
ECE276B: Planning & Learning in Robotics
Lecture 13: Model-free Control

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Hanwen Cao: h1cao@ucsd.edu
Zhichao Li: zhl355@ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:h1cao@ucsd.edu
mailto:zhl355@ucsd.edu

Model-free Generalized Policy Iteration
I Model-based case: our main tool for solving a stochastic

infinite-horizon problem was Generalized Policy Iteration (GPI):

I Policy Evaluation: Given π, compute V π:

V π(x) = `(x, π(x)) + γEx′∼pf (·|x,π(x)) [V π(x′)] , ∀x ∈ X

I Policy Improvement: Given V π obtain a new policy π′:

π′(x) = arg min
u∈U(x)

{
`(x,u) + γEx′∼pf (·|x,u) [V π(x′)]

}︸ ︷︷ ︸
Qπ(x,u)

, ∀x ∈ X

I Model-free case: is it still possible to implement the GPI algorithm?

I Policy Evaluation: given π, we saw in the previous lecture that MC or
TD learning can be used to estimate V π or Qπ

I Policy Improvement: computing π′ based on V π requires access to
`(x,u) but based on Qπ can be done without knowing `(x,u):

π′(x) = arg min
u∈U(x)

Qπ(x,u)

2

Policy Evaluation (Recap)
I Given π, iterate Bπ to compute V π or Qπ via Dynamic Programming

(DP), Temporal Difference (TD), or Monte Carlo (MC)

I DP needs a model but TD and MC are model-free

I Value function:

DP : Bπ[V](xt) = `(xt , π(xt)) + γExt+1∼pf (·|xt ,π(xt)) [V (xt+1)]

TD : Bπ[V](xt) ≈ V (xt) + α [`(xt ,ut) + γV (xt+1)− V (xt)]

MC : Bπ[V](xt) ≈ V (xt) + α

[
T−t−1∑
k=0

γk`(xt+k ,ut+k) + γT−tq(xT)− V (xt)

]
I Q function:

DP : Bπ[Q](xt ,ut) = `(xt ,ut) + γExt+1∼pf (·|xt ,ut) [Q(xt+1, π(xt+1))]

TD : Bπ[Q](xt ,ut) ≈ Q(xt ,ut) + α [`(xt ,ut) + γQ(xt+1,ut+1)− Q(xt ,ut)]

MC : Bπ[Q](xt ,ut) ≈ Q(xt ,ut) + α

[
T−t−1∑
k=0

γk`(xt+k ,ut+k) + γT−tq(xT)− Q(xt ,ut)

]

3

Model-free Policy Improvement

I If Qπ, instead of V π, is estimated via MC or TD, the policy
improvement step can be implemented model-free, i.e., can compute
minu Q

π(x,u) without knowing the motion model pf or the state cost `

I Exploration Problem: since Qπ(x,u) is an approximation to the true
Q-function there may still be problems:

I Picking the “best” control according to the current estimate Qπ might
not be the actual best control.

I If a deterministic policy π(x) is used for Evaluation/Improvement, one will
observe returns for only one of the possible controls at each state and
might not visit many states. Hence, estimating Qπ will not be possible at
those never-visited states and controls.

4

Example: Greedy Control Selection (David Silver)

I There are two doors in front of you

I You open the left door and get reward 0
`(left) = 0

I You open the right door and get reward +1
`(right) = −1

I You open the right door and get reward +3
`(right) = −3

I You open the right door and get reward +2
`(right) = −2

I Are you sure the right door is the best
long-term choice?

5

Model-free Control

I Two ideas to ensure that you do not commit to the wrong controls too
early and continue exploring the state and control spaces:

1. Exploring Starts: in each episode ρ(k) ∼ π, choose initial state-control
pairs with non-zero probability among all possible pairs X × U

2. ε-Soft Policy: a stochastic policy π(u|x) under which every control has
a non-zero probability of being chosen and hence every reachable state
will have non-zero probability of being encountered

6

First-visit MC Policy Iteration with Exploring Starts

Algorithm 1 MC Policy Iteration with Exploring Starts

1: Init: Q(x, u), π(x) for all x ∈ X and u ∈ U
2: loop
3: Choose (x0, u0) ∈ X × U randomly . exploring starts!
4: Generate an episode ρ = x0, u0, x1, u1, . . . , xT−1, ut−1, xT from π
5: for each x, u in ρ do
6: L← return following the first occurrence of x, u
7: Q(x, u)← Q(x, u) + α (L− Q(x, u))

8: for each x in ρ do
9: π(x)← arg min

u
Q(x, u)

7

ε-Greedy Exploration
I An alternative to exploring starts

I To ensure exploration it must be possible to encounter all |U(x)|
controls at state x with non-zero probability

I ε-Soft Policy: a stochastic policy that picks each control with
probability of at least ε

|U(x)| :

π(u|x) = P(ut = u | xt = x) ≥ ε

|U(x)|
∀x ∈ X ,u ∈ U(x)

I ε-Greedy Policy: a stochastic policy that picks the best control
according to Q(x,u) in the policy improvement step but ensures that all
other controls are selected with a small (non-zero) probability:

π(u | x) = P(ut = u | xt = x) =

1− ε+ ε
|U(x)| if u = arg min

u′∈U(x)
Q(x,u′)

ε
|U(x)| otherwise

8

Bellman Equations with a Stochastic Policy

I Value function of a stochastic policy π:

V π(x) := Eu0,x1,u1,x2,...

[∞∑
t=0

γt`(xt ,ut) | x0 = x

]
= Eu∼π(·|x)

[
`(x,u) + γEx′∼pf (·|x,u)

[
V π(x′)

]]
= Eu∼π(·|x) [Qπ(x,u)]

I Q function of a stochastic policy π:

Qπ(x,u) := `(x,u) + Ex1,u1,...

[∞∑
t=1

γt`(xt ,ut) | x0 = x,u0 = u

]
= `(x,u) + γEx′∼pf (·|x,u),u′∼π(·|x′)

[
Qπ(x′,u′)

]

9

ε-Greedy Policy Improvement

Theorem: ε-Greedy Policy Improvement

For any ε-soft policy π with associated Qπ, the ε-greedy policy π′ with
respect to Qπ is an improvement, i.e., V π′(x) ≤ V π(x) for all x ∈ X

I Proof:

Eu′∼π′(·|x)
[
Qπ(x,u′)

]
=

∑
u′∈U(x)

π′(u′ | x)Qπ(x,u′)

=
ε

|U(x)|
∑

u′∈U(x)

Qπ(x,u′) + (1− ε) min
u∈U(x)

Qπ(x,u)

≤ ε

|U(x)|
∑

u′∈U(x)

Qπ(x,u′) + (1− ε)
∑

u∈U(x)

π(u | x)− ε
|U(x)|

1− ε
Qπ(x,u)

=
∑

u∈U(x)

π(u | x)Qπ(x,u) = V π(x)

10

ε-Greedy Policy Improvement

I Then, similarity to the policy improvement theorem for deterministic
policies, for all x ∈ X :

V π(x) ≥ Eu0∼π′(·|x) [Qπ(x,u0)]

= Eu0∼π′(·|x)
[
`(x,u0) + γEx1∼pf (·|x,u0) [V π(x1)]

]
≥ Eu0∼π′(·|x)

[
`(x,u0) + γEx1∼pf (·|x,u0)

[
Eu1∼π′(·|x1) [Qπ(x1,u1)]

]]
= Eu0∼π′(·|x) [`(x,u0) + γEx1,u1 [`(x1,u1) + γEx2V

π(x2)]]

≥ · · · ≥ Eρ0∼π′
[∞∑
t=0

γt`(xt ,ut)

∣∣∣∣x0 = x

]
= V π′(x)

11

First-visit MC Policy Iteration with ε-Greedy Improvement

Algorithm 2 First-visit MC Policy Iteration with ε-Greedy Improvement

1: Init: Q(x, u), π(u|x) (ε-soft policy) for all x ∈ X and u ∈ U
2: loop
3: Generate an episode ρ := x0, u0, x1, u1, . . . , xT−1, ut−1, xT from π
4: for each x, u in ρ do
5: L← return following the first occurrence of x, u
6: Q(x, u)← Q(x, u) + α (L− Q(x, u))

7: for each x in ρ do
8: u∗ ← arg min

u
Q(x, u)

9: π(u|x)←

{
1− ε+ ε

|U(x)| if u = u∗

ε
|U(x)| if u 6= u∗

12

Temporal-Difference Control

I TD prediction has several advantages over MC prediction:
I Works with incomplete episodes

I Can perform online updates to Qπ after every transition

I The TD estimate of Qπ has lower variance than the MC one

I TD in the policy iteration algorithm:
I Use TD for policy evaluation

I Can update Q(x,u) after every transition within an episode

I Use an ε-greedy policy for policy improvement because we still need to
trade off exploration and exploitation

13

TD Policy Iteration with ε-Greedy Improvement (SARSA)

I SARSA: estimates the action-value function Qπ using TD updates after
every St ,At ,Rt+1,St+1,At+1 transition:

Q(xt ,ut)← Q(xt ,ut) + α [`(xt ,ut) + γQ(xt+1,ut+1)− Q(xt ,ut)]

I Ensures exploration via an ε-greedy policy in the policy improvement step

Algorithm 3 SARSA

1: Init: Q(x,u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q
4: Generate episode ρ := x0,u0, x1,u1, . . . , xT−1,ut−1, xT from π
5: for (x,u, x′,u′) ∈ ρ do
6: Q(x,u)← Q(x,u) + α [`(x,u) + γQ(x′,u′)− Q(x,u)]

14

Convergence of Model-free Policy Iteration

I Greedy in the Limit with Infinite Exploration (GLIE):
I All state-control pairs are explored infinitely many times: lim

k→∞
Nk(x,u) =∞

I The ε-greedy policy converges to a greedy policy wrt u∗ = arg min
u∈U(x)

Q(x,u).

I Example: If εk = 1
k , then ε-greedy is GLIE

πk(u | x) :=

{
1− εk + εk

|U(x)| if u = u∗

εk
|U(x)| if u 6= u∗

lim
k→∞

πk(u | x) =

{
1 if u = u∗

0 if u 6= u∗

Theorem: Convergence of Model-free Policy Iteration

Both MC Policy Iteration and SARSA converge to the optimal action-value
function, Q(x,u)→ Q∗(x,u), as the number of episodes k →∞ as long as:

I the sequence of ε-greedy policies πk(u | x) is GLIE,

I the sequence of step sizes αk is Robbins-Monro.

15

On-Policy vs Off-Policy Learning
I On-policy Prediction: estimate V π or Qπ using experience from π

I On-policy methods:
I evaluate or improve the policy π that is used to make decisions and

collect experience
I require well-designed exploration functions
I empirically successful with function approximation

I Off-policy Prediction: estimate V π or Qπ using experience from µ

I Off-policy methods:
I evaluate or improve a policy π that is different from the (behavior) policy

µ used to generate data
I can use an effective exploratory policy µ to generate data while learning

about an optimal policy
I can learn from observing other agents (or humans)
I can re-use experience from old policies π1, π2, . . . , πk−1
I can learn about multiple policies while following one policy
I cause theoretical challenges with function approximation and eligibility

traces
16

Importance Sampling for Off-policy Learning

I Off-policy learning: use returns generated from µ to evaluate π

I The stage costs obtained from µ need to be re-weighted according to
the similarity (i.e., likelihood) of the states encountered by π

I Importance Sampling: estimates the expectation of a function `(x)
with respect to a probability density function p(x) by computing a
re-weighted expectation over a different probability density q(x):

Ex∼p(·)[`(x)] =

∫
p(x)`(x)dx

=

∫
q(x)

p(x)

q(x)
`(x)dx = Ex∼q(·)

[
p(x)

q(x)
`(x)

]
Requires that q(x) 6= 0 when p(x) 6= 0.

17

Importance Sampling for Off-policy MC Learning

I To use returns generated from µ to evaluate π via MC, weight the
long-term cost Lt via importance-sampling corrections along the whole
episode:

L
π/µ
t =

π(ut |xt)
µ(ut |xt)

π(ut+1|xt+1)

µ(ut+1|xt+1)
· · · π(uT−1|xT−1)

µ(uT−1|xT−1)
Lt

I Update the value estimate towards the corrected return:

V π(xt)← V π(xt) + α
(
L
π/µ
t − V π(xt)

)
I Note: importance sampling in MC can dramatically increase variance

18

Importance Sampling for Off-policy TD Learning

I To use returns generated from µ to evaluate π via TD, weight the TD
target `(x,u) + γV (x′) by importance sampling:

V π(xt)← V π(xt) + α

(
π(ut | xt)
µ(ut | xt)

(`(xt ,ut) + γV π(xt+1))− V π(xt)

)
I Importance sampling in TD is much lower variance than in MC and the

policies need to be similar (i.e., µ should not be zero when π is
non-zero) over a single step only

19

Off-policy TD Control without Importance Sampling

I Q-Learning (Watkins, 1989): one of the early breakthroughs in
reinforcement learning was the development of an off-policy TD
algorithm that does not use importance sampling

I Q-Learning approximates B∗[Q](x,u) directly using samples:

Q(xt ,ut)← Q(xt ,ut)+α

[
`(xt ,ut) + γ min

u∈U(xt+1)
Q(xt+1,u)− Q(xt ,ut)

]
I The learned Q function eventually approximates Q∗ regardless of the

policy being followed!

Theorem: Convergence of Q-Learning

Q-Learning converges almost surely to Q∗ assuming all state-control pairs
continue to be updated and the sequence of step sizes αk is Robbins-Monro.

I C. J. Watkins and P. Dayan. “Q-learning,” Machine learning, 1992.

20

Q-Learning: Off-policy TD Learning of Q∗(x,u)

Algorithm 4 Q-Learning

1: Init: Q(x,u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q . π can be arbitrary!
4: Generate episode ρ := x0,u0, x1,u1, . . . , xT−1,ut−1, xT from π
5: for (x,u, x′) ∈ ρ do
6: Q(x,u)← Q(x,u) + α [`(x,u) + γminu′ Q(x′,u′)− Q(x,u)]

21

Relationship Between Full and Sample Backups

Full Backups (DP) Sample Backups (TD)

Policy Evaluation TD Prediction
V (x)← Bπ[V](x) = `(x, π(x)) + γEx′

[
V (x′)

]
V (x)← V (x) + α(`(x,u) + γV (x′)− V (x))

Policy Q-Evaluation TD Q-Prediction (SARSA)
Q(x,u)← Bπ[Q](x,u) = `(x,u) + γEx′

[
Q(x′, π(x′))

]
Q(x,u)← Q(x,u) + α(`(x,u) + γQ(x′,u′)− Q(x,u))

Value Iteration N/A
V (x)← B∗[V](x) = min

u

{
`(x,u) + γEx′

[
V (x′)

]}
Q-Value Iteration Q-Learning

Q(x,u)← B∗[Q](x,u) = `(x,u) + γEx′

[
min

u′
Q(x′,u′)

]
Q(x,u)← Q(x,u) + α

(
`(x,u) + γmin

u′
Q(x′,u′)− Q(x,u)

)

22

Batch Sampling-based Q-Value Iteration

Algorithm 5 Batch Sampling-based Q-Value Iteration

1: Init: Q0(x,u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Qi . π can be arbitrary!
4: Generate episodes {ρ(k)}Kk=1 from π
5: for (x,u) ∈ X × U do

6: Qi+1(x,u) =
1

K

K∑
k=1

∑T (k)

t=0 B∗[Qi](x
(k)
t ,u

(k)
t , x

(k)
t+1)1{(x

(k)
t ,u

(k)
t) = (x,u)}∑T (k)

t=0 1{(x
(k)
t ,u

(k)
t) = (x,u)}

I Batch Sampling-based Q-Value Iteration behaves like
Qi+1 = B∗[Qi] + noise. Does it actually converge?

23

Least-squares Backup Version
I Qi+1(x,u) = mean

{
B∗[Qi](x

(k)
t ,u

(k)
t , x

(k)
t+1), ∀k, t such that (x

(k)
t ,u

(k)
t) = (x,u)

}
I Note that: mean

{
x(k)

}
= arg min

x

∑K
k=1 ‖x(k) − x‖2

I Qi+1(x,u) = arg min
q

K∑
k=1

∑
(x

(k)
t ,u

(k)
t)=(x,u)

∥∥∥B∗[Qi](x
(k)
t ,u

(k)
t , x

(k)
t+1)− q

∥∥∥2
I Qi+1(·, ·) = arg min

Q(·,·)

K∑
k=1

T (k)∑
t=0

∥∥∥B∗[Qi](x
(k)
t ,u

(k)
t , x

(k)
t+1)− Q(x

(k)
t ,u

(k)
t)
∥∥∥2

Algorithm 6 Batch Least-squares Q-Value Iteration

1: Init: Q0(x,u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Qi . π can be arbitrary!
4: Generate episodes {ρ(k)}Kk=1 from π

5: Qi+1(·, ·) = arg min
Q(·,·)

K∑
k=1

T (k)∑
t=0

∥∥∥B∗[Qi](x
(k)
t ,u

(k)
t , x

(k)
t+1)− Q(x

(k)
t ,u

(k)
t)
∥∥∥2

24

Small Steps in the Backup Direction
I Full backup: Qi+1 ← B∗[Qi] + noise

I Partial backup: Qi+1 ← αB∗[Qi] + (1− α)Qi + noise

I Equivalent to a gradient step on a squared error objective function:

Qi+1 ← αB∗[Qi] + (1− α)Qi + noise

= Qi + α (B∗[Qi]− Qi) + noise

= Qi − α

(
1

2
∇Q‖B∗[Qi]− Q‖2

∣∣∣∣
Q=Qi

+ noise

)
I Behaves like stochastic gradient descent for f (Q) := 1

2‖B∗[Qi]− Q‖2
but the objective is changing, i.e., B∗[Qi] is a moving target

I Stochastic Approximation Theory: a “partial update” to ensure
contraction + appropriate step size α implies convergence to the
contraction fixed point: limi→∞Qi = Q∗

I T. Jaakkola, M. Jordan, S. Singh, “On the convergence of stochastic
iterative dynamic programming algorithms,” Neural computation, 1994.25

Least-squares Partial Backup Version

Algorithm 7 Batch Gradient Least-squares Q-Value Iteration

1: Init: Q0(x,u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Qi . π can be arbitrary!
4: Generate episodes {ρ(k)}Kk=1 from π

5: Qi+1 ← Qi −
α

2
∇Q

 K∑
k=1

T (k)∑
t=0

‖B∗[Qi](x
(k)
t ,u

(k)
t , x

(k)
t+1)− Q(x

(k)
t ,u

(k)
t)‖2

∣∣∣∣
Q=Qi

I Watkins Q-learning is a special case with K = 1

26

