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Continuous-time Motion Model

> time: t € [0, T]
> state: x(t) € X CR", Vt € [0, T]
> control: u(t) ed CR™, Vte [0, T]
» motion model: a stochastic differential equation (SDE):
x(£) = F(x(£), u(t)) + C(x(t), u(t))e(t)
defined by functions f : X x U/ — R" and C : X x U — R"*9

» white noise: w(t) € RY, Vt € [0, T]



Gaussian Process

» A Gaussian Process with mean function p(t) and covariance function
k(t,t') is an R9%valued continuous-time stochastic process {g(t)}, such
that every finite set g(t1),...,8&(tn) of random variables has a joint
Gaussian distribution:

g(t1) w(ty) k(ti,t1) ... k(t1,tn)

L ~N Co : :

8(tn) p(tn)] Lk(tn,tr) -+ k(tn, tn)
» Short-hand notation: g(t) ~ GP(u(t), k(t,t"))

» Intuition: a GP is a Gaussian distribution for a function g(t)



Brownian Motion

» Robert Brown made microscopic observations in 1827 that small
particles in plant pollen, when immersed in liquid, exhibit highly irregular
motion

» Brownian Motion is an R%-valued continuous-time stochastic process
{B(t)},>o with the following properties:

> 3(t) has stationary independent increments, i.e., for

0<to<t; <...<tn B(to),B(t1) — B(to),...,B8(tn) — B(tn—1) are
independent
> B(t) — B(s) ~ N(0,(t — 5)Q) for 0 < s < t and diffusion matrix Q
> (3(t) is almost surely continuous (but nowhere differentiable)

» Standard Brownian Motion: 3(0) =0 and Q =/

» Brownian motion is a Gaussian process 3(t) ~ GP(0,min{t, t'} Q)



White Noise

» White Noise is an R%-valued continuous-time stochastic process
{w(t)};>( with the following properties:

> w(t;) and w(ty) are independent if t; # t
> w(t) is a Gaussian process GP(0,d(t — t')Q) with spectral density Q,
where § is the Dirac delta function.

» The sample path of w(t) is discontinuous almost everywhere

» White noise is unbounded: it takes arbitrarily large positive and negative
values at any finite interval

» White noise can be considered the formal derivative of Brownian
motion: dB3(t) = w(t)dt, where 3(t) ~ GP(0, min {t,t'} Q)

» White noise is used to model the motion noise in continuous-time
systems of ordinary differential equations



(a) Brownian Motion
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Continuous-time Stochastic Optimal Control

» Problem statement:

-
min V"™ (0, xo) ::E{/ 0(x(t), m(t,x(t))) dt + q(x(T))

" 0 stage cost terminal cost
s.t. x(t) = f(x(t), m(t,x(t))) + C(x(t), m(t,x(t)))w(t).
x(t) € &, 7(t,x(t)) € PC°([0, T],U)

x(0) = xo}

» Admissible policies: set PC°([0, T],i) of piecewise continuous
functions from [0, T] to U

» Problem variations:
> x(0) can be given or free for optimization
» x(T) can be in a given target set T or free for optimization
> T can be given (finite-horizon) or free for optimization (first-exit)

> Additional state and control constraints can be imposed via X and U



Assumptions

» f(x,u) is continuously differentiable wrt to x and continuous wrt u

» Existence and Uniqueness: for any admissible policy 7 and initial state
x(7) € X, 7 € [0, T], the noise-free system, x(t) = f(x(t), 7(t,x(t))),
has a unique state trajectory x(t), t € [r, T].

» The stage cost /(x,u) is continuously differentiable wrt x and
continuous wrt u

» The terminal cost g(x) is continuously differentiable wrt x



Examples: Existence and Uniqueness

» Example: Existence in not guaranteed in general

1
A solution does not exist forT > 1: x(t) = T
» Example: Uniqueness in not guaranteed in general

x(t) = x(t)3, x(0) =0
x(t) =0, Vt

Infinite number of solutions : 0 foro<t<r
x(t) =19 , 3/2

(5(t—7)) fort >



Special case: Calculus of Variations

» Let C([a, b],R™) be the set of continuously differentiable functions
from [a, b] to R™

» Calculus of Variations: find a curve y(x) for x € [a, b] from yq to yr
that minimizes an objective such as curve length or travel time for a
particle accelerated by gravity (Brachistochrone Problem)

min / Uy(x).¥(x))dx + a(y())

yeC([a,b],R™)
s.t = Yo, Y(b) = yr

» Special case of continuous-time deterministic optimal control:

» fully-actuated system: x = u
> notation: t « x, x(t) < y(x), u(t) = x(t) + y(x)
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Sufficient Condition for Optimality

» Optimal value function:
V*(t,x) < V™(t,x), Vxe PCY[0, T, U), xe X

Sufficient Optimality Condition: HJB PDE

Suppose that V/(t,x) is continuously differentiable in ¢t and x and solves the
Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE):

V(T,x)=q(x), VxeX

) _ 1
T ug;/;?x) 0(x,u) + V, V(t,x) Tf(x,u) + Str (Z(x,u) [V2V(t,x)])

for all t € [0, T] and x € X and where ¥(x,u) := C(x,u)C"(x,u).

Then, under the assumptions on Slide 8, V/(t,x) is the unique solution of the
HJB PDE and is equal to the optimal value function V*(t,x) of the
continuous-time stochastic optimal control problem. The policy 7*(t,x) that
attains the minimum in the HJB PDE for all t and x is an optimal policy.
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Existence and Uniqueness of HJB PDE Solutions

>

| 2

The HJIB PDE is the continuous-time analog of the Bellman Equation

The HJB PDE has at most one classical solution — a function which
satisfies the PDE everywhere

When the optimal value function is not smooth (e.g., bang-bang
control), the HJB PDE does not have a classical solution

The HJB PDE always has a unique viscosity solution which is the
optimal value function

Approximation schemes based on MDP discretization are guaranteed to
converge to the unique viscosity solution

Most continuous function approximation schemes (which scale better)
are unable to represent non-smooth solutions

All examples of non-smoothness seem to be deterministic, i.e., noise
smooths the optimal value function
12



HJB PDE Derivation

» A discrete-time approximation of the cont.-time optimal control problem
can be used to derive the HJB PDE from the DP algorithm

» Motion model: x = f(x,u) + C(x, u)w with x(0) = xq
» Euler Discretization of the SDE with time step 7:
> Discretize [0, T] into N pieces of width 7 := [
> Define x := x(k7) and uy ;= u(k7) for k =0,..., N
» Discretized system dynamics:
X1 = Xi + TF(xic, ui) + C(xx, ui)ex, €~ N(0,71)
=Xk +dg, dg NN(Tf(Xk,uk),TZ(Xk,uk))
where ¥(x,u) = C(x,u)C " (x,u) as before

> Gaussian motion model: pr(x’ | x,u) = ¢(x’; x + 7f(x, u), 7Z(x,u)),
where ¢ is the Gaussian probability density function

> Discretized stage cost: 74(x,u)
13



HJB PDE Derivation

» Idea: apply the Bellman Equation to the now discrete-time problem and
take the limit as 7 — 0 to obtain a “continuous-time Bellman Equation”

» Bellman Equation: finite-horizon problem with t := k7

V(t.x) = min {700 w) + B (ixa) [VE+ 7]}

> Note that x' = x + d where d ~ N(7f(x,u), 7X(x, u))

> Taylor-series expansion of V(t + 7,x’) around (t,x):
ov 2
V(t+7,x+d)=V(t,x)+ TE(t,X) +o(77)
1
+[VeV(£.0)] " d + 5dT [VIV(2,x)] d + o(d®)
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HJB PDE Derivation
> Note that E [d" Md] = u" Mp + tr(EM) for d ~ NV(p, X) so that:
Exrcp oy [V(E+7.X0] = V(Ex) + 700 (6,3 + o(r?)
+ 7 [V V(£,x)] " F(x,u) + gtr (Z(x,u) [V2V(t,X)])
» Substituting in the Bellman Equation and simplifying, we get:
0= min {ax, )+ 60+ [TV (e 0] Rxu) + 5t (2x,) [V2V(E)]) + Q}

» Taking the limit as 7 — 0 (assuming it can be exchanged with
minueu(x)) leads to the HJB PDE:

8t ( ,X) = m|? {é(x, u) + [V V(t,x)]" f(x,u) + %tr (Z(x, u) [VEV(L, x)])}
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Example 1: Guessing a Solution for the HJB PDE

>

>

System: x(t) = u(t), |u(t)| <1,0<t<1
Costs: £(x,u) =0 and q(x) = 3x2 for all x € X and u € U

Since we only care about the square of the terminal state, we can
construct a candidate optimal policy that drives the state towards 0 as
quickly as possible and maintains it there:

-1 ifx>0
m(t,x) = —sgn(x) :=q¢0 ifx=0
1 ifx<0

The value in not smooth: V™ (t,x) = %(max {0,]x] — (1 = £)})?

We will verify that this function satisfies the HJB and is therefore indeed
the optimal value function
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Example 1: Partial Derivative wrt x

» Value function and its partial derivative wrt x for fixed t:

V7 (t,x) = %(max {0,|x| — (1 — 1.‘)})2

JH

t,x)

V™ (t,x)

—(1-1)

1-1)

X

ox

—(1-1)

= sgn(x) max{0, |x| — (1 — t)}

9J"(t,x)
dx

v
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Example 1: Partial Derivative wrt t

» Value function and its partial derivative wrt t for fixed x:

1 VT
VT(t,x) = 5 (max {0, |x| — (1 — t)})? 887(:’)0 = max{0, |x] — (1 —¢t)}
Tt x)
-1 x| -1
0 1—|x] 1 ¢t 00 1—1|x 1t
— x| =1
— I <1
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Example 1: Guessing a Solution for the HJB PDE

> Boundary condition: V™(1,x) = 3x? = q(x)

» The minimum in the HJB PDE is obtained by u = —sgn(x):

|mi§n1 (aV;(: J + 3V”a()f, X “> = |mign1 (1 + sgn(x)u) (max{0, |x| — (1 —t)})) =0

» Conclusion: V7(t,x) = V*(t,x) and 7*(t, x) = —sgn(x) is an optimal
policy

» Solving the HIJB PDE in general is non-trivial
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Example 2: HJB PDE without a Classical Solution

| 2

>

System: x(t) = x(t)u(t), Ju(t)] <1,0<t<1
Costs: ¢(x,u) =0 and q(x) =x forall x € X and u € U
Optimal policy:
-1 ifx>0
m(t,x) =40 ifx=0
1 ifx<0

Ju(%,x)

»
a
wlm

Optimal value function:
et7Ix x>0
Vﬂ(t,X) =<0 x=0

el“tx x<0

b
@
&

The value function is not differentiable wrt x at x = 0 and hence does
not satisfy the HIB PDE in the classical sense
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Inf-Horizon Continuous-time Stochastic Optimal Control

t

> V™(x) :=E { b e\_; 0(x(t), m(t,x(t)))dt| with v € [0, 00)

discount

HJB PDEs for the Optimal Value Function

Hamiltonian: H[x,u, p] = £(x,u) +p f(x,u) + %tr (C(x, u)C ' (x, u)[pr])

Finite Horizon: fal(n x) = min_ H[x,u, V4 V*(t,x)], V*(T,x) = q(x)
ot ueld(x)
First Exit: 0= mb;n Hx,u, Vi V*(x)], V*(x) =q(x), VxeT
uc
. 1
Discounted: —V*(x) = min H[x u, V, V*(x)]
Y ueld(x)
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Tractable Problems

» Control-affine motion model: x = a(x) + B(x)u + C(x)w

> Stage cost quadratic in u: £(x,u) = q(x) + su' R(x)u, R(x) >~ 0

» The Hamiltonian can be minimized analytically wrt u (suppressing the

dependence on x for clarity):

H(x,u,p) = q+ %uTRu +p' (a+Bu)+ %tr(CCTpX)
VuH(x,u,p) = Ru+BTp V2H(x,u,p) =R >0
» Optimal policy for t € [0, T] and x € X
7*(t,x) = arg min H(x, u, Vx(t,x)) = —R™1(x) BT (x) Vx(t, X)
u
» The HJB PDE becomes a second-order quadratic PDE, no longer
involving the min operator:

V( T,X) = q(X),
—Vi(t,x) =qg+a' Vy(t,x) + %tr(CCT Vix(t, X)) — %vx(t,x)TBRleT Vi(t, x)
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Example 3: Pendulum

» Pendulum dynamics (Newton's second law for
rotational systems):

mL2?0 = u — mglsin @ + noise
» Noise: ow(t) with w(t) ~ GP(0,0(t — t'))

> State-space form with x = (x1, %) = (6, 6):

= st * 1) €77

> Stage cost: /(x,u) = q(x) + 5u?

» Optimal value and policy for a discounted problem formulation:

* ]' *
7(x) = — Vi (x)
1
v

Z V(%) = (%) + 2 V2 (%) + ksin(a) Vi (x) + =

mg cosl



Example 3: Pendulum
> Parameters: k=0 =r=1, 7y=0.3, g(6,0) = 1 — exp(—26?)

» Discretize the state space, approximate derivatives via finite differences,
and iterate:

VI (x) = VO (x) + a (’y min H[x, u, Vi V()] - V(i)(x)>’ a =001

q(x) V(x) T(X)

+8
2
3 \) I.'hh-
(&)
>

-8

-T 0 +7
position
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