ECE276B: Planning \& Learning in Robotics Lecture 15: Continuous-time Optimal Control

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Hanwen Cao: h1cao@ucsd.edu
Zhichao Li: zhl355@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Continuous-time Motion Model

- time: $t \in[0, T]$
- state: $\mathbf{x}(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, \forall t \in[0, T]$
- control: $\mathbf{u}(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}, \forall t \in[0, T]$
- motion model: a stochastic differential equation (SDE):

$$
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))+C(\mathbf{x}(t), \mathbf{u}(t)) \boldsymbol{\omega}(t)
$$

defined by functions $\mathbf{f}: \mathcal{X} \times \mathcal{U} \rightarrow \mathbb{R}^{n}$ and $C: \mathcal{X} \times \mathcal{U} \rightarrow \mathbb{R}^{n \times d}$

- white noise: $\boldsymbol{\omega}(t) \in \mathbb{R}^{d}, \forall t \in[0, T]$

Gaussian Process

- A Gaussian Process with mean function $\boldsymbol{\mu}(t)$ and covariance function $k\left(t, t^{\prime}\right)$ is an \mathbb{R}^{d}-valued continuous-time stochastic process $\{\mathbf{g}(t)\}_{t}$ such that every finite set $\mathbf{g}\left(t_{1}\right), \ldots, \mathbf{g}\left(t_{n}\right)$ of random variables has a joint Gaussian distribution:

$$
\left[\begin{array}{c}
\mathbf{g}\left(t_{1}\right) \\
\vdots \\
\mathbf{g}\left(t_{n}\right)
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c}
\boldsymbol{\mu}\left(t_{1}\right) \\
\vdots \\
\boldsymbol{\mu}\left(t_{n}\right)
\end{array}\right],\left[\begin{array}{ccc}
k\left(t_{1}, t_{1}\right) & \ldots & k\left(t_{1}, t_{n}\right) \\
\vdots & \ddots & \vdots \\
k\left(t_{n}, t_{1}\right) & \cdots & k\left(t_{n}, t_{n}\right)
\end{array}\right]\right)
$$

- Shorthand notation: $\mathbf{g}(t) \sim \mathcal{G} \mathcal{P}\left(\boldsymbol{\mu}(t), k\left(t, t^{\prime}\right)\right)$
- Intuition: a GP is a Gaussian distribution for a function $\mathbf{g}(t)$

Brownian Motion

- Robert Brown made microscopic observations in 1827 that small particles in plant pollen, when immersed in liquid, exhibit highly irregular motion
- Brownian Motion is an \mathbb{R}^{d}-valued continuous-time stochastic process $\{\boldsymbol{\beta}(t)\}_{t \geq 0}$ with the following properties:
- $\boldsymbol{\beta}(t)$ has stationary independent increments, i.e., for
$0 \leq t_{0}<t_{1}<\ldots<t_{n}, \boldsymbol{\beta}\left(t_{0}\right), \boldsymbol{\beta}\left(t_{1}\right)-\boldsymbol{\beta}\left(t_{0}\right), \ldots, \boldsymbol{\beta}\left(t_{n}\right)-\boldsymbol{\beta}\left(t_{n-1}\right)$ are independent
- $\boldsymbol{\beta}(t)-\boldsymbol{\beta}(s) \sim \mathcal{N}(\mathbf{0},(t-s) Q)$ for $0 \leq s \leq t$ and diffusion matrix Q
- $\boldsymbol{\beta}(t)$ is almost surely continuous (but nowhere differentiable)
- Standard Brownian Motion: $\boldsymbol{\beta}(0)=\mathbf{0}$ and $Q=I$
- Brownian motion is a Gaussian process $\boldsymbol{\beta}(t) \sim \mathcal{G} \mathcal{P}\left(\mathbf{0}, \min \left\{t, t^{\prime}\right\} Q\right)$

White Noise

- White Noise is an \mathbb{R}^{d}-valued continuous-time stochastic process $\{\boldsymbol{\omega}(t)\}_{t \geq 0}$ with the following properties:
- $\boldsymbol{\omega}\left(t_{1}\right)$ and $\boldsymbol{\omega}\left(t_{2}\right)$ are independent if $t_{1} \neq t_{2}$
- $\boldsymbol{\omega}(t)$ is a Gaussian process $\mathcal{G} \mathcal{P}\left(\mathbf{0}, \delta\left(t-t^{\prime}\right) Q\right)$ with spectral density Q, where δ is the Dirac delta function.
- The sample path of $\boldsymbol{\omega}(t)$ is discontinuous almost everywhere
- White noise is unbounded: it takes arbitrarily large positive and negative values at any finite interval
- White noise can be considered the formal derivative of Brownian motion: $\boldsymbol{d} \boldsymbol{\beta}(t)=\boldsymbol{\omega}(t) d t$, where $\boldsymbol{\beta}(t) \sim \mathcal{G} \mathcal{P}\left(\mathbf{0}, \min \left\{t, t^{\prime}\right\} Q\right)$
- White noise is used to model the motion noise in continuous-time systems of ordinary differential equations

Brownian Motion and White Noise

(a) Brownian Motion

(b) White Noise

Continuous-time Stochastic Optimal Control

- Problem statement:

$$
\min _{\pi} V^{\pi}\left(0, \mathbf{x}_{0}\right):=\mathbb{E}\{\int_{0}^{T} \underbrace{\ell(\mathbf{x}(t), \pi(t, \mathbf{x}(t)))}_{\text {stage cost }} d t+\underbrace{\mathfrak{q}(\mathbf{x}(T))}_{\text {terminal cost }} \mid \mathbf{x}(0)=\mathbf{x}_{0}\}
$$

s.t. $\quad \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \pi(t, \mathbf{x}(t)))+C(\mathbf{x}(t), \pi(t, \mathbf{x}(t))) \boldsymbol{\omega}(t)$.

$$
\mathbf{x}(t) \in \mathcal{X}, \pi(t, \mathbf{x}(t)) \in P C^{0}([0, T], \mathcal{U})
$$

- Admissible policies: set $P C^{0}([0, T], \mathcal{U})$ of piecewise continuous functions from $[0, T]$ to \mathcal{U}
- Problem variations:
- $\mathbf{x}(0)$ can be given or free for optimization
- $\mathbf{x}(T)$ can be in a given target set \mathcal{T} or free for optimization
- T can be given (finite-horizon) or free for optimization (first-exit)
- Additional state and control constraints can be imposed via \mathcal{X} and \mathcal{U}

Assumptions

- $\mathbf{f}(\mathbf{x}, \mathbf{u})$ is continuously differentiable wry to \mathbf{x} and continuous wot \mathbf{u}
- Existence and Uniqueness: for any admissible policy π and initial state $\mathbf{x}(\tau) \in \mathcal{X}, \tau \in[0, T]$, the noise-free system, $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \pi(t, \mathbf{x}(t)))$, has a unique state trajectory $\mathbf{x}(t), t \in[\tau, T]$.
- The stage cost $\ell(\mathbf{x}, \mathbf{u})$ is continuously differentiable wot \mathbf{x} and continuous wry u
- The terminal cost $\mathfrak{q}(\mathbf{x})$ is continuously differentiable wry \mathbf{x}

Examples: Existence and Uniqueness

- Example: Existence in not guaranteed in general

$$
\begin{aligned}
& \dot{x}(t)=x(t)^{2}, x(0)=1 \\
& \text { A solution does not exist for } T \geq 1: x(t)=\frac{1}{1-t}
\end{aligned}
$$

- Example: Uniqueness in not guaranteed in general

$$
\dot{x}(t)=x(t)^{\frac{1}{3}}, x(0)=0
$$

$$
x(t)=0, \forall t
$$

Infinite number of solutions:

$$
x(t)= \begin{cases}0 & \text { for } 0 \leq t \leq \tau \\ \left(\frac{2}{3}(t-\tau)\right)^{3 / 2} & \text { for } t>\tau\end{cases}
$$

Special case: Calculus of Variations

- Let $C^{1}\left([a, b], \mathbb{R}^{m}\right)$ be the set of continuously differentiable functions from $[a, b]$ to \mathbb{R}^{m}
- Calculus of Variations: find a curve $\mathbf{y}(x)$ for $x \in[a, b]$ from \mathbf{y}_{0} to \mathbf{y}_{f} that minimizes an objective such as curve length or travel time for a particle accelerated by gravity (Brachistochrone Problem)

$$
\begin{aligned}
\min _{\mathbf{y} \in C^{1}\left([a, b], \mathbb{R}^{m}\right)} & \int_{a}^{b} \ell(\mathbf{y}(x), \dot{\mathbf{y}}(x)) d x+\mathfrak{q}(\mathbf{y}(b)) \\
\text { s.t. } & \mathbf{y}(a)=\mathbf{y}_{0}, \mathbf{y}(b)=\mathbf{y}_{f}
\end{aligned}
$$

- Special case of continuous-time deterministic optimal control:
- fully-actuated system: $\dot{\mathbf{x}}=\mathbf{u}$
- notation: $t \leftarrow x, \mathbf{x}(t) \leftarrow \mathbf{y}(x), \mathbf{u}(t)=\dot{\mathbf{x}}(t) \leftarrow \dot{\mathbf{y}}(x)$

Sufficient Condition for Optimality

- Optimal value function:

$$
V^{*}(t, \mathbf{x}) \leq V^{\pi}(t, \mathbf{x}), \quad \forall \pi \in P C^{0}([0, T], \mathcal{U}), \mathbf{x} \in \mathcal{X}
$$

Sufficient Optimality Condition: HJB PDE

Suppose that $V(t, \mathbf{x})$ is continuously differentiable in t and \mathbf{x} and solves the Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE):

$$
\begin{aligned}
V(T, \mathbf{x}) & =\mathfrak{q}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \\
-\frac{\partial V(t, \mathbf{x})}{\partial t} & =\min _{\mathbf{u} \in \mathcal{U}(\mathbf{x})}\left[\ell(\mathbf{x}, \mathbf{u})+\nabla_{\mathbf{x}} V(t, \mathbf{x})^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u})+\frac{1}{2} \operatorname{tr}\left(\Sigma(\mathbf{x}, \mathbf{u})\left[\nabla_{\mathbf{x}}^{2} V(t, \mathbf{x})\right]\right)\right]
\end{aligned}
$$

for all $t \in[0, T]$ and $\mathbf{x} \in \mathcal{X}$ and where $\Sigma(\mathbf{x}, \mathbf{u}):=C(\mathbf{x}, \mathbf{u}) C^{\top}(\mathbf{x}, \mathbf{u})$.
Then, under the assumptions on Slide $8, V(t, \mathbf{x})$ is the unique solution of the HJB PDE and is equal to the optimal value function $V^{*}(t, \mathbf{x})$ of the continuous-time stochastic optimal control problem. The policy $\pi^{*}(t, \mathbf{x})$ that attains the minimum in the HJB PDE for all t and \mathbf{x} is an optimal policy.

Existence and Uniqueness of HJB PDE Solutions

- The HJB PDE is the continuous-time analog of the Bellman Equation
- The HJB PDE has at most one classical solution - a function which satisfies the PDE everywhere
- When the optimal value function is not smooth (e.g., bang-bang control), the HJB PDE does not have a classical solution
- The HJB PDE always has a unique viscosity solution which is the optimal value function
- Approximation schemes based on MDP discretization are guaranteed to converge to the unique viscosity solution
- Most continuous function approximation schemes (which scale better) are unable to represent non-smooth solutions
- All examples of non-smoothness seem to be deterministic, i.e., noise smooths the optimal value function

HJB PDE Derivation

- A discrete-time approximation of the cont.-time optimal control problem can be used to derive the HJB PDE from the DP algorithm
- Motion model: $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u})+C(\mathbf{x}, \mathbf{u}) \boldsymbol{\omega}$ with $\mathbf{x}(0)=\mathbf{x}_{0}$
- Euler Discretization of the SDE with time step τ :
- Discretize $[0, T]$ into N pieces of width $\tau:=\frac{T}{N}$
- Define $\mathbf{x}_{k}:=\mathbf{x}(k \tau)$ and $\mathbf{u}_{k}:=\mathbf{u}(k \tau)$ for $k=0, \ldots, N$
- Discretized system dynamics:

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\mathbf{x}_{k}+\tau \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)+C\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \boldsymbol{\epsilon}_{k}, \quad \boldsymbol{\epsilon}_{k} \sim \mathcal{N}(0, \tau I) \\
& =\mathbf{x}_{k}+\mathbf{d}_{k}, \quad \mathbf{d}_{k} \sim \mathcal{N}\left(\tau \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right), \tau \Sigma\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)\right)
\end{aligned}
$$

where $\Sigma(\mathbf{x}, \mathbf{u})=C(\mathbf{x}, \mathbf{u}) C^{\top}(\mathbf{x}, \mathbf{u})$ as before

- Gaussian motion model: $p_{f}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{u}\right)=\phi\left(\mathbf{x}^{\prime} ; \mathbf{x}+\tau \mathbf{f}(\mathbf{x}, \mathbf{u}), \tau \Sigma(\mathbf{x}, \mathbf{u})\right)$, where ϕ is the Gaussian probability density function
- Discretized stage cost: $\tau \ell(\mathbf{x}, \mathbf{u})$

HJB PDE Derivation

- Idea: apply the Bellman Equation to the now discrete-time problem and take the limit as $\tau \rightarrow 0$ to obtain a "continuous-time Bellman Equation"
- Bellman Equation: finite-horizon problem with $t:=k \tau$

$$
V(t, \mathbf{x})=\min _{\mathbf{u} \in \mathcal{U}(\mathbf{x})}\left\{\tau \ell(\mathbf{x}, \mathbf{u})+\mathbb{E}_{\mathbf{x}^{\prime} \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})}\left[V\left(t+\tau, \mathbf{x}^{\prime}\right)\right]\right\}
$$

- Note that $\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{d}$ where $\mathbf{d} \sim \mathcal{N}(\tau f(\mathbf{x}, \mathbf{u}), \tau \Sigma(\mathbf{x}, \mathbf{u}))$
- Taylor-series expansion of $V\left(t+\tau, \mathbf{x}^{\prime}\right)$ around (t, \mathbf{x}) :

$$
\begin{aligned}
V(t+\tau, \mathbf{x}+\mathbf{d})= & V(t, \mathbf{x})+\tau \frac{\partial V}{\partial t}(t, \mathbf{x})+o\left(\tau^{2}\right) \\
& +\left[\nabla_{\mathbf{x}} V(t, \mathbf{x})\right]^{\top} \mathbf{d}+\frac{1}{2} \mathbf{d}^{\top}\left[\nabla_{\mathbf{x}}^{2} V(t, \mathbf{x})\right] \mathbf{d}+o\left(\mathbf{d}^{3}\right)
\end{aligned}
$$

HJB PDE Derivation

- Note that $\mathbb{E}\left[\mathbf{d}^{\top} M \mathbf{d}\right]=\boldsymbol{\mu}^{\top} M \boldsymbol{\mu}+\operatorname{tr}(\Sigma M)$ for $\mathbf{d} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ so that:

$$
\begin{aligned}
\mathbb{E}_{\mathbf{x}^{\prime} \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})} & {\left[V\left(t+\tau, \mathbf{x}^{\prime}\right)\right]=V(t, \mathbf{x})+\tau \frac{\partial V}{\partial t}(t, \mathbf{x})+o\left(\tau^{2}\right) } \\
& +\tau\left[\nabla_{\mathbf{x}} V(t, \mathbf{x})\right]^{\top} f(\mathbf{x}, \mathbf{u})+\frac{\tau}{2} \operatorname{tr}\left(\Sigma(\mathbf{x}, \mathbf{u})\left[\nabla_{\mathbf{x}}^{2} V(t, \mathbf{x})\right]\right)
\end{aligned}
$$

- Substituting in the Bellman Equation and simplifying, we get:

$$
0=\min _{\mathbf{u} \in \mathcal{U}(\mathbf{x})}\left\{\ell(\mathbf{x}, \mathbf{u})+\frac{\partial V}{\partial t}(t, \mathbf{x})+\left[\nabla_{\mathbf{x}} V(t, \mathbf{x})\right]^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u})+\frac{1}{2} \operatorname{tr}\left(\Sigma(\mathbf{x}, \mathbf{u})\left[\nabla_{\mathbf{x}}^{2} V(t, \mathbf{x})\right]\right)+\frac{o\left(\tau^{2}\right)}{\tau}\right\}
$$

- Taking the limit as $\tau \rightarrow 0$ (assuming it can be exchanged with $\min _{\mathbf{u} \in \mathcal{U}(\mathbf{x})}$) leads to the HJB PDE:

$$
-\frac{\partial V}{\partial t}(t, \mathbf{x})=\min _{\mathbf{u} \in \mathcal{U}(\mathbf{x})}\left\{\ell(\mathbf{x}, \mathbf{u})+\left[\nabla_{\mathbf{x}} V(t, \mathbf{x})\right]^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u})+\frac{1}{2} \operatorname{tr}\left(\Sigma(\mathbf{x}, \mathbf{u})\left[\nabla_{\mathbf{x}}^{2} V(t, \mathbf{x})\right]\right)\right\}
$$

Example 1: Guessing a Solution for the HJB PDE

- System: $\dot{x}(t)=u(t),|u(t)| \leq 1,0 \leq t \leq 1$
- Costs: $\ell(x, u)=0$ and $\mathfrak{q}(x)=\frac{1}{2} x^{2}$ for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$
- Since we only care about the square of the terminal state, we can construct a candidate optimal policy that drives the state towards 0 as quickly as possible and maintains it there:

$$
\pi(t, x)=-\operatorname{sgn}(x):= \begin{cases}-1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x<0\end{cases}
$$

- The value in not smooth: $V^{\pi}(t, x)=\frac{1}{2}(\max \{0,|x|-(1-t)\})^{2}$
- We will verify that this function satisfies the HJB and is therefore indeed the optimal value function

Example 1: Partial Derivative wrt x

- Value function and its partial derivative wrt x for fixed t :

$$
V^{\pi}(t, x)=\frac{1}{2}(\max \{0,|x|-(1-t)\})^{2} \quad \frac{\partial V^{\pi}(t, x)}{\partial x}=\operatorname{sgn}(x) \max \{0,|x|-(1-t)\}
$$

Example 1: Partial Derivative wrt t

- Value function and its partial derivative wrt t for fixed x :

$$
V^{\pi}(t, x)=\frac{1}{2}(\max \{0,|x|-(1-t)\})^{2} \quad \frac{\partial V^{\pi}(t, x)}{\partial t}=\max \{0,|x|-(1-t)\}
$$

$$
\begin{aligned}
& \text { 二 }|\mathrm{x}|>1 \\
& \text { - }|\mathrm{x}| \leq 1
\end{aligned}
$$

Example 1: Guessing a Solution for the HJB PDE

- Boundary condition: $V^{\pi}(1, x)=\frac{1}{2} x^{2}=\mathfrak{q}(x)$
- The minimum in the HJB PDE is obtained by $u=-\operatorname{sgn}(x)$:

$$
\min _{|u| \leq 1}\left(\frac{\partial V^{\pi}(t, x)}{\partial t}+\frac{\partial V^{\pi}(t, x)}{\partial x} u\right)=\min _{|u| \leq 1}((1+\operatorname{sgn}(x) u)(\max \{0,|x|-(1-t)\}))=0
$$

- Conclusion: $V^{\pi}(t, x)=V^{*}(t, x)$ and $\pi^{*}(t, x)=-\operatorname{sgn}(x)$ is an optimal policy
- Solving the HJB PDE in general is non-trivial

Example 2: HJB PDE without a Classical Solution

- System: $\dot{x}(t)=x(t) u(t),|u(t)| \leq 1,0 \leq t \leq 1$
- Costs: $\ell(x, u)=0$ and $\mathfrak{q}(x)=x$ for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$
- Optimal policy:

$$
\pi(t, x)= \begin{cases}-1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x<0\end{cases}
$$

- Optimal value function:

$$
V^{\pi}(t, x)= \begin{cases}e^{t-1} x & x>0 \\ 0 & x=0 \\ e^{1-t} x & x<0\end{cases}
$$

- The value function is not differentiable wrt x at $x=0$ and hence does not satisfy the HJB PDE in the classical sense

Inf-Horizon Continuous-time Stochastic Optimal Control

- $V^{\pi}(\mathbf{x}):=\mathbb{E}[\int_{0}^{\infty} \underbrace{e^{-\frac{t}{\gamma}}}_{\text {discount }} \ell(\mathbf{x}(t), \pi(t, \mathbf{x}(t))) d t]$ with $\gamma \in[0, \infty)$

HJB PDEs for the Optimal Value Function

Hamiltonian: $\quad H[\mathbf{x}, \mathbf{u}, \mathbf{p}]=\ell(\mathbf{x}, \mathbf{u})+\mathbf{p}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u})+\frac{1}{2} \operatorname{tr}\left(C(\mathbf{x}, \mathbf{u}) C^{\top}(\mathbf{x}, \mathbf{u})\left[\nabla_{\mathbf{x}} \mathbf{p}\right]\right)$
Finite Horizon: $\quad-\frac{\partial V^{*}}{\partial t}(t, \mathbf{x})=\min _{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H\left[\mathbf{x}, \mathbf{u}, \nabla_{\mathbf{x}} V^{*}(t, \mathbf{x})\right], \quad V^{*}(T, \mathbf{x})=\mathfrak{q}(\mathbf{x})$

First Exit:

$$
0=\min _{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H\left[\mathbf{x}, \mathbf{u}, \nabla_{\mathbf{x}} V^{*}(\mathbf{x})\right], \quad V^{*}(\mathbf{x})=\mathfrak{q}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{T}
$$

Discounted:

$$
\frac{1}{\gamma} V^{*}(\mathbf{x})=\min _{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H\left[\mathbf{x}, \mathbf{u}, \nabla_{\mathbf{x}} V^{*}(\mathbf{x})\right]
$$

Tractable Problems

- Control-affine motion model: $\dot{\mathbf{x}}=\mathbf{a}(\mathbf{x})+B(\mathbf{x}) \mathbf{u}+C(\mathbf{x}) \boldsymbol{\omega}$
- Stage cost quadratic in $\mathbf{u}: \ell(\mathbf{x}, \mathbf{u})=q(\mathbf{x})+\frac{1}{2} \mathbf{u}^{\top} R(\mathbf{x}) \mathbf{u}, R(\mathbf{x}) \succ 0$
- The Hamiltonian can be minimized analytically wrt u (suppressing the dependence on \mathbf{x} for clarity):

$$
\begin{aligned}
H(\mathbf{x}, \mathbf{u}, \mathbf{p}) & =q+\frac{1}{2} \mathbf{u}^{\top} R \mathbf{u}+\mathbf{p}^{\top}(\mathbf{a}+B \mathbf{u})+\frac{1}{2} \operatorname{tr}\left(C C^{\top} \mathbf{p}_{\mathbf{x}}\right) \\
\nabla_{\mathbf{u}} H(\mathbf{x}, \mathbf{u}, \mathbf{p}) & =R \mathbf{u}+B^{\top} \mathbf{p} \quad \nabla_{\mathbf{u}}^{2} H(\mathbf{x}, \mathbf{u}, \mathbf{p})=R \succ 0
\end{aligned}
$$

- Optimal policy for $t \in[0, T]$ and $\mathbf{x} \in \mathcal{X}$:

$$
\pi^{*}(t, \mathbf{x})=\underset{\mathbf{u}}{\arg \min } H\left(\mathbf{x}, \mathbf{u}, V_{\mathbf{x}}(t, \mathbf{x})\right)=-R^{-1}(\mathbf{x}) B^{\top}(\mathbf{x}) V_{\mathbf{x}}(t, \mathbf{x})
$$

- The HJB PDE becomes a second-order quadratic PDE, no longer involving the min operator:

$$
\begin{aligned}
V(T, \mathbf{x}) & =\mathfrak{q}(\mathbf{x}), \\
-V_{t}(t, \mathbf{x}) & =q+\mathbf{a}^{\top} V_{\mathbf{x}}(t, \mathbf{x})+\frac{1}{2} \operatorname{tr}\left(C C^{\top} V_{\mathbf{x x}}(t, \mathbf{x})\right)-\frac{1}{2} V_{\mathbf{x}}(t, \mathbf{x})^{\top} B R^{-1} B^{\top} V_{\mathbf{x}}(t, \mathbf{x})
\end{aligned}
$$

Example 3: Pendulum

- Pendulum dynamics (Newton's second law for rotational systems):

$$
m L^{2} \ddot{\theta}=u-m g L \sin \theta+\text { noise }
$$

- Noise: $\sigma \omega(t)$ with $\omega(t) \sim \mathcal{G} \mathcal{P}\left(0, \delta\left(t-t^{\prime}\right)\right)$
- State-space form with $\mathbf{x}=\left(x_{1}, x_{2}\right)=(\theta, \dot{\theta})$:

$$
\dot{\mathbf{x}}=\left[\begin{array}{c}
x_{2} \\
k \sin \left(x_{1}\right)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right](u+\sigma \omega)
$$

- Stage cost: $\ell(\mathbf{x}, u)=q(\mathbf{x})+\frac{r}{2} u^{2}$
- Optimal value and policy for a discounted problem formulation:

$$
\begin{aligned}
\pi^{*}(\mathbf{x}) & =-\frac{1}{r} V_{x_{2}}^{*}(\mathbf{x}) \\
\frac{1}{\gamma} V^{*}(\mathbf{x}) & =q(\mathbf{x})+x_{2} V_{x_{1}}^{*}(\mathbf{x})+k \sin \left(x_{1}\right) V_{x_{2}}^{*}(\mathbf{x})+\frac{\sigma^{2}}{2} V_{x_{2} x_{2}}^{*}(\mathbf{x})-\frac{1}{2 r}\left(V_{x_{2}}^{*}(\mathbf{x})\right)^{2}
\end{aligned}
$$

Example 3: Pendulum

- Parameters: $k=\sigma=r=1, \gamma=0.3, q(\theta, \dot{\theta})=1-\exp \left(-2 \theta^{2}\right)$
- Discretize the state space, approximate derivatives via finite differences, and iterate:

$$
V^{(i+1)}(\mathbf{x})=V^{(i)}(\mathbf{x})+\alpha\left(\gamma \min _{u} H\left[\mathbf{x}, u, \nabla_{\mathbf{x}} V^{(i)}(\cdot)\right]-V^{(i)}(\mathbf{x})\right), \quad \alpha=0.01
$$

$\pi(\mathrm{x})$

