[Q](Xt: Ut) = e(xh Ut) + VExt+1~pf(~\xt,ut) [Q(Xt+17 7T(Xt+1))]
TD : Bz[Q](xt, ur) = Q(x¢, ue) + a[€(xe, ur) + Y Q(Xe41, Ur1) — Q(Xer, ur)]

MC : Br[Q](xt,ur) = Q(xt,us) +

T—t—1
Z fykf(xt+k, upk) + WTftq(XT) — Q(x¢, Ut)]
k=0

3

Model-free Policy Improvement

» If Q7, instead of V™, is estimated via MC or TD, the policy
improvement step can be implemented model-free, i.e., can compute
miny Q7 (x, u) without knowing the motion model pr or the state cost ¢

» Exploration Problem: since Q7(x,u) is an approximation to the true
Q-function there may still be problems:

» Picking the “best” control according to the current estimate Q™ might
not be the actual best control.

> If a deterministic policy 7(x) is used for Evaluation/Improvement, one will
observe returns for only one of the possible controls at each state and
might not visit many states. Hence, estimating Q™ will not be possible at
those never-visited states and controls.

Example: Greedy Control Selection (David Silver)

| 2

>

There are two doors in front of you

You open the left door and get reward 0
((left) =0

You open the right door and get reward +1
U(right) = —1

You open the right door and get reward +3
{(right) = =3

You open the right door and get reward +2
{(right) = =2

Are you sure the right door is the best
long-term choice?

“Behind one door |s tenure - behind the other
is flipping burgers at McDonald's.”

Model-free Control

» Two ideas to ensure that you do not commit to the wrong controls too
early and continue exploring the state and control spaces:

1. Exploring Starts: in each episode p(k) ~ 7, choose initial state-control
pairs with non-zero probability among all possible pairs X x U

2. e-Soft Policy: a stochastic policy 7(u|x) under which every control has
a non-zero probability of being chosen and hence every reachable state
will have non-zero probability of being encountered

First-visit MC Policy Iteration with Exploring Starts

Algorithm 1 MC Policy lteration with Exploring Starts

1: Init: Q(x,u),w(x) for all x € X andu e U

2: loop

3: Choose (xg,ug) € X x U randomly > exploring starts!
4. Generate an episode p = Xo, Ug, X1, U1, ...,X7T_1,Us—1,XT from 7

5: for each x,u in p do

6: L < return following the first occurrence of x,u

7: Q(x,u) < Q(x,u) + a(L — Q(x,u))

8: for each x in p do

9:

w(x) < arg min Q(x, u)

e-Greedy Exploration

| 2

>

An alternative to exploring starts

To ensure exploration it must be possible to encounter all |/(x)]
controls at state x with non-zero probability

e-Soft Policy: a stochastic policy that picks each control with

. .
probability of at least OIE

m(ulx) =Plus =u | xy = x) > Vx € X,u € U(x)

€
U(x)]
e-Greedy Policy: a stochastic policy that picks the best control
according to Q(x,u) in the policy improvement step but ensures that all
other controls are selected with a small (non-zero) probability:

1— e+ gty ifu:itggzi?Q(x,U’)

m otherwise

m(u|x) =Plur=u|x =x) =

Bellman Equations with a Stochastic Policy

» Value function of a stochastic policy 7:

)
VT(x) := Boug x1,u1 2, [Z 'Vtg(xta ue) [xo = X]

t=0
= IEu~7r(~|x) [E(X, u) + VEX’pr(~|x,u) [Vﬂ(x,)“
= IEuw7r(-|x) [QTF(X7 U)]

» Q function of a stochastic policy

o0
QT (x,u) :=l(x,u) + Ex, u,.... [Z YH(x¢,u¢) | X0 = X, ug = u]

t=1
= é(xa u) + ’VEx’rvpf(-\x,u),u’rwr(~|x’) [QW(XI7 u/)]

e-Greedy Policy Improvement

Theorem: e-Greedy Policy Improvement

For any e-soft policy 7 with associated @™, the e-greedy policy 7’ with
respect to Q™ is an improvement, i.e., V™ (x) < V7(x) for all x € X

» Proof:
]Eu’Nﬂ"HX) [QW(X,U/)] = Z ﬂl(u/ | X)QW(X’ U/)
u’ €U(x)
= |U(X)|u€§b;(x)0ﬂ X u)+(1—e) m|n Q (x,u)
. ()~ w@ g
§| (x)| Z Q™ (x,u") + (1 —¢) Z TQ (x,u)
o’ €U(x) uel(x)
= 3 (| x)Q7(x,u) = V7(x)
ucl(x)

10

e-Greedy Policy Improvement

» Then, similarity to the policy improvement theorem for deterministic
policies, for all x € X:
VT(x) > Eygn(x) [QT (X, up)]
= Eygr/ () [£0X,10) 4+ VB oy (-0 [V (X1)]]
2 Bugeorr(x) [£0640) + VB (cxao) [Buger(xr) [Q7 (%1, un)]]]
= Eugrr (x) [€(%, 00) + 1 Box iy [€(X1, u1) 4+ 7B, VT (x2)]]

Z e Z EPONTF/ [Z 7t€(xt, Ut)
t=0

xo =x| = V™ (x)

11

First-visit MC Policy lteration with e-Greedy Improvement

Algorithm 2 First-visit MC Policy Iteration with e-Greedy Improvement

1: Init: Q(x,u), m(u|x) (e-soft policy) for all x € X and u € U

2: loop

3: Generate an episode p := Xo, Ug, X1, U1, ...,XT—1,Us_1,XT from m
4. for each x,u in p do

5: L < return following the first occurrence of x,u

6: Q(x,u) + Q(x,u) + a(L — Q(x,u))

7 for each x in p do

8:

u* < arg min Q(x, u)
1—€+m ifu:u*

m(ufx) {E if uu*

[U(x)]

©

Temporal-Difference Control

» TD prediction has several advantages over MC prediction:
» Works with incomplete episodes

» Can perform online updates to Q™ after every transition

» The TD estimate of Q™ has lower variance than the MC one
» TD in the policy iteration algorithm:

» Use TD for policy evaluation

> Can update Q(x,u) after every transition within an episode

» Use an e-greedy policy for policy improvement because we still need to
trade off exploration and exploitation

13

TD Policy Iteration with e-Greedy Improvement (SARSA)

» SARSA: estimates the action-value function Q™ using TD updates after
every S¢, A¢, Req1, St41, Arr1 transition:

Q(x¢,ur) < Q(xe,ue) + a[l(xe,up) + YQ(Xeq1, Uet1) — Q(Xe, ug)]

» Ensures exploration via an e-greedy policy in the policy improvement step

Algorithm 3 SARSA

1: Init: Q(x,u) for all x € X and all u € U

2: loop

3: m < e-greedy policy derived from Q

4: Generate episode p := xg, Ug, X1, U1, ...,X7T_1,Us_1,XT from 7
5: for (x,u,x’,u’) € p do

6: Q(x,u) < Q(x,u) + a[l(x,u) + yQ(x',u’") — Q(x,u)]

14

Convergence of Model-free Policy lteration

> Greedy in the Limit with Infinite Exploration (GLIE):
» All state-control pairs are explored infinitely many times: klim Ni(x,u) = co
—00

> The e-greedy policy converges to a greedy policy wrt u* = argmin Q(x, u).
uel(x)

» Example: If ¢ = % then e-greedy is GLIE

1— e+ gy ifu=u") 1 ifu=u*
Ti(u | x) :—{ Ul k"_)”;oﬂk(u | X)—{

|Z/{6(7[;()\ if u#u* 0 ifu#u*

Theorem: Convergence of Model-free Policy Iteration

Both MC Policy Iteration and SARSA converge to the optimal action-value
function, Q(x,u) — Q*(x,u), as the number of episodes kK — oo as long as:

> the sequence of e-greedy policies 7x(u | x) is GLIE,
» the sequence of step sizes ay is Robbins-Monro.

15

On-Policy vs Off-Policy Learning

» On-policy Prediction: estimate V™ or Q™ using experience from 7

» On-policy methods:
» evaluate or improve the policy 7 that is used to make decisions and
collect experience
» require well-designed exploration functions
» empirically successful with function approximation

» Off-policy Prediction: estimate V™ or Q™ using experience from p

» Off-policy methods:
> evaluate or improve a policy 7 that is different from the (behavior) policy
1 used to generate data
P can use an effective exploratory policy p to generate data while learning
about an optimal policy
can learn from observing other agents (or humans)
can re-use experience from old policies 71, m, ..., Tk_1
can learn about multiple policies while following one policy
cause theoretical challenges with function approximation and eligibility
traces

vvyvyy

16

Importance Sampling for Off-policy Learning

» Off-policy learning: use returns generated from p to evaluate 7

» The stage costs obtained from u need to be re-weighted according to
the similarity (i.e., likelihood) of the states encountered by 7

» Importance Sampling: estimates the expectation of a function ¢(x)
with respect to a probability density function p(x) by computing a
re-weighted expectation over a different probability density g(x):

v p£0] = [pOOL(6)x
_ / a) 2%) dx = Eyeq() [”(X)E(x)}

q(x)
Requires that g(x) # 0 when p(x) # 0.

17

Importance Sampling for Off-policy MC Learning

» To use returns generated from p to evaluate 7 via MC, weight the
long-term cost L; via importance-sampling corrections along the whole
episode:

pr/e_ muelxe) T(uesa [xern) - w(uroafxroa),
" .

puelxe) p(ursalxesn) p(uroalxro1)

» Update the value estimate towards the corrected return:
VA (xe) = VE(xe) +a (L = v (xe)

» Note: importance sampling in MC can dramatically increase variance

18

Importance Sampling for Off-policy TD Learning

» To use returns generated from p to evaluate 7 via TD, weight the TD
target £(x,u) + vV/(x’) by importance sampling:

VT (x¢) < VT (x¢) + (W (U(x¢,up) + YV (xp41)) — V”(xt)>

» Importance sampling in TD is much lower variance than in MC and the
policies need to be similar (i.e., u should not be zero when 7 is
non-zero) over a single step only

19

Off-policy TD Control without Importance Sampling

» Q-Learning (Watkins, 1989): one of the early breakthroughs in
reinforcement learning was the development of an off-policy TD
algorithm that does not use importance sampling

» Q-Learning approximates B,[Q](x, u) directly using samples:

Q(xt,ue) Q(x¢,up)+a |[U(xe,ur) +v min Q(Xet1,u) — Q(X¢, ue)
ueU (xe41)

» The learned Q function eventually approximates Q* regardless of the
policy being followed!

Theorem: Convergence of Q-Learning

Q-Learning converges almost surely to @* assuming all state-control pairs
continue to be updated and the sequence of step sizes ay is Robbins-Monro.

» C. J. Watkins and P. Dayan. “Q-learning,” Machine learning, 1992.

20

Q-Learning: Off-policy TD Learning of Q*(x,u)

Algorithm 4 Q-Learning
1. Init: Q(x,u) for allx € X and allu e U

2: loop

3: T < e-greedy policy derived from @ > 7 can be arbitrary!
4: Generate episode p := Xg, Ug, X1, U1, ...,XT_1,Us_1,XT from 7

5: for (x,u,x’) € p do

6: Q(x,u) + Q(x,u) + a[l(x,u) + v miny Q(X',u") — Q(x,u)]

21

Relationship Between Full and Sample Backups

Full Backups (DP) Sample Backups (TD)

Policy Evaluation TD Prediction

V(x) - Bz[V](x) = {(x, 7(x)) + 7Ex [V(x’)} V(x) < V(x) + a(l(x,u) + yV(x') — V(x))

Policy Q-Evaluation TD Q-Prediction (SARSA)

Q(x,u) Br[Q](x,u) = {(x,u) + vEx [Q(x’, w(x’))] Q(x,u) + Q(x,u) + a(l(x,u) + yQ(X,u’) — Q(x,u))
Value Iteration N/A

V(x) « B.[V](x) = min {(x,u) + vEx [V(x)]}

Q-Value lteration Q-Learning

Q(x, u) < B,[Q](x,u) = £(x,u) + vEx [rry/n Q(x’,u’)] Q(x,u) + Q(x,u) +a (Z(x, u) + wnli,n Q(X,u') — Q(x,u))

22

Batch Sampling-based Q-Value Iteration

Algorithm 5 Batch Sampling-based Q-Value Iteration

1: Init: Qo(x,u) forallx e X and allue i/

2: loop

3: m < e-greedy policy derived from Q; > 7 can be arbitrary!
4: Generate episodes {p(K)}K_ from

5: for (x,)eXxZ/{do

. Qrnalx,) Zzt o B.[Q](x. uf).x m)ﬂ{(1) = (xu))

I 1{(, ul)—(xm)}

» Batch Sampling-based Q-Value Iteration behaves like
Qi+1 = B«[Qi] + noise. Does it actually converge?

23

L east-squares Backup Version

» Qi+1(x,u) = mean {B [Q(x9), ul), S_QI) Vk, t such that (x*), ul¥)) = (x,u)}

> Note that: mean {x(k)} :argmm SR Ix®) — x|2
) ?
> Qit1(x,u) _argmmz Z HB [Qi](x t ’ t+1)—QH
=1) =(xu)
K T8 k k K) (K42
> Qial >—argm'”ZZHB Q<. uf, %)) — Q) uf!))|
) k=11t=0

Algorithm 6 Batch Least-squares Q-Value lteration

1. Init: Qo(x,u) for all x € X and allu e Y

2: loop

3: m < e-greedy policy derived from Q;

4 Generate episodes {p(K)}K_ from
K T®

5: ng),ut s
k=1 t=0

> 7 can be arbitrary!

k k (k
<) - Qe)|

Small Steps in the Backup Direction

>

>

| 2

Full backup: Q1 + B.[Qj] + noise
Partial backup: Qi1 <+ aB.[Qj] + (1 — a)Q; + noise
Equivalent to a gradient step on a squared error objective function:

Qiy1 + aB.[Qi] + (1 — a)Q; + noise
= Qi + a(B«[Qi] — Qi) + noise

1
_g-a (2%”6*[@;1 - qI?

+ noise)
QR=Q;

Behaves like stochastic gradient descent for f(Q) := 3[B.[Qi] — Q|2
but the objective is changing, i.e., B.[Q;] is a moving target

Stochastic Approximation Theory: a “partial update” to ensure
contraction + appropriate step size « implies convergence to the
contraction fixed point: lim;_ . Qi = Q*

T. Jaakkola, M. Jordan, S. Singh, “On the convergence of stochastic
iterative dynamic programming algorithms,” Neural computation, 1994,¢

L east-squares Partial Backup Version

Algorithm 7 Batch Gradient Least-squares Q-Value Iteration

1: Init: Qo(x,u) forallx e X and allue i/

2: loop

3: 7 < e-greedy policy derived from Q; > 7 can be arbitrary!
4 Generate episodes {p(K)}K_| from

a

K T®
«Q k k k k k
Qi Qi = 5V | 30 Y IBIQIE, uf? x{) — Q) uf W]

k=1 t=0

R=Q;

» Watkins Q-learning is a special case with K =1

26

