
ECE276B: Planning & Learning in Robotics
Lecture 16: Pontryagin’s Minimum Principle

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Hanwen Cao: h1cao@ucsd.edu
Zhichao Li: zhl355@ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:h1cao@ucsd.edu
mailto:zhl355@ucsd.edu

Continuous-time Deterministic Optimal Control

I Problem statement:

min
π

V π(0, x0) :=

∫ T

0
`(x(t), π(t, x(t)))dt + q(x(T))

s.t. ẋ(t) = f(x(t),u(t)), x(0) = x0

x(t) ∈ X ,
π(t, x(t)) ∈ PC 0([0,T],U)

I Admissible policies: PC 0([0,T],U) is the set of piecewise continuous
functions from [0,T] to U

I Optimal value function: V ∗(t, x) = minπ V
π(t, x)

2

Relationship to Mechanics

I Costate: p(t) is the gradient/sensitivity of the optimal value function
V ∗(t, x(t)) with respect to the state x(t).

I Hamiltonian: captures the total energy of the system:

H(x,u,p) := `(x,u) + p>f(x,u)

I Hamilton’s principle of least action: trajectories of mechanical
systems minimize the action integral

∫ T
0 `(x(t), ẋ(t))dt, where the

Lagrangian `(x, ẋ) := K (ẋ)− U(x) is the difference between kinetic and
potential energy.

I If the stage cost is the Lagrangian of a mechanical system, the
Hamiltonian is the (negative) total energy (kinetic plus potential)

3

Lagrangian Mechanics

I Consider a point mass m with position x and velocity ẋ

I Kinetic energy K (ẋ) := 1
2m‖ẋ‖

2
2 and momentum p := mẋ

I Potential energy U(x) and conservative force F = −∂U(x)
∂x

I Newtonian equations of motion: F = mẍ

I Note that −∂U(x)
∂x = F = mẍ = d

dt p = d
dt

(
∂K(ẋ)
∂ẋ

)
I Note that ∂U(x)

∂ẋ = 0 and ∂K(ẋ)
∂x = 0

I Lagrangian: `(x, ẋ) := K (ẋ)− U(x)

I Euler-Lagrange equation: d
dt

(
∂`(x,ẋ)
∂ẋ

)
− ∂`(x,ẋ)

∂x = 0

4

Conservation of Energy

I Total energy E (x, ẋ) = K (ẋ) + U(x) = 2K (ẋ)− `(x, ẋ) = p>ẋ− `(x, ẋ)

I Note that:

d

dt

(
p>ẋ

)
=

d

dt

(
∂`(x, ẋ)

∂ẋ

>
ẋ

)
=

(
d

dt

∂`(x, ẋ)

∂ẋ

)>
ẋ +

∂`(x, ẋ)

∂ẋ

>
ẍ

d

dt
`(x, ẋ) =

∂`(x, ẋ)

∂x

>
ẋ +

∂`(x, ẋ)

∂ẋ

>
ẍ +

∂

∂t
`(x, ẋ)

I Conservation of energy using the Euler-Lagrange equation:

d

dt
E (x, ẋ) =

d

dt

(
∂`(x, ẋ)

∂ẋ

>
ẋ

)
− d

dt
`(x, ẋ) = − ∂

∂t
`(x, ẋ) = 0

I In our formulation, the costate is the negative momentum and the
Hamiltonian is the negative total energy

5

I Extremal open-loop trajectories (i.e., local minima) can be computed
by solving a boundary-value ODE with initial state x(0) and terminal
costate p(T) = ∇xq(x)

Theorem: Pontryagin’s Minimum Principle (PMP)

I Let u∗(t) : [0,T]→ U be an optimal control trajectory

I Let x∗(t) : [0,T]→ X be the associated state trajectory from x0
I Then, there exists a costate trajectory p∗(t) : [0,T]→ X satisfying:

1. Canonical equations with boundary conditions:

ẋ∗(t) = ∇pH(x∗(t),u∗(t),p∗(t)), x∗(0) = x0

ṗ∗(t) = −∇xH(x∗(t),u∗(t),p∗(t)), p∗(T) = ∇xq(x∗(T))

2. Minimum principle with constant (holonomic) constraint:

u∗(t) = arg min
u∈U(x∗(t))

H(x∗(t),u,p∗(t)), ∀t ∈ [0,T]

H(x∗(t),u∗(t),p∗(t)) = constant, ∀t ∈ [0,T]

I Proof: Liberzon, Calculus of Variations & Optimal Control, Ch. 4.2
6

HJB PDE vs PMP
I The HJB PDE provides a lot of information – the optimal value function

and an optimal policy for all time and all states!

I Often, we only care about the optimal trajectory for a specific initial
condition x0. Exploiting that we need less information, we can arrive at
simpler conditions for optimality – Pontryagin’s Minimum Principle

I The PMP does not apply to infinite horizon problems, so one has to
use the HJB PDE in that case

I The HJB PDE is a sufficient condition for optimality: it is possible
that the optimal solution does not satisfy it but a solution that satisfies
it is guaranteed to be optimal

I The PMP is a necessary condition for optimality: it is possible that
non-optimal trajectories satisfy it so further analysis is necessary to
determine if a candidate PMP policy is optimal

I The PMP requires solving an ODE with split boundary conditions (not
easy but much easier than the nonlinear HJB PDE!)

7

Proof of PMP (Step 0: Preliminaries)

Lemma: ∇-min Exchange

Let F (t, x,u) be continuously differentiable in t ∈ R, x ∈ Rn, u ∈ Rm and let
U ⊆ Rm be a convex set. Assume π∗(t, x) = arg min

u∈U
F (t, x,u) exists and is

continuously differentiable. Then, for all t and x:

∂

∂t

(
min
u∈U

F (t, x,u)

)
=

∂

∂t
F (t, x,u)

∣∣∣∣
u=π∗(t,x)

∇x

(
min
u∈U

F (t, x,u)

)
= ∇xF (t, x,u)

∣∣
u=π∗(t,x)

I Proof: Let G (t, x) := minu∈U F (t, x,u) = F (t, x, π∗(t, x)). Then:

∂

∂t
G (t, x) =

∂

∂t
F (t, x,u)

∣∣∣∣
u=π∗(t,x)

+
∂

∂u
F (t, x,u)

∣∣∣∣
u=π∗(t,x)︸ ︷︷ ︸

=0 by 1st order optimality condition

∂π∗(t, x)

∂t

A similar derivation can be used for the partial derivative wrt x.

8

Proof of PMP (Step 1: HJB PDE gives V ∗(t, x))

I Extra Assumptions: V ∗(t, x) and π∗(t, x) are continuously
differentiable in t and x and U is convex. These assumptions can be
avoided in a more general proof.

I With a continuously differentiable value function, the HJB PDE is also a
necessary condition for optimality:

V ∗(T , x) = q(x), ∀x ∈ X

0 = min
u∈U

(
`(x,u) +

∂

∂t
V ∗(t, x) +∇xV

∗(t, x)>f(x,u)

)
︸ ︷︷ ︸

:=F (t,x,u)

, ∀t ∈ [0,T], x ∈ X

with a corresponding optimal policy π∗(t, x).

9

Proof of PMP (Step 2: ∇-min Exchange Lemma)

I Apply the ∇-min Exchange Lemma to the HJB PDE:

0 =
∂

∂t

(
min
u∈U

F (t, x,u)

)
=

∂2

∂t2
V ∗(t, x) +

[
∂

∂t
∇xV

∗(t, x)

]>
f(x, π∗(t, x))

0 = ∇x

(
min
u∈U

F (t, x,u)

)
= ∇x`(x,u∗) +∇x

∂

∂t
V ∗(t, x) + [∇2

xV
∗(t, x)]f(x,u∗) + [∇xf(x,u∗)]>∇xV

∗(t, x)

where u∗ := π∗(t, x)

I Evaluate these along the trajectory x∗(t) resulting from π∗(t, x∗(t)):

ẋ∗(t) = f(x∗(t),u∗(t)) = ∇pH(x∗(t),u∗(t),p), x∗(0) = x0

10

Proof of PMP (Step 3: Evaluate along x∗(t), u∗(t))
I Evaluate the results of Step 2 along x∗(t):

0 =
∂2V ∗(t, x)

∂t2

∣∣∣∣
x=x∗(t)

+

[
∂

∂t
∇xV

∗(t, x)

∣∣∣∣
x=x∗(t)

]>
ẋ∗(t)

=
d

dt

 ∂

∂t
V ∗(t, x)

∣∣∣∣
x=x∗(t)︸ ︷︷ ︸

:=r(t)

 =
d

dt
r(t)⇒ r(t) = const. ∀t

0 = ∇x`(x,u∗)|x=x∗(t) +
d

dt

∇xV
∗(t, x)|x=x∗(t)︸ ︷︷ ︸
=:p∗(t)


+ [∇xf(x,u∗)|x=x∗(t)]

>[∇xV
∗(t, x)|x=x∗(t)]

= ∇x`(x,u∗)|x=x∗(t) + ṗ∗(t) + [∇xf(x,u∗)|x=x∗(t)]
>p∗(t)

= ṗ∗(t) +∇xH(x∗(t),u∗(t),p∗(t))

11

Proof of PMP (Step 4: Done)
I The boundary condition V ∗(T , x) = q(x) implies that
∇xV

∗(T , x) = ∇xq(x) for all x ∈ X and thus p∗(T) = ∇xq(x∗(T))

I From the HJB PDE we have:

− ∂

∂t
V ∗(t, x) = min

u∈U
H(x,u,∇xV

∗(t, ·))

which along the optimal trajectory x∗(t), u∗(t) becomes:

−r(t) = H(x∗(t),u∗(t),p∗(t)) = const

I Finally, note that

u∗(t) = arg min
u∈U

F (t, x∗(t),u)

= arg min
u∈U

{
`(x∗(t),u) + [∇xV

∗(t, x)|x=x∗(t)]
>f(x∗(t),u)

}
= arg min

u∈U

{
`(x∗(t),u) + p∗(t)>f(x∗(t),u)

}
= arg min

u∈U
H(x∗(t),u,p∗(t))

12

Example: Resource Allocation for a Martian Base
I A fleet of reconfigurable, general purpose robots is sent to Mars at t = 0

I The robots can 1) replicate or 2) make human habitats

I The number of robots at time t is x(t), while the number of habitats is
z(t) and they evolve according to:

ẋ(t) = u(t)x(t), x(0) = x > 0

ż(t) = (1− u(t))x(t), z(0) = 0

0 ≤ u(t) ≤ 1

where u(t) denotes the percentage of the x(t) robots used for replication

I Goal: Maximize the size of the Martian base by a terminal time T , i.e.:

max z(T) =

∫ T

0
(1− u(t))x(t)dt

with f (x , u) = ux , `(x , u) = −(1− u)x and q(x) = 0

13

Example: Resource Allocation for a Martian Base

I Hamiltonian: H(x , u, p) = −(1− u)x + pux

I Apply the PMP:

ẋ∗(t) = ∇pH(x∗, u∗, p∗) = x∗(t)u∗(t), x∗(0) = x

ṗ∗(t) = −∇xH(x∗, u∗, p∗) = (1− u∗(t))− p∗(t)u∗(t), p∗(T) = 0

u∗(t) = arg min
0≤u≤1

H(x∗(t), u, p∗(t)) = arg min
0≤u≤1

(x∗(t)(p∗(t) + 1)u)

I Since x∗(t) > 0 for t ∈ [0,T]:

u∗(t) =

{
0 if p∗(t) > −1

1 if p∗(t) ≤ −1

14

Example: Resource Allocation for a Martian Base

I Work backwards from t = T to determine p∗(t):
I Since p∗(T) = 0 for t close to T , we have u∗(t) = 0 and the costate

dynamics become ṗ∗(t) = 1

I At time t = T − 1, p∗(t) = −1 and the control input switches to
u∗(t) = 1

I For t ≤ T − 1:

ṗ∗(t) = −p∗(t), p(T − 1) = −1

⇒ p∗(t) = e−[(T−1)−t]p(T − 1) ≤ −1 for t < T − 1

I Optimal control:

u∗(t) =

{
1 if 0 ≤ t ≤ T − 1

0 if T − 1 ≤ t ≤ T

15

Example: Resource Allocation for a Martian Base
I Optimal trajectories for the Martian resource allocation problem:

I Conclusions:
I All robots replicate themselves from t = 0 to t = T − 1 and then all

robots build habitats
I If T < 1 , then the robots should only build habitats
I If the Hamiltonian is linear in u, its min can only be attained on the

boundary of U , known as bang-bang control
16

PMP with Fixed Terminal State
I Suppose that in addition to x(0) = x0, a final state x(T) = xτ is given.

I The terminal cost q(x(T)) is not useful since V ∗(T , x) =∞ if
x(T) 6= xτ . The terminal boundary condition for the costate
p(T) = ∇xq(x(T)) does not hold but as compensation we have a
different boundary condition x(T) = xτ .

I We still have 2n ODEs with 2n boundary conditions:

ẋ(t) = f(x(t),u(t)), x(0) = x0, x(T) = xτ

ṗ(t) = −∇xH(x(t),u(t),p(t))

I If only some terminal state are fixed xj(T) = xτ,j for j ∈ I , then:

ẋ(t) = f(x(t),u(t)), x(0) = x0, xj(T) = xτ,j , ∀j ∈ I

ṗ(t) = −∇xH(x(t),u(t),p(t)), pj(T) =
∂

∂xj
q(x(T)), ∀j /∈ I

17

PMP with Fixed Terminal Set

I Terminal set: a k dim surface in Rn requiring:

x(T) ∈ Xτ = {x ∈ Rn | hj(x) = 0, j = 1, . . . , n − k}

I The costate boundary condition requires that p(T) is orthogonal to the
tangent space D = {d ∈ Rn | ∇xhj(x(T))>d = 0, j = 1, . . . , n − k}:

ẋ(t) = f(x(t),u(t)), x(0) = x0, hj(x(T)) = 0, j = 1, . . . , n − k

ṗ(t) = −∇xH(x(t),u(t),p(t)), p(T) ∈ span{∇xhj(x(T)), ∀j}
OR d>p(T) = 0, ∀d ∈ D

18

PMP with Free Initial State

I Suppose that x0 is free and subject to optimization with additional cost
`0(x0) term

I The total cost becomes `0(x0) + V (0, x0) and the necessary condition
for an optimal initial state x0 is:

∇x`0(x)|x=x0 +∇xV (0, x)|x=x0︸ ︷︷ ︸
=p(0)

= 0 ⇒ p(0) = −∇x`0(x0)

I We lose the initial state boundary condition but gain an adjoint state
boundary condition:

ẋ(t) = f(x(t),u(t))

ṗ(t) = −∇xH(x(t),u(t),p(t)), p(0) = −∇x`0(x0), p(T) = ∇xq(x(T))

I Similarly, we can deal with some parts of the initial state being free and
some not

19

PMP with Free Terminal Time
I Suppose that the initial and/or terminal state are given but the terminal

time T is free and subject to optimization

I We can compute the total cost of optimal trajectories for various
terminal times T and look for the best choice, i.e.:

∂

∂t
V ∗(t, x)

∣∣∣∣
t=T ,x=x(T)

= 0

I Recall that on the optimal trajectory:

H(x∗(t),u∗(t),p∗(t)) = − ∂

∂t
V ∗(t, x)

∣∣∣∣
x=x∗(t)

= const. ∀t

I Hence, in the free terminal time case, we gain an extra degree of
freedom with free T but lose one degree of freedom by the constraint:

H(x∗(t),u∗(t),p∗(t)) = 0, ∀t ∈ [0,T]

20

PMP with Time-varying System and Cost
I Suppose that the system and stage cost vary with time:

ẋ = f(x(t),u(t), t) `(x(t),u(t), t)

I A usual trick is to convert the problem to a time-invariant one by
making t part of the state. Let y(t) = t with dynamics:

ẏ(t) = 1, y(0) = 0

I Augmented state z(t) := (x(t), y(t)) and system:

ż(t) =f̄(z(t),u(t)) :=

[
f(x(t),u(t), y(t))

1

]
¯̀(z,u) :=`(x,u, y) q̄(z) := q(x)

I The Hamiltonian need not to be constant along the optimal trajectory:

H(x,u,p, t) = `(x,u, t) + p>f(x,u, t)

ẋ∗(t) = f(x∗(t),u∗(t), t), x∗(0) = x0

ṗ∗(t) = −∇xH(x∗(t),u∗(t),p∗(t), t), p∗(T) = ∇xq(x∗(T))

u∗(t) = arg min
u∈U

H(x∗(t),u,p∗(t), t)

H(x∗(t),u∗(t),p∗(t), t) 6= const 21

Singular Problems

I The minimum condition u(t) = arg min
u∈U

H(x∗(t),u,p∗(t), t) may be

insufficient to determine u∗(t) for all t in some cases because the values
of x∗(t) and p∗(t) are such that H(x∗(t),u,p∗(t), t) is independent of u
over a nontrivial interval of time

I The optimal trajectories consist of portions where u∗(t) can be
determined from the minimum condition (regular arcs) and where u∗(t)
cannot be determined from the minimum condition since the
Hamiltonian is independent of u (singular arcs)

22

Example: Fixed Terminal State

I System: ẋ(t) = u(t), x(0) = 0, x(1) = 1, u(t) ∈ R

I Cost: min 1
2

∫ 1
0 (x(t)2 + u(t)2)dt

I Want x(t) and u(t) to be small but need to meet x(1) = 1

I Approach: use PMP to find a locally optimal open-loop policy

23

Example: Fixed Terminal State
I Pontryagin’s Minimum Principle

I Hamiltonian: H(x , u, p) = 1
2 (x2 + u2) + pu

I Minimum principle: u(t) = arg min
u∈R

{
1
2 (x(t)2 + u2) + p(t)u

}
= −p(t)

I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t) = −p(t), x(0) = 0, x(1) = 1

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −x(t)

I Candidate trajectory: ẍ(t) = x(t) ⇒ x(t) = aet + be−t = et−e−t

e−e−1

I x(0) = 0 ⇒ a + b = 0
I x(1) = 1 ⇒ ae + be−1 = 1

I Open-loop control: u(t) = ẋ(t) = et+e−t

e−e−1

24

Example: Free Initial State

I System: ẋ(t) = u(t), x(0) = free, x(1) = 1, u(t) ∈ R

I Cost: min 1
2

∫ 1
0 (x(t)2 + u(t)2)dt

I Picking x(0) = 1 will allow u(t) = 0 but we will accumulate cost due to
x(t). On the other hand, picking x(0) = 0 will accumulate cost due to
u(t) having to drive the state to x(1) = 1.

I Approach: use PMP to find a locally optimal open-loop policy

25

Example: Free Initial State
I Pontryagin’s Minimum Principle

I Hamiltonian: H(x , u, p) = 1
2 (x2 + u2) + pu

I Minimum principle: u(t) = arg min
u∈R

{
1
2 (x(t)2 + u2) + p(t)u

}
= −p(t)

I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t) = −p(t), x(1) = 1

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −x(t), p(0) = 0

I Candidate trajectory:

ẍ(t) = x(t) ⇒ x(t) = aet + be−t =
et + e−t

e + e−1

p(t) = −ẋ(t) = −aet + be−t =
−et + e−t

e + e−1

I x(1) = 1 ⇒ ae + be−1 = 1

I p(0) = 0 ⇒ −a + b = 0

I x(0) ≈ 0.65

I Open-loop control: u(t) = ẋ(t) = et−e−t

e+e−1 26

Example: Free Terminal Time

I System: ẋ(t) = u(t), x(0) = 0, x(T) = 1, u(t) ∈ R

I Cost: min
∫ T
0 1 + 1

2(x(t)2 + u(t)2)dt

I Free terminal time: T = free

I Note: if we do not include 1 in the stage-cost (i.e., use the same cost as
before), we would get T ∗ =∞ (see next slide for details)

I Approach: use PMP to find a locally optimal open-loop policy

27

Example: Free Terminal Time
I Pontryagin’s Minimum Principle

I Hamiltonian: H(x(t), u(t), p(t)) = 1 + 1
2 (x(t)2 + u(t)2) + p(t)u(t)

I Minimum principle: u(t) = arg min
u∈R

{
1
2 (x(t)2 + u2) + p(t)u

}
= −p(t)

I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t) = −p(t), x(0) = 0, x(T) = 1

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −x(t)

I Candidate trajectory: ẍ(t) = x(t) ⇒ x(t) = aet + be−t = et−e−t

eT−e−T

I x(0) = 0 ⇒ a + b = 0
I x(T) = 1 ⇒ aeT + be−T = 1

I Free terminal time:

0 = H(x(t), u(t), p(t)) = 1 +
1

2
(x(t)2 − p(t)2)

= 1 +
1

2

(
(et − e−t)2 − (et + e−t)2

(eT − e−T)2

)
= 1− 2

(eT − e−T)2

⇒ T ≈ 0.66

28

Example: Time-varying Singular Problem

I System: ẋ(t) = u(t), x(0) = free, x(1) = free, u(t) ∈ [−1, 1]

I Time-varying cost: min 1
2

∫ 1
0 (x(t)− z(t))2dt for z(t) = 1− t2

I Example feasible state trajectory that tracks the desired z(t) until the
slope of z(t) becomes less than −1 and the input u(t) saturates:

I Approach: use PMP to find a locally optimal open-loop policy

29

Example: Time-varying Singular Problem
I Pontryagin’s Minimum Principle

I Hamiltonian: H(x , u, p, t) = 1
2 (x − z(t))2 + pu

I Minimum principle:

u(t) = arg min
|u|≤1

H(x(t), u, p(t), t) =


−1 if p(t) > 0

undetermined if p(t) = 0

1 if p(t) < 0
I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t),

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −(x(t)− z(t)), p(0) = 0, p(1) = 0

I Singular arc: when p(t) = 0 for a non-trivial time interval, the control
cannot be determined from PMP

I In this example, the singular arc can be determined from the costate
ODE. For p(t) = 0:

0 ≡ ṗ(t) = −x(t) + z(t) ⇒ u(t) = ẋ(t) = ż(t) = −2t

30

Example: Time-varying Singular Problem

I Since p(0) = 0, the state trajectory follows a singular arc until ts ≤ 1
2

(since u(t) = −2t ∈ [−1, 1]) when it switches to a regular arc with
u(t) = −1 (since z(t) is decreasing and we are trying to track it).

I For 0 ≤ t ≤ ts ≤ 1
2 : x(t) = z(t) p(t) = 0

I For ts < t ≤ 1:

ẋ(t) = −1 ⇒ x(t) = z(ts)−
∫ t

ts

ds = 1− t2s − t + ts

ṗ(t) = −(x(t)− z(t)) = t2s − ts − t2 + t, p(ts) = p(1) = 0

⇒ p(s) = p(ts) +

∫ s

ts

(t2s − ts − t2 + t)dt, s ∈ [ts , 1]

⇒ 0 = p(1) = t2s − ts −
1

3
+

1

2
− t3s + t2s +

t3s
3
− t2s

2
⇒ 0 = (ts − 1)2(1− 4ts)

⇒ ts =
1

4

31

Discrete-time PMP
I Consider a discrete-time problem with dynamics xt+1 = f(xt ,ut)

I Introduce Lagrange multipliers p0:T to relax the constraints:

L(x0:T ,u0:T−1,p0:T) = q(xT) + x>0 p0 +
T−1∑
t=0

`(xt ,ut) + (f(xt ,ut)− xt+1)>pt+1

= q(xT) + x>0 p0 − x>TpT +
T−1∑
t=0

H(xt ,ut ,pt+1)− x>t pt

I Setting ∇xL = ∇pL = 0 and explicitly minimizing wrt u0:T−1 yields:

Theorem: Discrete-time PMP

If x∗0:T , u∗0:T−1 is an optimal state-control trajectory starting at x0, then
there exists a costate trajectory p∗0:T such that:

x∗t+1 = ∇pH(x∗t ,u
∗
t ,p
∗
t+1) = f(x∗t ,u

∗
t), x∗0 = x0

p∗t = ∇xH(x∗t ,u
∗
t ,p
∗
t+1) = ∇x`(x∗t ,u

∗
t) +∇xf(x∗t ,u

∗
t)>p∗t+1, p∗T = ∇xq(x∗T)

u∗t = arg min
u

H(x∗t ,u,p
∗
t+1)

32

Gradient of the Value Function via the PMP

I The discrete-time PMP provides an efficient way to evaluate the
gradient of the value function with respect to u and thus optimize
control trajectories locally and numerically

Theorem: Value Function Gradient

Given an initial state x0 and trajectory u0:T−1, let x1:T ,p0:T be such that:

xt+1 = f(xt ,ut), x0 given

pt = ∇x`(xt ,ut) + [∇xf(xt ,ut)]>pt+1, pT = ∇xq(xT)

Then:

∇utV (x0:T ,u0:T−1) = ∇uH(xt ,ut ,pt+1) = ∇u`(xt ,ut) +∇uf(xt ,ut)
>pt+1

I Note that xt can be found in a forward pass (since it does not depend
on p) and then pt can be found in a backward pass

33

Proof by Induction

I The accumulated cost can be written recursively:

Vt(xt:T ,ut:T−1) = `(xt ,ut) + Vt+1(xt+1:T ,ut+1:T−1)

I Note that ut affects the future costs only through xt+1 = f (xt ,ut):

∇utVt(xt:T ,ut:T−1) = ∇u`(xt ,ut) + [∇uf(xt ,ut)]>∇xt+1Vt+1(xt+1:T ,ut+1:T−1)

I Claim: pt = ∇xtVt(xt:T ,ut:T−1):
I Base case: pT = ∇xT q(xT)
I Induction: for t ∈ [0,T):

∇xtVt(xt:T ,ut:T−1)︸ ︷︷ ︸
=pt

= ∇x`(xt ,ut) + [∇xf(xt ,ut)]>∇xt+1Vt+1(xt+1:T ,ut+1:T−1)︸ ︷︷ ︸
=pt+1

which is identical with the costate difference equation.

34

