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Continuous-time Deterministic Optimal Control

» Problem statement:

i
min  V7(0,%0) ;:/0 x(8), (£, x(£)))dt + a(x(T))

™

s.t. x(t) = f(x(t),u(t)), x(0) =xo
m(t,x(t)) € PCO([0, T], U)

» Admissible policies: PC([0, T],U) is the set of piecewise continuous
functions from [0, T] to U

» Optimal value function: V*(t,x) = min; V™(t,x)



Relationship to Mechanics

> Costate: p(t) is the gradient/sensitivity of the optimal value function
V*(t,x(t)) with respect to the state x(t).

» Hamiltonian: captures the total energy of the system:
H(x,u,p) = £(x,u) + p"f(x, u)

» Hamilton’'s principle of least action: trajectories of mechanical
systems minimize the action integral fOT £(x(t),x(t))dt, where the
Lagrangian ¢(x,x) := K(x) — U(x) is the difference between kinetic and
potential energy.

» If the stage cost is the Lagrangian of a mechanical system, the
Hamiltonian is the (negative) total energy (kinetic plus potential)



Lagrangian Mechanics

» Consider a point mass m with position x and velocity x
> Kinetic energy K(x) := 2m||x||3 and momentum p := mx

» Potential energy U(x) and conservative force F = _6L8/>((x)

» Newtonian equations of motion: F = mx

> Note that —2Y0) — F — mzx — dp— 4 (6!;)((*))

» Note that 8%)(.(’() =0 and %)(f) =0

» Lagrangian: 4(x,x) := K(x) — U(x)

> Euler-Lagrange equation: % (azg;,x)) — agg;;() =0




Conservation of Energy

> Total energy E(x,x) = K(x) + U(x) = 2K (x) — £(x,x) = p ' x — £(x,X)

» Note that:
d < T)_() d 8€(x,>'<)T)_( [ d 9l(x,%) T)_(+az(><,>'<)Tjé
gt \P %) T g \ 7 ox “\ar ox 9%
d . o))", axx). .
aﬁ(x, X) = o + X + aﬁ(x, X)

» Conservation of energy using the Euler-Lagrange equation:

T
9 Ex,x) = % (M"’x) x> ~ L) = —%z(x,x) =0

dt ox dt

» In our formulation, the costate is the negative momentum and the
Hamiltonian is the negative total energy



> Extremal open-loop trajectories (i.e., local minima) can be computed
by solving a boundary-value ODE with initial state x(0) and terminal
costate p(T) = Vxq(x)

Theorem: Pontryagin's Minimum Principle (PMP)

> Let u*(t): [0, T] — U be an optimal control trajectory

> Let x*(t) : [0, T] — X be the associated state trajectory from xg
» Then, there exists a costate trajectory p*(t) : [0, T| — X satisfying:
1. Canonical equations with boundary conditions:

x'(t) = VpH(X'(2),u™(1),p"(1)), x"(0) =xo
p*(t) = =ViH(x*(1),u™(2),p" (1)),  p*(T) = Vxa(x*(T))

2. Minimum principle with constant (holonomic) constraint:

u*(t) = argmin H(x*(t),u,p*(t)), vVt e [0, T]
uel (x*(t))
H(x*(t),u”(t), p*(t)) = constant, vVt e [0, T]

» Proof: Liberzon, Calculus of Variations & Optimal Control, Ch. 4.2



HJB PDE vs PMP

>

| 2

The HIB PDE provides a lot of information — the optimal value function
and an optimal policy for all time and all states!

Often, we only care about the optimal trajectory for a specific initial
condition xg. Exploiting that we need less information, we can arrive at
simpler conditions for optimality — Pontryagin’s Minimum Principle

The PMP does not apply to infinite horizon problems, so one has to
use the HJB PDE in that case

The HJB PDE is a sufficient condition for optimality: it is possible
that the optimal solution does not satisfy it but a solution that satisfies
it is guaranteed to be optimal

The PMP is a necessary condition for optimality: it is possible that
non-optimal trajectories satisfy it so further analysis is necessary to
determine if a candidate PMP policy is optimal

The PMP requires solving an ODE with split boundary conditions (not
easy but much easier than the nonlinear HJB PDE!)



Proof of PMP (Step 0: Preliminaries)

Lemma: V-min Exchange
Let F(t,x,u) be continuously differentiable in t € R, x € R"”, u € R” and let

U C R™ be a convex set. Assume 7*(t,x) = arg min F(t,x,u) exists and is
uel

continuously differentiable. Then, for all t and x:

Vx <min F(t,x, u)) = VxF(t,x, u)|u_,r*(tx)
u=m*(t,x) B '

ueld

a ( . 0
P <ume|lr1] F(t,x,u)) = aF(t,x,u)

» Proof: Let G(t,x) := minyey F(t,x,u) = F(t,x,7*(t,x)). Then:

or*(t,x)
ot

0 0
aG(taX) = aF(taX,U)

b aLF(Exu)

u=7*(t,x) u=7*(t,x)

~
=0 by 1st order optimality condition

A similar derivation can be used for the partial derivative wrt x.



Proof of PMP (Step 1: HJB PDE gives V*(t,x))

» Extra Assumptions: V*(t,x) and 7*(t,x) are continuously
differentiable in t and x and U is convex. These assumptions can be
avoided in a more general proof.

» With a continuously differentiable value function, the HJB PDE is also a
necessary condition for optimality:

V¥(T,x) =q(x), ¥xeX

0 = min (E(x,u) + %V*(t7 x) + V, V*(t, x)Tf(x,u)>, Vte [0, Tl,xe X

ucld

=F(t,x,u)

with a corresponding optimal policy 7*(t, x).



Proof of PMP (Step 2: V-min Exchange Lemma)
» Apply the V-min Exchange Lemma to the HJB PDE:

0= % (mln F(t,x u)) = §2V (t,x) + [;?tvxv*(t,x)}Tf(x,w*(t,x))
0=V <um€i29 F(t,x, u))

= Vyil(x,u") + ngv*(t,x) + [V2V*(t, x)1f (x, u*) + [Vif(x,u™)] T Vi V*(t, %)

ot
where u* := 7*(t, x)

» Evaluate these along the trajectory x*(t) resulting from 7*(t, x*(t)):

x*(t) = F(x"(t), u(t)) = VpH(x"(t),u"(t),p),  x7(0) =xo

10



Proof of PMP (Step 3: Evaluate along x*(t), u*(t))

> Evaluate the results of Step 2 along x*(t):

.
PV (t 9
0= # 2V, V*(t,x) x*(t)
ot x:x*(t) ot x=x*(t)
d| o d
i | o (t,x) - dtr(t) = r(t) = const. Vt
=r(t)
0 = V,/l(x,u” |th)+ ( X) |x=x (1)
=:p*(t)

X
_vg(xu”xxt)_" t)

(% ) e ()] [V V(8 %) [ (1)
“(
=7 (t) + ViH(x" (1), u™ (1),

+ [Vx (%, u") lemx(e)] ' P7(2)
p

“(1))

+ [Vsf
p
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Proof of PMP (Step 4: Done)
» The boundary condition V*(T,x) = g(x) implies that

VxV*(T,x) = Vxq(x) for all x € X and thus p*(T) = Viq(x*(T))
» From the HJB PDE we have:

9 * : *
75\/ (t,X) - [InGIZ[]{ H(X,U,Vx\/ (tv ))

which along the optimal trajectory x*(t), u*(t) becomes:
— () = H(X"(£), u* (1), p*(2)) = const
» Finally, note that

u*(t) = arg min F(t,x*(t), u)
ueld

= arg min {e(x*(t), u) + [V VA (£, %)l (9] FOC(8), u)}

= argmin{ 4(x*(t),u () TF(x*(t), u
= argmin {(x"(t), ) +p"(8) F(x" (1), 0)}

= argmin H(x"(t),u, p*(t))
uel
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Example: Resource Allocation for a Martian Base

» A fleet of reconfigurable, general purpose robots is sent to Mars at t =0
» The robots can 1) replicate or 2) make human habitats

» The number of robots at time t is x(t), while the number of habitats is
z(t) and they evolve according to:

x(t) = u(t)x(t), x(0)=x>0
2(t) = (1 — u(t))x(t), 2(0)=0
0<u(t)<1

where u(t) denotes the percentage of the x(t) robots used for replication

» Goal: Maximize the size of the Martian base by a terminal time T, i.e.:

.
max z(T) _/O (1 — u()x(t)dt

with f(x,u) = ux, {(x,u) = —(1 — u)x and gq(x) =0
13



Example: Resource Allocation for a Martian Base

» Hamiltonian: H(x, u,p) = —(1 — u)x + pux

» Apply the PMP:

<“(t) = VpH(x", u%, p") = x*(t)u"(t), x"(0) = x

(1) = =VHK 0", p7) = (1= w7 (2)) — p(2)u™(2), p*(T) =0

*(t) = argmin H(x*(t), u, p*(t)) = arg min(x*(t)(p*(t) + 1)u)
0<u<1 0<u<1

S T X

» Since x*(t) > 0 for t € [0, T]:

() = {0 if p*(t) > —1

1 if p*(t) < -1

14



Example: Resource Allocation for a Martian Base

» Work backwards from t = T to determine p*(t):

> Since p*(T) =0 for t close to T, we have u*(t) = 0 and the costate
dynamics become p*(t) =1

> Attimet= T —1, p*(t) = —1 and the control input switches to
ut(t) =1

» Fort < T-—1:

5(t) = —p*(8), P(T—1)= 1
= p*(t)=e T Vp(T 1)< 1 fort < T —1

» Optimal control:

() =

1 fo<t<T-1
0 fT—-1<t<T

15



Example: Resource Allocation for a Martian Base
» Optimal trajectories for the Martian resource allocation problem:

u*(t) p(t)

» Conclusions:

» All robots replicate themselves from t =0to t = T — 1 and then all
robots build habitats
» If T <1, then the robots should only build habitats

» If the Hamiltonian is linear in u, its min can only be attained on the
boundary of U, known as bang-bang control

16



PMP with Fixed Terminal State

> Suppose that in addition to x(0) = xo, a final state x(T) = x; is given.

» The terminal cost q(x(T)) is not useful since V*(T,x) = oo if
x(T) # x,. The terminal boundary condition for the costate
pP(T) = Vxq(x(T)) does not hold but as compensation we have a
different boundary condition x(T) = x;.

» We still have 2n ODEs with 2n boundary conditions:
x(t) = f(x(t),u(t)), x(0) = xo, X(T) = x,
p(t) = —VxH(x(t),u(t), p(t))
> If only some terminal state are fixed x;(T) = x,; for j € /, then:
x(t) = f(x(t),u(t)), x(0) = xg, Xj(T)=x,j, Vjel

B(t) = ~VxH(x(e). u(t) (1)), Bi(T) = oa(x(T)), ¥j ¢

X

17



PMP with Fixed Terminal Set

» Terminal set: a k dim surface in R” requiring:
x(T)e Xr={xeR"| hj(x)=0, j=1,...,n—k}

» The costate boundary condition requires that p(T) is orthogonal to the
tangent space D = {d € R" | V4h;j(x(T))'d =0, j=1,...,n— k}:

x(t) = f(x(t),u(t)), x(0) =xo, hj(x(T))=0,,=1,...,n—k
p(t) = —VxH(x(t), u(t), p(t)), p(T) € span{Vxh;(x(T)),V/}
OR d'p(T)=0,vdeD
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PMP with Free Initial State

» Suppose that xg is free and subject to optimization with additional cost
go(Xo) term

» The total cost becomes ¢p(x¢) + V/(0,x0) and the necessary condition
for an optimal initial state xq is:
Vilo(X)|x=xo + VxV(0,X)|x=x, =0 = p(0) = —Vxlo(x0)
—_———
=p(0)

» We lose the initial state boundary condition but gain an adjoint state
boundary condition:

x(t) = f(x(t), u(t))

p(t) = —=VxH(x(t),u(t),p(t)), p(0) = —Vxlo(x0), P(T) = Vxa(x(T))
» Similarly, we can deal with some parts of the initial state being free and

some not

19



PMP with Free Terminal Time

| 2

Suppose that the initial and/or terminal state are given but the terminal
time T is free and subject to optimization

We can compute the total cost of optimal trajectories for various
terminal times T and look for the best choice, i.e.:

QV*(t,x) =0
ot t=Tx=x(T)
Recall that on the optimal trajectory:
* * * a *
H(x*(t),u*(t),p"(t)) = —=V*(t,x) = const. Vt
ot x=x*(t)

Hence, in the free terminal time case, we gain an extra degree of
freedom with free T but lose one degree of freedom by the constraint:

H(x*(t),u*(t),p*(t)) =0, vVt e [0, T]

20



PMP with Time-varying System and Cost

» Suppose that the system and stage cost vary with time:

x = f(x(t),u(t),t)  £x(t),u(t), 1)
» A usual trick is to convert the problem to a time-invariant one by
making t part of the state. Let y(t) = t with dynamics:

y(t)=1, y(0)=0
» Augmented state z(t) := (x(t), y(t)) and system:

3(t) =F(z(). u(p)) := | {10} (0)

U(z,u) :=l(x,u,y) T(2) = a(x)
» The Hamiltonian need not to be constant along the optimal trajectory:
H(x,u,p, t) = {(x,u, t) +p ' f(x,u,t)
x*(t) = f(x*(t),u*(t), t), x*(0) = xo
p*(t) = —VxH(x*(t),u*(t),p"(t), 1), p*(T) = Vxa(x"(T))
u'(t) = arg min H(x*(t),u, p*(t), 1)
) #

H(x*(t),u*(t), p*(t), t const 21



Singular Problems

» The minimum condition u(t) = arg min H(x*(t), u, p*(t), t) may be
ucld
insufficient to determine u*(t) for all ¢t in some cases because the values

of x*(t) and p*(t) are such that H(x*(t),u, p*(t), t) is independent of u
over a nontrivial interval of time

» The optimal trajectories consist of portions where u*(t) can be
determined from the minimum condition (regular arcs) and where u*(t)
cannot be determined from the minimum condition since the
Hamiltonian is independent of u (singular arcs)

22



Example: Fixed Terminal State

» System: x(t) = u(t), x(0) =0, x(1) =1, u(t) eR
» Cost: min 2f0 (x(£)? + u(t)?)dt

» Want x(t) and u(t) to be small but need to meet x(1) =1

1

0 1 ¢

» Approach: use PMP to find a locally optimal open-loop policy

23



Example: Fixed Terminal State
» Pontryagin's Minimum Principle
> Hamiltonian: H(x, u, p) = 3(x*> + u?) + pu
» Minimum principle: u(t) = argmin {3(x(t)? + v?) + p(t)u} = —p(t)
ueR

» Canonical equations with boundary conditions:

x(t) = VpH(x(t), u(t), p(t)) = u(t) = —p(t), x(0) =0, x(1) =1
p(t) = =ViH(x(t), u(t), p(t)) = —x(t)

. . ey o B
> Candidate trajectory: %(t) = x(t) = x(t) =ae'+be " ="+
> x(0)=0 = a+b=0
> x(1)=1 = aet+bel=1

x(t)
1

—t

» Open-loop control: u(t) = x(t) = eetjeefl

24



Example: Free Initial State
» System: x(t) = u(t), x(0) = free, x(1) =1, u(t) € R
» Cost: min 2f0 (x(£)? + u(t)?)dt

» Picking x(0) = 1 will allow u(t) = 0 but we will accumulate cost due to
x(t). On the other hand, picking x(0) = 0 will accumulate cost due to
u(t) having to drive the state to x(1) = 1.

x(t)
1

0 1 ¢

» Approach: use PMP to find a locally optimal open-loop policy
25



Example: Free Initial State
» Pontryagin's Minimum Principle
> Hamiltonian: H(x, u, p) = 2(x* + u?) + pu
» Minimum principle: u(t) = arg min {3(x(t)? + v?) + p(t)u} = —p(t)
ueR
> Canonical equations with boundary conditions:
x(t) = VpH(x(t), u(t), p(t)) = u(t) = —p(t), x(1) =1
p(t) = 7VXH(X(t)7 U(t),p(t)) = 7X(t)7 p(O) =0

» Candidate trajectory:

. et +et
x(t)=x(t) = x(t)=ae' +be t=-—"——
(=x(t) = xt)=acttbet=S "
: —ef+et
t)=—x(t) = —ae' + be ' = ————
p(t) = —4(t) = ~ae' + sre
> x(1)=1 = ae+bel=1
> p(0)=0 = -—-a+b=0
> x(0) ~ 0.65
» Open-loop control: u(t) = x(t) = % 0 1

26



Example: Free Terminal Time

» System: x(t) = u(t), x(0) =0, x(T) =1, u(t) e R
> Cost: min [i[ 1+ 3(x(£)? + u(t)?)dt
» Free terminal time: T = free

» Note: if we do not include 1 in the stage-cost (i.e., use the same cost as
before), we would get T* = oo (see next slide for details)

» Approach: use PMP to find a locally optimal open-loop policy

27



Example: Free Terminal Time
» Pontryagin's Minimum Principle

> Hamiltonian: H(x(t), u(t), p(t)) =1+ 2(x ( )2+ u(t)?) + p(t)u ( )
» Minimum principle: u(t) = argegin {3(x(t)> + v?) + p(t)u} =

> Canonical equations with boundary conditions:

x(t) = VpH(x(t), u(t), p(t)) = u(t) = —p(t), x(0)=0, x(T)=1
p(t) = =ViH(x(t), u(t), p(t)) = —x(t)

> Candidate trajectory: x(t) = x(t) = x(t) = ae’ + be™t = &=¢

—t

el —e—

> x(0)=0 = a+b=0
> x(T)=1 = ae +be T=1

» Free terminal time:
0 = H(x(t), u(t), p(t)) = i(x(t)2 - p(t)?)

t —t\2 _ [t —t\2
:l—i—l (ef—e (et +e7F) :1_#
(e —e”

'
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Example: Time-varying Singular Problem
> System: x(t) = u(t), x(0) = free, x(1) = free, u(t) € [-1,1]
> Time-varying cost: min 3 fol(x(t) — z(t))?dt for z(t) =1 — t?

» Example feasible state trajectory that tracks the desired z(t) until the
slope of z(t) becomes less than —1 and the input u(t) saturates:

1

0

» Approach: use PMP to find a locally optimal open-loop policy

29



Example: Time-varying Singular Problem
» Pontryagin's Minimum Principle
» Hamiltonian: H(x, u, p, t) = 3(x — z(t))* + pu
» Minimum principle:

-1 if p(t) >0
u(t) = arg min H(x(t), u, p(t), t) = < undetermined if p(t) =0
lul=1 1 if p(t) <0

» Canonical equations with boundary conditions:

x(t) = VpH(x(1), u(t), p(t)) = u(t),
p(t) = =V H(x(t), u(t), p(t)) = =(x(t) — 2(¢)), p(0) =0, p(1) =0

» Singular arc: when p(t) = 0 for a non-trivial time interval, the control
cannot be determined from PMP

» In this example, the singular arc can be determined from the costate
ODE. For p(t) =0:

0=p(t) = —x(t) +2(t) = u(t)=x(t) =2(t) = -2t

30



Example: Time-varying Singular Problem

> Since p(0) = 0, the state trajectory follows a singular arc until t; < 3
(since u(t) = —2t € [—1,1]) when it switches to a regular arc with
u(t) = —1 (since z(t) is decreasing and we are trying to track it).

> For0<t<t <3 x(t) = z(t) p(t)=0

» Forts <t <1:

x(t)=-1 = x(t):z(ts)—/tds:l—tsz—t—i—ts

Jtg

B = —(x(8) —2(1) = 2 —to— 41, p(ts) = p(1) =0

S
:>p(s):p(t5)+/ (t2 —ts — t2 4+ t)dt, se€[ts,1]
ts

1 1 2 2
:>O:p(1):tfftsf§+§ft3+t52+§s*§
= 0= (ts —1)°(1 - 4t,) t
S P
ST 4
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Discrete-time PMP

» Consider a discrete-time problem with dynamics x;1 = f(x¢, u¢)

» Introduce Lagrange multipliers pg. 7 to relax the constraints:

T-1
L(xo:7,Uo:7-1,Po:T) = 4(XT) +Xg Po+ 3 £(xe, ue) + (F(xe,ue) — xe11) Tpera
t=0
T-1
=q(x7) +XgPo — X7PT + Y H(xe,ue, pey1) — x{ pr
t=0

» Setting VxL = VL = 0 and explicitly minimizing wrt ug.7_1 yields:

Theorem: Discrete-time PMP

If x5.7, ug.7_; is an optimal state-control trajectory starting at xg, then
there exists a costate trajectory p;.; such that:

Xt—&-l :VPH(Xt,UI,pt+1) :f(xt’ut)’ XS = Xo
Bt = VH(xE, Ul BEy) = Vel 02) + V(i ul) Tols By = V()

% H * *k
u;y = arg min H(x{,u, p;, ;)
u 32




Gradient of the Value Function via the PMP

» The discrete-time PMP provides an efficient way to evaluate the
gradient of the value function with respect to u and thus optimize
control trajectories locally and numerically

Theorem: Value Function Gradient

Given an initial state xo and trajectory ug.7_1, let x1.7, po.7 be such that:

xey1 = f(x¢, ue), Xo given

Pr = Vil(x¢,ur) + [Vxf(xe, Ut)]TPtHa pPT = Vxq(xT)
Then:

Vu, V(XO:T; UO:T—1) = VuH(Xn Uz, Pt+1) = Vug(xh Ut) + Vuf(Xn Ut)TPHl

> Note that x; can be found in a forward pass (since it does not depend
on p) and then p; can be found in a backward pass
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Proof by Induction

» The accumulated cost can be written recursively:

Vi(xe:T,ue7-1) = £(Xt, ut) + Vepa(Xeq1:7, Ut 1:7-1)
> Note that u; affects the future costs only through x¢11 = f(x¢, u):
Vu Vi(xe: 7 ue.7-1) = Vul(xe,ur) + [Vuf(xe, ut)]TVXt+1 Vip1(Xes1: 75 Uer1:7-1)
» Claim: p; = Vi, Vi(Xe.7,ue.7-1):
> Base case: pr = Vi, q(x7)

» Induction: for t € [0, T):

th Vt(xt:T, Ut:T—l) = vxg(xt-, Ut) + [fo(xt, Ut)]T thﬂ Vt+1(xt+1:T7 Ut+1:T—1)

=Pt =Pt+1

which is identical with the costate difference equation.
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