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Lecture 15: Continuous-time Optimal Control
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Continuous-time Motion Model

I time: t ∈ [0,T ]

I state: x(t) ∈ X ⊆ Rn, ∀t ∈ [0,T ]

I control: u(t) ∈ U ⊆ Rm, ∀t ∈ [0,T ]

I motion model: a stochastic differential equation (SDE):

ẋ(t) = f(x(t),u(t)) + C (x(t),u(t))ω(t)

defined by functions f : X × U → Rn and C : X × U → Rn×d

I white noise: ω(t) ∈ Rd , ∀t ∈ [0,T ]
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Gaussian Process

I A Gaussian Process with mean function µ(t) and covariance function
k(t, t ′) is an Rd -valued continuous-time stochastic process {g(t)}t such
that every finite set g(t1), . . . , g(tn) of random variables has a joint
Gaussian distribution:g(t1)

...
g(tn)

 ∼ N

µ(t1)

...
µ(tn)

 ,
k(t1, t1) . . . k(t1, tn)

...
. . .

...
k(tn, t1) · · · k(tn, tn)




I Short-hand notation: g(t) ∼ GP(µ(t), k(t, t ′))

I Intuition: a GP is a Gaussian distribution for a function g(t)
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Brownian Motion

I Robert Brown made microscopic observations in 1827 that small
particles in plant pollen, when immersed in liquid, exhibit highly irregular
motion

I Brownian Motion is an Rd -valued continuous-time stochastic process
{β(t)}t≥0 with the following properties:
I β(t) has stationary independent increments, i.e., for

0 ≤ t0 < t1 < . . . < tn, β(t0),β(t1)− β(t0), . . . ,β(tn)− β(tn−1) are
independent

I β(t)− β(s) ∼ N (0, (t − s)Q) for 0 ≤ s ≤ t and diffusion matrix Q
I β(t) is almost surely continuous (but nowhere differentiable)

I Standard Brownian Motion: β(0) = 0 and Q = I

I Brownian motion is a Gaussian process β(t) ∼ GP(0,min {t, t ′}Q)
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White Noise

I White Noise is an Rd -valued continuous-time stochastic process
{ω(t)}t≥0 with the following properties:
I ω(t1) and ω(t2) are independent if t1 6= t2
I ω(t) is a Gaussian process GP(0, δ(t − t ′)Q) with spectral density Q,

where δ is the Dirac delta function.

I The sample path of ω(t) is discontinuous almost everywhere

I White noise is unbounded: it takes arbitrarily large positive and negative
values at any finite interval

I White noise can be considered the formal derivative of Brownian
motion: dβ(t) = ω(t)dt, where β(t) ∼ GP(0,min {t, t ′}Q)

I White noise is used to model the motion noise in continuous-time
systems of ordinary differential equations
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Brownian Motion and White Noise

(a) Brownian Motion (b) White Noise
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Continuous-time Stochastic Optimal Control

I Problem statement:

min
π

V π(0, x0) := E

{∫ T

0
`(x(t), π(t, x(t)))︸ ︷︷ ︸

stage cost

dt + q(x(T ))︸ ︷︷ ︸
terminal cost

∣∣∣∣ x(0) = x0

}

s.t. ẋ(t) = f(x(t), π(t, x(t))) + C (x(t), π(t, x(t)))ω(t).

x(t) ∈ X , π(t, x(t)) ∈ PC 0([0,T ],U)

I Admissible policies: set PC 0([0,T ],U) of piecewise continuous
functions from [0,T ] to U

I Problem variations:
I x(0) can be given or free for optimization

I x(T ) can be in a given target set T or free for optimization

I T can be given (finite-horizon) or free for optimization (first-exit)

I Additional state and control constraints can be imposed via X and U
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Assumptions

I f(x,u) is continuously differentiable wrt to x and continuous wrt u

I Existence and Uniqueness: for any admissible policy π and initial state
x(τ) ∈ X , τ ∈ [0,T ], the noise-free system, ẋ(t) = f(x(t), π(t, x(t))),
has a unique state trajectory x(t), t ∈ [τ,T ].

I The stage cost `(x,u) is continuously differentiable wrt x and
continuous wrt u

I The terminal cost q(x) is continuously differentiable wrt x
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Examples: Existence and Uniqueness

I Example: Existence in not guaranteed in general

ẋ(t) = x(t)2, x(0) = 1

A solution does not exist forT ≥ 1 : x(t) =
1

1− t

I Example: Uniqueness in not guaranteed in general

ẋ(t) = x(t)
1
3 , x(0) = 0

Infinite number of solutions :

x(t) = 0, ∀t

x(t) =

{
0 for 0 ≤ t ≤ τ(
2
3(t − τ)

)3/2
for t > τ
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Special case: Calculus of Variations

I Let C 1([a, b],Rm) be the set of continuously differentiable functions
from [a, b] to Rm

I Calculus of Variations: find a curve y(x) for x ∈ [a, b] from y0 to yf
that minimizes an objective such as curve length or travel time for a
particle accelerated by gravity (Brachistochrone Problem)

min
y∈C1([a,b],Rm)

∫ b

a
`(y(x), ẏ(x))dx + q(y(b))

s.t. y(a) = y0, y(b) = yf

I Special case of continuous-time deterministic optimal control:
I fully-actuated system: ẋ = u
I notation: t ← x , x(t)← y(x), u(t) = ẋ(t)← ẏ(x)
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Sufficient Condition for Optimality
I Optimal value function:

V ∗(t, x) ≤ V π(t, x), ∀π ∈ PC 0([0,T ],U), x ∈ X

Sufficient Optimality Condition: HJB PDE

Suppose that V (t, x) is continuously differentiable in t and x and solves the
Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE):

V (T , x) = q(x), ∀x ∈ X

−∂V (t, x)

∂t
= min

u∈U(x)

[
`(x,u) +∇xV (t, x)>f(x,u) +

1

2
tr
(
Σ(x,u)

[
∇2

xV (t, x)
])]

for all t ∈ [0,T ] and x ∈ X and where Σ(x,u) := C (x,u)C>(x,u).

Then, under the assumptions on Slide 8, V (t, x) is the unique solution of the
HJB PDE and is equal to the optimal value function V ∗(t, x) of the
continuous-time stochastic optimal control problem. The policy π∗(t, x) that
attains the minimum in the HJB PDE for all t and x is an optimal policy.
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Existence and Uniqueness of HJB PDE Solutions
I The HJB PDE is the continuous-time analog of the Bellman Equation

I The HJB PDE has at most one classical solution – a function which
satisfies the PDE everywhere

I When the optimal value function is not smooth (e.g., bang-bang
control), the HJB PDE does not have a classical solution

I The HJB PDE always has a unique viscosity solution which is the
optimal value function

I Approximation schemes based on MDP discretization are guaranteed to
converge to the unique viscosity solution

I Most continuous function approximation schemes (which scale better)
are unable to represent non-smooth solutions

I All examples of non-smoothness seem to be deterministic, i.e., noise
smooths the optimal value function
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HJB PDE Derivation
I A discrete-time approximation of the cont.-time optimal control problem

can be used to derive the HJB PDE from the DP algorithm

I Motion model: ẋ = f(x,u) + C (x,u)ω with x(0) = x0

I Euler Discretization of the SDE with time step τ :
I Discretize [0,T ] into N pieces of width τ := T

N

I Define xk := x(kτ) and uk := u(kτ) for k = 0, . . . ,N

I Discretized system dynamics:

xk+1 = xk + τ f(xk ,uk) + C (xk ,uk)εk , εk ∼ N (0, τ I )

= xk + dk , dk ∼ N (τ f(xk ,uk), τΣ(xk ,uk))

where Σ(x,u) = C (x,u)C>(x,u) as before

I Gaussian motion model: pf (x′ | x,u) = φ(x′; x + τ f(x,u), τΣ(x,u)),
where φ is the Gaussian probability density function

I Discretized stage cost: τ`(x,u)
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HJB PDE Derivation

I Idea: apply the Bellman Equation to the now discrete-time problem and
take the limit as τ → 0 to obtain a “continuous-time Bellman Equation”

I Bellman Equation: finite-horizon problem with t := kτ

V (t, x) = min
u∈U(x)

{
τ`(x,u) + Ex′∼pf (·|x,u)

[
V (t + τ, x′)

]}
I Note that x′ = x + d where d ∼ N (τ f (x,u), τΣ(x,u))

I Taylor-series expansion of V (t + τ, x′) around (t, x):

V (t + τ, x + d) =V (t, x) + τ
∂V

∂t
(t, x) + o(τ2)

+ [∇xV (t, x)]> d +
1

2
d>
[
∇2

xV (t, x)
]

d + o(d3)

14



HJB PDE Derivation

I Note that E
[
d>Md

]
= µ>Mµ+ tr(ΣM) for d ∼ N (µ,Σ) so that:

Ex′∼pf (·|x,u)
[
V (t + τ, x′)

]
= V (t, x) + τ

∂V

∂t
(t, x) + o(τ2)

+ τ [∇xV (t, x)]> f (x,u) +
τ

2
tr
(
Σ(x,u)

[
∇2

xV (t, x)
])

I Substituting in the Bellman Equation and simplifying, we get:

0 = min
u∈U(x)

{
`(x,u) +

∂V

∂t
(t, x) + [∇xV (t, x)]> f(x,u) +

1

2
tr
(
Σ(x,u)

[
∇2

xV (t, x)
])

+
o(τ2)

τ

}
I Taking the limit as τ → 0 (assuming it can be exchanged with

minu∈U(x)) leads to the HJB PDE:

−∂V
∂t

(t, x) = min
u∈U(x)

{
`(x,u) + [∇xV (t, x)]> f(x,u) +

1

2
tr
(
Σ(x,u)

[
∇2

xV (t, x)
])}
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Example 1: Guessing a Solution for the HJB PDE

I System: ẋ(t) = u(t), |u(t)| ≤ 1, 0 ≤ t ≤ 1

I Costs: `(x , u) = 0 and q(x) = 1
2x

2 for all x ∈ X and u ∈ U

I Since we only care about the square of the terminal state, we can
construct a candidate optimal policy that drives the state towards 0 as
quickly as possible and maintains it there:

π(t, x) = −sgn(x) :=


−1 if x > 0

0 if x = 0

1 if x < 0

I The value in not smooth: V π(t, x) = 1
2 (max {0, |x | − (1− t)})2

I We will verify that this function satisfies the HJB and is therefore indeed
the optimal value function
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Example 1: Partial Derivative wrt x

I Value function and its partial derivative wrt x for fixed t:

V π(t, x) =
1

2
(max {0, |x | − (1− t)})2 ∂V π(t, x)

∂x
= sgn(x) max{0, |x | − (1− t)}
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Example 1: Partial Derivative wrt t

I Value function and its partial derivative wrt t for fixed x :

V π(t, x) =
1

2
(max {0, |x | − (1− t)})2 ∂V π(t, x)

∂t
= max{0, |x | − (1− t)}
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Example 1: Guessing a Solution for the HJB PDE

I Boundary condition: V π(1, x) = 1
2x

2 = q(x)

I The minimum in the HJB PDE is obtained by u = −sgn(x):

min
|u|≤1

(
∂V π(t, x)

∂t
+
∂V π(t, x)

∂x
u

)
= min
|u|≤1

((1 + sgn(x)u) (max{0, |x | − (1− t)})) = 0

I Conclusion: V π(t, x) = V ∗(t, x) and π∗(t, x) = −sgn(x) is an optimal
policy

I Solving the HJB PDE in general is non-trivial
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Example 2: HJB PDE without a Classical Solution

I System: ẋ(t) = x(t)u(t), |u(t)| ≤ 1, 0 ≤ t ≤ 1

I Costs: `(x , u) = 0 and q(x) = x for all x ∈ X and u ∈ U

I Optimal policy:

π(t, x) =


−1 if x > 0

0 if x = 0

1 if x < 0

I Optimal value function:

V π(t, x) =


et−1x x > 0

0 x = 0

e1−tx x < 0

I The value function is not differentiable wrt x at x = 0 and hence does
not satisfy the HJB PDE in the classical sense
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Inf-Horizon Continuous-time Stochastic Optimal Control

I V π(x) := E

∫ ∞
0

e−
t
γ︸︷︷︸

discount

`(x(t), π(t, x(t)))dt

 with γ ∈ [0,∞)

HJB PDEs for the Optimal Value Function

Hamiltonian: H[x,u,p] = `(x,u) + p>f(x,u) +
1

2
tr
(
C (x,u)C>(x,u)[∇xp]

)

Finite Horizon: −∂V
∗

∂t
(t, x) = min

u∈U(x)
H[x,u,∇xV

∗(t, x)], V ∗(T , x) = q(x)

First Exit: 0 = min
u∈U(x)

H[x,u,∇xV
∗(x)], V ∗(x) = q(x), ∀x ∈ T

Discounted:
1

γ
V ∗(x) = min

u∈U(x)
H[x,u,∇xV

∗(x)]
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Tractable Problems
I Control-affine motion model: ẋ = a(x) + B(x)u + C (x)ω

I Stage cost quadratic in u: `(x,u) = q(x) + 1
2u>R(x)u, R(x) � 0

I The Hamiltonian can be minimized analytically wrt u (suppressing the
dependence on x for clarity):

H(x,u,p) = q +
1

2
u>Ru + p> (a + Bu) +

1

2
tr(CC>px)

∇uH(x,u,p) = Ru + B>p ∇2
uH(x,u,p) = R � 0

I Optimal policy for t ∈ [0,T ] and x ∈ X :

π∗(t, x) = arg min
u

H(x,u,Vx(t, x)) = −R−1(x)B>(x)Vx(t, x)

I The HJB PDE becomes a second-order quadratic PDE, no longer
involving the min operator:

V (T , x) = q(x),

−Vt(t, x) = q + a>Vx(t, x) +
1

2
tr(CC>Vxx(t, x))− 1

2
Vx(t, x)>BR−1B>Vx(t, x)
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Example 3: Pendulum
I Pendulum dynamics (Newton’s second law for

rotational systems):

mL2θ̈ = u −mgL sin θ + noise

I Noise: σω(t) with ω(t) ∼ GP(0, δ(t − t ′))

I State-space form with x = (x1, x2) = (θ, θ̇):

ẋ =

[
x2

k sin(x1)

]
+

[
0
1

]
(u + σω)

I Stage cost: `(x, u) = q(x) + r
2u

2

I Optimal value and policy for a discounted problem formulation:

π∗(x) = −1

r
V ∗x2(x)

1

γ
V ∗(x) = q(x) + x2V

∗
x1(x) + k sin(x1)V ∗x2(x) +

σ2

2
V ∗x2x2(x)− 1

2r
(V ∗x2(x))2
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Example 3: Pendulum
I Parameters: k = σ = r = 1, γ = 0.3, q(θ, θ̇) = 1− exp(−2θ2)

I Discretize the state space, approximate derivatives via finite differences,
and iterate:

V (i+1)(x) = V (i)(x) + α
(
γmin

u
H[x, u,∇xV

(i)(·)]− V (i)(x)
)
, α = 0.01
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