ECE276B: Planning & Learning in Robotics Lecture 15: Continuous-time Optimal Control

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Hanwen Cao: h1cao@ucsd.edu Zhichao Li: zhl355@ucsd.edu

Continuous-time Motion Model

- ▶ time: $t \in [0, T]$
- ▶ state: $\mathbf{x}(t) \in \mathcal{X} \subseteq \mathbb{R}^n$, $\forall t \in [0, T]$
- ▶ control: $\mathbf{u}(t) \in \mathcal{U} \subseteq \mathbb{R}^m$, $\forall t \in [0, T]$
- motion model: a stochastic differential equation (SDE):

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t),\mathbf{u}(t)) + C(\mathbf{x}(t),\mathbf{u}(t))\omega(t)$$

defined by functions $\mathbf{f}: \mathcal{X} \times \mathcal{U} \to \mathbb{R}^n$ and $C: \mathcal{X} \times \mathcal{U} \to \mathbb{R}^{n \times d}$

▶ white noise: $\omega(t) \in \mathbb{R}^d$, $\forall t \in [0, T]$

Gaussian Process

A Gaussian Process with mean function $\mu(t)$ and covariance function k(t,t') is an \mathbb{R}^d -valued continuous-time stochastic process $\{\mathbf{g}(t)\}_t$ such that every finite set $\mathbf{g}(t_1),\ldots,\mathbf{g}(t_n)$ of random variables has a joint Gaussian distribution:

$$egin{bmatrix} \mathbf{g}(t_1) \ dots \ \mathbf{g}(t_n) \end{bmatrix} \sim \mathcal{N} \left(egin{bmatrix} \mu(t_1) \ dots \ \mu(t_n) \end{bmatrix}, egin{bmatrix} k(t_1,t_1) & \dots & k(t_1,t_n) \ dots & \ddots & dots \ k(t_n,t_1) & \cdots & k(t_n,t_n) \end{bmatrix}
ight)$$

- ▶ Short-hand notation: $\mathbf{g}(t) \sim \mathcal{GP}(\mu(t), k(t, t'))$
- ▶ Intuition: a GP is a Gaussian distribution for a function $\mathbf{g}(t)$

Brownian Motion

- Robert Brown made microscopic observations in 1827 that small particles in plant pollen, when immersed in liquid, exhibit highly irregular motion
- ▶ Brownian Motion is an \mathbb{R}^d -valued continuous-time stochastic process $\{\beta(t)\}_{t>0}$ with the following properties:
 - $m{eta}(t)$ has stationary independent increments, i.e., for $0 \leq t_0 < t_1 < \ldots < t_n$, $m{eta}(t_0), m{eta}(t_1) m{eta}(t_0), \ldots, m{eta}(t_n) m{eta}(t_{n-1})$ are independent
 - lacksquare $eta(t) eta(s) \sim \mathcal{N}(\mathbf{0}, (t-s)Q)$ for $0 \leq s \leq t$ and diffusion matrix Q
 - ightharpoonup eta(t) is almost surely continuous (but nowhere differentiable)
- **Standard Brownian Motion**: $\beta(0) = \mathbf{0}$ and Q = I
- ▶ Brownian motion is a Gaussian process $eta(t) \sim \mathcal{GP}(\mathbf{0}, \min\{t, t'\} Q)$

White Noise

- ▶ White Noise is an \mathbb{R}^d -valued continuous-time stochastic process $\{\omega(t)\}_{t\geq 0}$ with the following properties:
 - lacksquare $\omega(t_1)$ and $\omega(t_2)$ are independent if $t_1
 eq t_2$
 - $\omega(t)$ is a Gaussian process $\mathcal{GP}(\mathbf{0}, \delta(t-t')Q)$ with spectral density Q, where δ is the Dirac delta function.
- lacktriangle The sample path of $\omega(t)$ is discontinuous almost everywhere
- ► White noise is unbounded: it takes arbitrarily large positive and negative values at any finite interval
- White noise can be considered the formal derivative of Brownian motion: $d\beta(t) = \omega(t)dt$, where $\beta(t) \sim \mathcal{GP}(\mathbf{0}, \min\{t, t'\}Q)$
- White noise is used to model the motion noise in continuous-time systems of ordinary differential equations

Brownian Motion and White Noise

Continuous-time Stochastic Optimal Control

Problem statement:

$$\min_{\pi} V^{\pi}(0, \mathbf{x}_{0}) := \mathbb{E} \left\{ \int_{0}^{T} \underbrace{\ell(\mathbf{x}(t), \pi(t, \mathbf{x}(t)))}_{\text{stage cost}} dt + \underbrace{\mathfrak{q}(\mathbf{x}(T))}_{\text{terminal cost}} \middle| \mathbf{x}(0) = \mathbf{x}_{0} \right\}$$
s.t.
$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \pi(t, \mathbf{x}(t))) + C(\mathbf{x}(t), \pi(t, \mathbf{x}(t)))\omega(t).$$

- $\mathbf{x}(t) = \mathbf{I}(\mathbf{x}(t), \pi(t, \mathbf{x}(t))) + \mathbf{C}(\mathbf{x}(t), \pi(t, \mathbf{x}(t)))$ $\mathbf{x}(t) \in \mathcal{X}, \ \pi(t, \mathbf{x}(t)) \in PC^{0}([0, T], \mathcal{U})$
- ▶ Admissible policies: set $PC^0([0, T], \mathcal{U})$ of piecewise continuous functions from [0, T] to \mathcal{U}
- Problem variations:
 - $\mathbf{x}(0)$ can be given or free for optimization
 - $ightharpoonup \mathbf{x}(T)$ can be in a given target set T or free for optimization
 - ▶ T can be given (finite-horizon) or free for optimization (first-exit)
 - lacktriangle Additional state and control constraints can be imposed via ${\mathcal X}$ and ${\mathcal U}$

Assumptions

- ightharpoonup f(x,u) is continuously differentiable wrt to x and continuous wrt u
- **Existence and Uniqueness**: for any admissible policy π and initial state $\mathbf{x}(\tau) \in \mathcal{X}, \ \tau \in [0, T]$, the **noise-free** system, $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \pi(t, \mathbf{x}(t)))$, has a **unique state trajectory** $\mathbf{x}(t), \ t \in [\tau, T]$.
- ▶ The stage cost $\ell(\mathbf{x}, \mathbf{u})$ is continuously differentiable wrt \mathbf{x} and continuous wrt \mathbf{u}
- \triangleright The terminal cost q(x) is continuously differentiable wrt x

Examples: Existence and Uniqueness

Example: Existence in not guaranteed in general

$$\dot{x}(t) = x(t)^2, \ x(0) = 1$$

A solution does not exist for $T \ge 1$: $x(t) = \frac{1}{1-t}$

Example: Uniqueness in not guaranteed in general

$$\dot{x}(t) = x(t)^{\frac{1}{3}}, \ x(0) = 0$$

$$x(t) = 0, \ \forall t$$
 Infinite number of solutions :
$$x(t) = \begin{cases} 0 & \text{for } 0 \leq t \leq \tau \\ \left(\frac{2}{3}(t-\tau)\right)^{3/2} & \text{for } t > \tau \end{cases}$$

Special case: Calculus of Variations

- Let $C^1([a,b],\mathbb{R}^m)$ be the set of continuously differentiable functions from [a,b] to \mathbb{R}^m
- ▶ Calculus of Variations: find a curve $\mathbf{y}(x)$ for $x \in [a, b]$ from \mathbf{y}_0 to \mathbf{y}_f that minimizes an objective such as curve length or travel time for a particle accelerated by gravity (Brachistochrone Problem)

$$\min_{\mathbf{y} \in C^{1}([a,b],\mathbb{R}^{m})} \int_{a}^{b} \ell(\mathbf{y}(x),\dot{\mathbf{y}}(x))dx + \mathfrak{q}(\mathbf{y}(b))$$
s.t.
$$\mathbf{y}(a) = \mathbf{y}_{0}, \ \mathbf{y}(b) = \mathbf{y}_{f}$$

- ▶ Special case of continuous-time deterministic optimal control:
 - **b** fully-actuated system: $\dot{\mathbf{x}} = \mathbf{u}$
 - ▶ notation: $t \leftarrow x$, $\mathbf{x}(t) \leftarrow \mathbf{y}(x)$, $\mathbf{u}(t) = \dot{\mathbf{x}}(t) \leftarrow \dot{\mathbf{y}}(x)$

Sufficient Condition for Optimality

► Optimal value function:

$$V^*(t, \mathbf{x}) \leq V^{\pi}(t, \mathbf{x}), \quad \forall \pi \in PC^0([0, T], \mathcal{U}), \mathbf{x} \in \mathcal{X}$$

Sufficient Optimality Condition: HJB PDE

Suppose that $V(t, \mathbf{x})$ is continuously differentiable in t and \mathbf{x} and solves the Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE):

$$\begin{split} & V(T, \mathbf{x}) = \mathfrak{q}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \\ & - \frac{\partial V(t, \mathbf{x})}{\partial t} = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left[\ell(\mathbf{x}, \mathbf{u}) + \nabla_{\mathbf{x}} V(t, \mathbf{x})^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u}) + \frac{1}{2} \operatorname{tr} \left(\Sigma(\mathbf{x}, \mathbf{u}) \left[\nabla_{\mathbf{x}}^{2} V(t, \mathbf{x}) \right] \right) \right] \end{split}$$

for all
$$t \in [0, T]$$
 and $\mathbf{x} \in \mathcal{X}$ and where $\Sigma(\mathbf{x}, \mathbf{u}) := C(\mathbf{x}, \mathbf{u})C^{\top}(\mathbf{x}, \mathbf{u})$.

Then, under the assumptions on Slide 8, $V(t,\mathbf{x})$ is the unique solution of the HJB PDE and is equal to the optimal value function $V^*(t,\mathbf{x})$ of the continuous-time stochastic optimal control problem. The policy $\pi^*(t,\mathbf{x})$ that attains the minimum in the HJB PDE for all t and \mathbf{x} is an optimal policy.

Existence and Uniqueness of HJB PDE Solutions

- ▶ The HJB PDE is the continuous-time analog of the Bellman Equation
- ► The HJB PDE has at most one classical solution a function which satisfies the PDE everywhere
- ▶ When the optimal value function is not smooth (e.g., bang-bang control), the HJB PDE does not have a classical solution
- The HJB PDE always has a unique viscosity solution which is the optimal value function
- ► Approximation schemes based on MDP discretization are guaranteed to converge to the unique viscosity solution
- ► Most continuous function approximation schemes (which scale better) are unable to represent non-smooth solutions
- ▶ All examples of non-smoothness seem to be deterministic, i.e., noise smooths the optimal value function

HJB PDE Derivation

- ► A discrete-time approximation of the cont.-time optimal control problem can be used to derive the HJB PDE from the DP algorithm
- ▶ Motion model: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) + C(\mathbf{x}, \mathbf{u})\omega$ with $\mathbf{x}(0) = \mathbf{x}_0$
- **Euler Discretization** of the SDE with time step τ :
 - ▶ Discretize [0, T] into N pieces of width $\tau := \frac{T}{N}$
 - ▶ Define $\mathbf{x}_k := \mathbf{x}(k\tau)$ and $\mathbf{u}_k := \mathbf{u}(k\tau)$ for k = 0, ..., N
 - Discretized system dynamics:

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{x}_k + \tau \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k) + C(\mathbf{x}_k, \mathbf{u}_k) \boldsymbol{\epsilon}_k, & \boldsymbol{\epsilon}_k \sim \mathcal{N}(0, \tau I) \\ &= \mathbf{x}_k + \mathbf{d}_k, & \mathbf{d}_k \sim \mathcal{N}(\tau \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k), \tau \boldsymbol{\Sigma}(\mathbf{x}_k, \mathbf{u}_k)) \end{aligned}$$

where $\Sigma(\mathbf{x}, \mathbf{u}) = C(\mathbf{x}, \mathbf{u})C^{\top}(\mathbf{x}, \mathbf{u})$ as before

- ► Gaussian motion model: $p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) = \phi(\mathbf{x}'; \mathbf{x} + \tau \mathbf{f}(\mathbf{x}, \mathbf{u}), \tau \Sigma(\mathbf{x}, \mathbf{u}))$, where ϕ is the Gaussian probability density function
- ▶ Discretized stage cost: $\tau \ell(x, u)$

HJB PDE Derivation

- ▶ Idea: apply the Bellman Equation to the now discrete-time problem and take the limit as $\tau \to 0$ to obtain a "continuous-time Bellman Equation"
- **Bellman Equation**: finite-horizon problem with $t := k\tau$

$$V(t, \mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \tau \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(t + \tau, \mathbf{x}') \right] \right\}$$

- Note that $\mathbf{x}' = \mathbf{x} + \mathbf{d}$ where $\mathbf{d} \sim \mathcal{N}(\tau f(\mathbf{x}, \mathbf{u}), \tau \Sigma(\mathbf{x}, \mathbf{u}))$
- ▶ Taylor-series expansion of $V(t + \tau, \mathbf{x}')$ around (t, \mathbf{x}) :

$$V(t + \tau, \mathbf{x} + \mathbf{d}) = V(t, \mathbf{x}) + \tau \frac{\partial V}{\partial t}(t, \mathbf{x}) + o(\tau^{2})$$
$$+ \left[\nabla_{\mathbf{x}}V(t, \mathbf{x})\right]^{\top} \mathbf{d} + \frac{1}{2}\mathbf{d}^{\top} \left[\nabla_{\mathbf{x}}^{2}V(t, \mathbf{x})\right] \mathbf{d} + o(\mathbf{d}^{3})$$

HJB PDE Derivation

▶ Note that $\mathbb{E}\left[\mathbf{d}^{\top}M\mathbf{d}\right] = \boldsymbol{\mu}^{\top}M\boldsymbol{\mu} + \operatorname{tr}(\Sigma M)$ for $\mathbf{d} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ so that:

$$\mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(t + \tau, \mathbf{x}') \right] = V(t, \mathbf{x}) + \tau \frac{\partial V}{\partial t}(t, \mathbf{x}) + o(\tau^2)$$

$$+ \tau \left[\nabla_{\mathbf{x}} V(t, \mathbf{x}) \right]^{\mathsf{T}} f(\mathbf{x}, \mathbf{u}) + \frac{\tau}{2} \operatorname{tr} \left(\Sigma(\mathbf{x}, \mathbf{u}) \left[\nabla_{\mathbf{x}}^2 V(t, \mathbf{x}) \right] \right)$$

Substituting in the Bellman Equation and simplifying, we get:

$$0 = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \frac{\partial V}{\partial t}(t, \mathbf{x}) + \left[\nabla_{\mathbf{x}} V(t, \mathbf{x})\right]^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u}) + \frac{1}{2} \operatorname{tr}\left(\Sigma(\mathbf{x}, \mathbf{u}) \left[\nabla_{\mathbf{x}}^{2} V(t, \mathbf{x})\right]\right) + \frac{o(\tau^{2})}{\tau} \right\}$$

▶ Taking the limit as $\tau \to 0$ (assuming it can be exchanged with $\min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})}$) leads to the HJB PDE:

$$-\frac{\partial V}{\partial t}(t,\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x},\mathbf{u}) + \left[\nabla_{\mathbf{x}}V(t,\mathbf{x})\right]^{\top} \mathbf{f}(\mathbf{x},\mathbf{u}) + \frac{1}{2} \operatorname{tr}\left(\Sigma(\mathbf{x},\mathbf{u}) \left[\nabla_{\mathbf{x}}^{2}V(t,\mathbf{x})\right]\right) \right\}$$

Example 1: Guessing a Solution for the HJB PDE

- ► System: $\dot{x}(t) = u(t)$, $|u(t)| \le 1$, $0 \le t \le 1$
- ▶ Costs: $\ell(x, u) = 0$ and $\mathfrak{q}(x) = \frac{1}{2}x^2$ for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$
- ➤ Since we only care about the square of the terminal state, we can construct a candidate optimal policy that drives the state towards 0 as quickly as possible and maintains it there:

$$\pi(t,x) = -sgn(x) := \begin{cases} -1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x < 0 \end{cases}$$

- ► The value in not smooth: $V^{\pi}(t,x) = \frac{1}{2} (\max\{0,|x|-(1-t)\})^2$
- ► We will verify that this function satisfies the HJB and is therefore indeed the optimal value function

Example 1: Partial Derivative wrt x

▶ Value function and its partial derivative wrt *x* for fixed *t*:

$$V^{\pi}(t,x) = \frac{1}{2} \left(\max\{0, |x| - (1-t)\} \right)^2 \qquad \frac{\partial V^{\pi}(t,x)}{\partial x} = sgn(x) \max\{0, |x| - (1-t)\}$$

Example 1: Partial Derivative wrt t

▶ Value function and its partial derivative wrt t for fixed x:

$$V^{\pi}(t,x) = rac{1}{2} \left(\max \left\{ 0, |x| - (1-t)
ight\}
ight)^2 \qquad rac{\partial V^{\pi}(t,x)}{\partial t} = \max \{ 0, |x| - (1-t) \}$$

Example 1: Guessing a Solution for the HJB PDE

- ▶ Boundary condition: $V^{\pi}(1,x) = \frac{1}{2}x^2 = \mathfrak{q}(x)$
- ▶ The minimum in the HJB PDE is obtained by u = -sgn(x):

$$\min_{|u| \leq 1} \left(\frac{\partial V^\pi(t,x)}{\partial t} + \frac{\partial V^\pi(t,x)}{\partial x} u \right) = \min_{|u| \leq 1} \left((1 + \operatorname{sgn}(x)u) \left(\max\{0,|x| - (1-t)\} \right) \right) = 0$$

- ► Conclusion: $V^{\pi}(t,x) = V^{*}(t,x)$ and $\pi^{*}(t,x) = -sgn(x)$ is an optimal policy
- ► Solving the HJB PDE in general is non-trivial

Example 2: HJB PDE without a Classical Solution

- ► System: $\dot{x}(t) = x(t)u(t)$, $|u(t)| \le 1$, $0 \le t \le 1$
- ▶ Costs: $\ell(x, u) = 0$ and $\mathfrak{q}(x) = x$ for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$
- ► Optimal policy:

$$\pi(t, x) = \begin{cases} -1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x < 0 \end{cases}$$

Optimal value function:

$$V^{\pi}(t,x) = egin{cases} e^{t-1}x & x > 0 \ 0 & x = 0 \ e^{1-t}x & x < 0 \end{cases}$$

▶ The value function is not differentiable wrt x at x = 0 and hence does not satisfy the HJB PDE in the classical sense

Inf-Horizon Continuous-time Stochastic Optimal Control

$$\qquad \qquad V^{\pi}(\mathbf{x}) := \mathbb{E}\left[\int_{0}^{\infty} \underbrace{e^{-\frac{t}{\gamma}}}_{\text{discount}} \ell(\mathbf{x}(t), \pi(t, \mathbf{x}(t))) dt\right] \text{ with } \gamma \in [0, \infty)$$

HJB PDEs for the Optimal Value Function

Hamiltonian:
$$H[\mathbf{x}, \mathbf{u}, \mathbf{p}] = \ell(\mathbf{x}, \mathbf{u}) + \mathbf{p}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u}) + \frac{1}{2} \operatorname{tr} \left(C(\mathbf{x}, \mathbf{u}) C^{\top}(\mathbf{x}, \mathbf{u}) [\nabla_{\mathbf{x}} \mathbf{p}] \right)$$

Finite Horizon:
$$-\frac{\partial V^*}{\partial t}(t, \mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, \nabla_{\mathbf{x}} V^*(t, \mathbf{x})], \qquad V^*(T, \mathbf{x}) = \mathfrak{q}(\mathbf{x})$$

$$\text{First Exit:} \qquad \qquad 0 = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, \nabla_{\mathbf{x}} V^*(\mathbf{x})], \qquad V^*(\mathbf{x}) = \mathfrak{q}(\mathbf{x}), \ \, \forall \mathbf{x} \in \mathcal{T}$$

Discounted:
$$\frac{1}{\gamma}V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, \nabla_{\mathbf{x}}V^*(\mathbf{x})]$$

Tractable Problems

- ► Control-affine motion model: $\dot{\mathbf{x}} = \mathbf{a}(\mathbf{x}) + B(\mathbf{x})\mathbf{u} + C(\mathbf{x})\boldsymbol{\omega}$
- ► Stage cost quadratic in u: $\ell(\mathbf{x}, \mathbf{u}) = q(\mathbf{x}) + \frac{1}{2}\mathbf{u}^{\top}R(\mathbf{x})\mathbf{u}$, $R(\mathbf{x}) \succ 0$
- ► The Hamiltonian can be minimized analytically wrt **u** (suppressing the dependence on **x** for clarity):

$$H(\mathbf{x}, \mathbf{u}, \mathbf{p}) = q + \frac{1}{2} \mathbf{u}^{\top} R \mathbf{u} + \mathbf{p}^{\top} (\mathbf{a} + B \mathbf{u}) + \frac{1}{2} \operatorname{tr}(CC^{\top} \mathbf{p}_{\mathbf{x}})$$
$$\nabla_{\mathbf{u}} H(\mathbf{x}, \mathbf{u}, \mathbf{p}) = R \mathbf{u} + B^{\top} \mathbf{p} \qquad \nabla_{\mathbf{u}}^{2} H(\mathbf{x}, \mathbf{u}, \mathbf{p}) = R \succ 0$$

▶ Optimal policy for $t \in [0, T]$ and $\mathbf{x} \in \mathcal{X}$:

$$\pi^*(t,\mathbf{x}) = \arg\min_{\mathbf{u}} H(\mathbf{x},\mathbf{u},V_{\mathbf{x}}(t,\mathbf{x})) = -R^{-1}(\mathbf{x})B^\top(\mathbf{x})V_{\mathbf{x}}(t,\mathbf{x})$$

➤ The HJB PDE becomes a second-order quadratic PDE, no longer involving the min operator:

$$egin{aligned} V(T,\mathbf{x}) &= \mathfrak{q}(\mathbf{x}), \ -V_t(t,\mathbf{x}) &= q + \mathbf{a}^ op V_\mathbf{x}(t,\mathbf{x}) + rac{1}{2}\operatorname{tr}(CC^ op V_\mathbf{xx}(t,\mathbf{x})) - rac{1}{2}V_\mathbf{x}(t,\mathbf{x})^ op BR^{-1}B^ op V_\mathbf{x}(t,\mathbf{x}) \end{aligned}$$

Example 3: Pendulum

Pendulum dynamics (Newton's second law for rotational systems):

$$mL^2\ddot{\theta} = u - mgL\sin\theta + noise$$

- Noise: $\sigma\omega(t)$ with $\omega(t)\sim \mathcal{GP}(0,\delta(t-t'))$
- State-space form with $\mathbf{x}=(x_1,x_2)=(\theta,\dot{\theta})$:

$$\dot{\mathbf{x}} = \begin{bmatrix} x_2 \\ k \sin(x_1) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} (u + \sigma \omega)$$

▶ Optimal value and policy for a discounted problem formulation:

$$\pi^*(\mathbf{x}) = -\frac{1}{r}V_{x_2}^*(\mathbf{x})$$

$$\frac{1}{\gamma}V^*(\mathbf{x}) = q(\mathbf{x}) + x_2V_{x_1}^*(\mathbf{x}) + k\sin(x_1)V_{x_2}^*(\mathbf{x}) + \frac{\sigma^2}{2}V_{x_2x_2}^*(\mathbf{x}) - \frac{1}{2r}(V_{x_2}^*(\mathbf{x}))^2$$

Example 3: Pendulum

- Parameters: $k = \sigma = r = 1$, $\gamma = 0.3$, $q(\theta, \dot{\theta}) = 1 \exp(-2\theta^2)$
- Discretize the state space, approximate derivatives via finite differences, and iterate:

$$V^{(i+1)}(\mathbf{x}) = V^{(i)}(\mathbf{x}) + \alpha \left(\gamma \min_{u} H[\mathbf{x}, u, \nabla_{\mathbf{x}} V^{(i)}(\cdot)] - V^{(i)}(\mathbf{x}) \right), \quad \alpha = 0.01$$

