ECE276B: Planning \& Learning in Robotics Lecture 17: Linear Quadratic Control

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Hanwen Cao: h1cao@ucsd.edu
Zhichao Li: zhl355@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Globally Optimal Closed-Loop Control

- Finite-horizon continuous-time deterministic optimal control:

$$
\begin{array}{cl}
\min _{\pi} & V^{\pi}\left(0, \mathbf{x}_{0}\right):=\int_{0}^{T} \ell(\mathbf{x}(t), \pi(t, \mathbf{x}(t))) d t+\mathfrak{q}(\mathbf{x}(T)) \\
\text { s.t. } & \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathbf{x}(0)=\mathbf{x}_{0} \\
& \mathbf{x}(t) \in \mathcal{X}, \pi(t, \mathbf{x}(t)) \in P C^{0}([0, T], \mathcal{U})
\end{array}
$$

- Hamiltonian: $H(\mathbf{x}, \mathbf{u}, \mathbf{p}):=\ell(\mathbf{x}, \mathbf{u})+\mathbf{p}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u})$

HJB PDE: Sufficient Condition for Optimality

If $V(t, \mathbf{x})$ satisfies the HJB PDE:

$$
\begin{aligned}
V(T, \mathbf{x}) & =\mathfrak{q}(\mathbf{x}), & & \forall \mathbf{x} \in \mathcal{X} \\
-\frac{\partial}{\partial t} V(t, \mathbf{x}) & =\min _{\mathbf{u} \in \mathcal{U}} H\left(\mathbf{x}, \mathbf{u}, \nabla_{\mathbf{x}} V(t, \mathbf{x})\right), & & \forall \mathbf{x} \in \mathcal{X}, t \in[0, T]
\end{aligned}
$$

then it is the optimal value function and the policy $\pi(t, \mathbf{x})$ that attains the minimum is an optimal policy.

Locally Optimal Open-Loop Control

- Finite-horizon continuous-time deterministic optimal control:

$$
\begin{array}{cl}
\min _{\pi} & V^{\pi}\left(0, \mathbf{x}_{0}\right):=\int_{0}^{T} \ell(\mathbf{x}(t), \pi(t, \mathbf{x}(t))) d t+\mathfrak{q}(\mathbf{x}(T)) \\
\text { s.t. } & \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathbf{x}(0)=\mathbf{x}_{0} \\
& \mathbf{x}(t) \in \mathcal{X}, \pi(t, \mathbf{x}(t)) \in P C^{0}([0, T], \mathcal{U})
\end{array}
$$

- Hamiltonian: $H(\mathbf{x}, \mathbf{u}, \mathbf{p}):=\ell(\mathbf{x}, \mathbf{u})+\mathbf{p}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{u})$

PMP ODE: Necessary Condition for Optimality

If $\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t)\right)$ for $t \in[0, T]$ is a trajectory from an optimal policy $\pi^{*}(t, x)$, then it satisfies:

$$
\begin{array}{ll}
\dot{\mathbf{x}}^{*}(t)=\mathbf{f}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t)\right), & \mathbf{x}^{*}(0)=\mathbf{x}_{0} \\
\dot{\mathbf{p}}^{*}(t)=-\nabla_{\mathbf{x}} \ell\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t)\right)-\left[\nabla_{\mathbf{x}} \mathbf{f}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t)\right)\right]^{\top} \mathbf{p}^{*}(t), & \mathbf{p}^{*}(T)=\nabla_{\mathbf{x}} \mathfrak{q}\left(\mathbf{x}^{*}(T)\right) \\
\mathbf{u}^{*}(t)=\underset{\mathbf{u} \in \mathcal{U}}{\arg \min } H\left(\mathbf{x}^{*}(t), \mathbf{u}, \mathbf{p}^{*}(t)\right), & \forall t \in[0, T] \\
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right)=\text { constant }, & \forall t \in[0, T]
\end{array}
$$

Linear ODE System

- Linear time-invariant ODE System:

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+B \mathbf{u}(t), \quad \mathbf{x}\left(t_{0}\right)=x_{0}
$$

- Transition matrix for LTI ODE system: $\Phi(t, s)=e^{A(t-s)}$
- $\Phi(t, t)=1$
- $\Phi^{-1}(t, s)=\Phi(s, t)$
- $\Phi(t, s)=\Phi\left(t, t_{0}\right) \Phi\left(t_{0}, s\right)$
- $\Phi\left(t_{1}+t_{2}, s\right)=\Phi\left(t_{1}, s\right) \Phi\left(t_{2}, s\right)=\Phi\left(t_{2}, s\right) \Phi\left(t_{1}, s\right)$
- $\frac{d}{d t} \Phi(t, s)=A \Phi(t, s)$
- Solution to LTI ODE system:

$$
\mathbf{x}(t)=\Phi\left(t, t_{0}\right) \mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} \Phi(t, s) B \mathbf{u}(s) d s
$$

Tractable Problems

- Control-affine dynamics and quadratic-in-control cost:

$$
\dot{\mathbf{x}}=\mathbf{a}(\mathbf{x})+B(\mathbf{x}) \mathbf{u} \quad \ell(\mathbf{x}, \mathbf{u})=q(\mathbf{x})+\frac{1}{2} \mathbf{u}^{\top} R(\mathbf{x}) \mathbf{u} \quad R(\mathbf{x}) \succ 0
$$

- Hamiltonian:

$$
\begin{aligned}
H(\mathbf{x}, \mathbf{u}, \mathbf{p}) & =q(\mathbf{x})+\frac{1}{2} \mathbf{u}^{\top} R(\mathbf{x}) \mathbf{u}+\mathbf{p}^{\top}(\mathbf{a}(\mathbf{x})+B(\mathbf{x}) \mathbf{u}) \\
\nabla_{\mathbf{u}} H(\mathbf{x}, \mathbf{u}, \mathbf{p}) & =R(\mathbf{x}) \mathbf{u}+B(\mathbf{x})^{\top} \mathbf{p} \quad \nabla_{\mathbf{u}}^{2} H(\mathbf{x}, \mathbf{u}, \mathbf{p})=R(\mathbf{x})
\end{aligned}
$$

- HJB PDE: obtains the globally optimal value function and policy:

$$
\begin{aligned}
\pi^{*}(t, \mathbf{x}) & =\underset{\mathbf{u}}{\arg \min } H\left(\mathbf{x}, \mathbf{u}, V_{\mathbf{x}}(t, \mathbf{x})\right)=-R(\mathbf{x})^{-1} B(\mathbf{x})^{\top} V_{\mathbf{x}}(t, \mathbf{x}) \\
V(T, \mathbf{x}) & =\mathfrak{q}(\mathbf{x}) \\
-V_{t}(t, \mathbf{x}) & =q(\mathbf{x})+\mathbf{a}(\mathbf{x})^{\top} V_{\mathbf{x}}(t, \mathbf{x})-\frac{1}{2} V_{\mathbf{x}}(t, \mathbf{x})^{\top} B(\mathbf{x}) R(\mathbf{x})^{-1} B(\mathbf{x})^{\top} V_{\mathbf{x}}(t, \mathbf{x}) .
\end{aligned}
$$

Tractable Problems

- Control-affine dynamics and quadratic-in-control cost:

$$
\dot{\mathbf{x}}=\mathbf{a}(\mathbf{x})+B(\mathbf{x}) \mathbf{u} \quad \ell(\mathbf{x}, \mathbf{u})=q(\mathbf{x})+\frac{1}{2} \mathbf{u}^{\top} R(\mathbf{x}) \mathbf{u} \quad R(\mathbf{x}) \succ 0
$$

- Hamiltonian:

$$
\begin{aligned}
H(\mathbf{x}, \mathbf{u}, \mathbf{p}) & =q(\mathbf{x})+\frac{1}{2} \mathbf{u}^{\top} R(\mathbf{x}) \mathbf{u}+\mathbf{p}^{\top}(\mathbf{a}(\mathbf{x})+B(\mathbf{x}) \mathbf{u}) \\
\nabla_{\mathbf{u}} H(\mathbf{x}, \mathbf{u}, \mathbf{p}) & =R(\mathbf{x}) \mathbf{u}+B(\mathbf{x})^{\top} \mathbf{p} \quad \nabla_{\mathbf{u}}^{2} H(\mathbf{x}, \mathbf{u}, \mathbf{p})=R(\mathbf{x})
\end{aligned}
$$

- PMP: both necessary and sufficient for a local minimum:

$$
\begin{array}{ll}
\mathbf{u}=\underset{\mathbf{u}}{\arg \min } H(\mathbf{x}, \mathbf{u}, \mathbf{p})=-R(\mathbf{x})^{-1} B(\mathbf{x})^{\top} \mathbf{p}, & \\
\dot{\mathbf{x}}=\mathbf{a}(\mathbf{x})-B(\mathbf{x}) R^{-1}(\mathbf{x}) B^{\top}(\mathbf{x}) \mathbf{p}, & \mathbf{x}(0)=\mathbf{x}_{0} \\
\dot{\mathbf{p}}=-\left(\mathbf{a}_{\mathbf{x}}(\mathbf{x})+\nabla_{\mathbf{x}} B(\mathbf{x}) \mathbf{u}\right)^{\top} \mathbf{p}-q_{\mathbf{x}}(\mathbf{x})-\frac{1}{2} \nabla_{\mathbf{x}}\left[\mathbf{u}^{\top} R(\mathbf{x}) \mathbf{u}\right], & \mathbf{p}(T)=\mathfrak{q}_{\mathbf{x}}(\mathbf{x}(T))
\end{array}
$$

Example: Pendulum

- Optimal value from HJB:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{c}
x_{2} \\
k \sin \left(x_{1}\right)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u, \quad \mathbf{x}(0)=\mathbf{x}_{0} \\
& a_{\mathbf{x}}(\mathbf{x})=\left[\begin{array}{cc}
0 & 1 \\
k \cos \left(x_{1}\right) & 0
\end{array}\right]
\end{aligned}
$$

- Cost:

$$
\ell(\mathbf{x}, u)=1-e^{-2 x_{1}^{2}}+\frac{r}{2} u^{2} \text { and } \mathfrak{q}(\mathbf{x})=0
$$

- Optimal policy from HJB:
- PMP locally optimal trajectories:

$$
\begin{aligned}
u(t) & =-r^{-1} p_{2}(t), & & t \in[0, T] \\
\dot{x}_{1} & =x_{2}, & & x_{1}(0)=0 \\
\dot{x}_{2} & =k \sin \left(x_{1}\right)-r^{-1} p_{2}, & & x_{2}(0)=0 \\
\dot{p}_{1} & =-4 e^{-2 x_{1}^{2}} x_{1}-p_{2}, & & p_{1}(T)=0 \\
\dot{p}_{2} & =-k \cos \left(x_{1}\right) p_{1}, & & p_{2}(T)=0
\end{aligned}
$$

Linear Quadratic Regulator

- Key assumptions that allowed minimizing the Hamiltonian analytically:
- The system dynamics are linear in the control \mathbf{u}
- The stage-cost is quadratic in the control u
- Linear Quadratic Regulator (LQR): a deterministic time-invariant linear system needs to minimize a quadratic cost over a finite horizon:
$\min _{\pi} V^{\pi}\left(0, \mathbf{x}_{0}\right):=\int_{0}^{T} \underbrace{\frac{1}{2} \mathbf{x}(t)^{\top} Q \mathbf{x}(t)+\frac{1}{2} \mathbf{u}(t)^{\top} R \mathbf{u}(t)}_{\ell(\mathbf{x}(t), \mathbf{u}(t))} d t+\underbrace{\frac{1}{2} \mathbf{x}(T)^{\top} \mathbb{Q x}(T)}_{\mathfrak{q}(\mathbf{x}(T))}$
s.t. $\dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u}, \quad \mathbf{x}(0)=\mathbf{x}_{0}$

$$
\mathbf{x}(t) \in \mathbb{R}^{n}, \mathbf{u}(t)=\pi(t, \mathbf{x}(t)) \in \mathbb{R}^{m}
$$

where $Q=Q^{\top} \succeq 0, \mathbb{Q}=\mathbb{Q}^{\top} \succeq 0$, and $R=R^{\top} \succ 0$

LQR via the PMP

- Hamiltonian: $H(\mathbf{x}, \mathbf{u}, \mathbf{p})=\frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}+\frac{1}{2} \mathbf{u}^{\top} R \mathbf{u}+\mathbf{p}^{\top} A \mathbf{x}+\mathbf{p}^{\top} B \mathbf{u}$
- Canonical equations with boundary conditions:

$$
\begin{aligned}
\dot{\mathbf{x}} & =\nabla_{p} H(\mathbf{x}, \mathbf{u}, \mathbf{p}) & =A \mathbf{x}+B \mathbf{u}, & \mathbf{x}(0)
\end{aligned}=\mathbf{x}_{0}, ~(T)=\mathbb{Q} \mathbf{x}(T) \text { p }
$$

- PIP:

$$
\begin{array}{ll}
\nabla_{\mathbf{u}} H(\mathbf{x}, \mathbf{u}, \mathbf{p})=R \mathbf{u}+B^{\top} \mathbf{p}=0 & \Rightarrow \mathbf{u}(t)=-R^{-1} B^{\top} \mathbf{p}(t) \\
\nabla_{\mathbf{u}}^{2} H(\mathbf{x}, \mathbf{u}, \mathbf{p})=R \succ 0 & \Rightarrow \mathbf{u}(t) \text { is a minimum }
\end{array}
$$

- Hamiltonian matrix: the canonical equations can now be simplified to a linear time-invariant (LTI) system with two-point boundary conditions:

$$
\left[\begin{array}{c}
\dot{\mathbf{x}} \\
\dot{\mathbf{p}}
\end{array}\right]=\left[\begin{array}{cc}
A & -B R^{-1} B^{\top} \\
-Q & -A^{\top}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{p}
\end{array}\right], \quad \begin{aligned}
& \mathbf{x}(0)=\mathbf{x}_{0} \\
& \mathbf{p}(T)=\mathbb{Q} \mathbf{x}(T)
\end{aligned}
$$

LQR via the PMP

- Claim: There exists a matrix $M(t)=M(t)^{T} \succeq 0$ such that $\mathbf{p}(t)=M(t) \mathbf{x}(t)$ for all $t \in[0, T]$
- We can solve the LTI system described by the Hamiltonian matrix backwards in time:

$$
\begin{aligned}
& \mathbf{x}(t)=\left(\Phi_{11}(t, T)+\Phi_{12}(t, T) \mathbb{Q}\right) \mathbf{x}(T) \\
& \mathbf{p}(t)=\left(\Phi_{21}(t, T)+\Phi_{22}(t, T) \mathbb{Q}\right) \mathbf{x}(T)
\end{aligned}
$$

- It turns out that $D(t, T):=\Phi_{11}(t, T)+\Phi_{12}(t, T) \mathbb{Q}$ is invertible for $t \in[0, T]$ and thus:

$$
\mathbf{p}(t)=\underbrace{\left(\Phi_{21}(t, T)+\Phi_{22}(t, T) \mathbb{Q}\right) D^{-1}(t, T)}_{=: M(t)} \mathbf{x}(t), \quad \forall t \in[0, T]
$$

LQR via the PMP

- From $\mathbf{x}(0)=D(0, T) \mathbf{x}(T)$, we obtain an open-loop control policy:

$$
\mathbf{u}(t)=-R^{-1} B^{\top}\left(\Phi_{21}(t, T)+\Phi_{22}(t, T) \mathbb{Q}\right) D(0, T)^{-1} \mathbf{x}_{0}
$$

- From the claim that $\mathbf{p}(t)=M(t) \mathbf{x}(t)$, however, we can also obtain a linear state feedback control policy:

$$
\mathbf{u}(t)=-R^{-1} B^{\top} M(t) \mathbf{x}(t)
$$

- We can obtain a better description of $M(t)$ by differentiating $\mathbf{p}(t)=M(t) \mathbf{x}(t)$ and using the canonical equations:

$$
\begin{aligned}
\dot{\mathbf{p}}(t) & =\dot{M}(t) \mathbf{x}(t)+M(t) \dot{\mathbf{x}}(t) \\
-Q \mathbf{x}(t)-A^{\top} \mathbf{p}(t) & =\dot{M}(t) \mathbf{x}(t)+M(t) A \mathbf{x}(t)-M(t) B R^{-1} B^{\top} \mathbf{p}(t) \\
-\dot{M}(t) \mathbf{x}(t) & =Q \mathbf{x}(t)+A^{\top} M(t) \mathbf{x}(t)+M(t) A \mathbf{x}(t)-M(t) B R^{-1} B^{\top} M(t) \mathbf{x}(t)
\end{aligned}
$$

which needs to hold for all $\mathbf{x}(t)$ and $t \in[0, T]$ and satisfy the boundary condition $\mathbf{p}(T)=M(T) \mathbf{x}(T)=\mathbb{Q} \mathbf{x}(T)$

LQR via the PMP (Summary)

- A unique candidate $\mathbf{u}(t)=-R^{-1} B^{\top} M(t) \mathbf{x}(t)$ satsifies the necessary conditions of the PMP for optimality
- The candidate policy is linear in the state and the matrix $M(t)$ satisfies a quadratic Riccati differential equation (RDE):

$$
-\dot{M}(t)=Q+A^{\top} M(t)+M(t) A-M(t) B R^{-1} B^{\top} M(t), \quad M(T)=\mathbb{Q}
$$

- The HJB PDE is needed to decide whether $\mathbf{u}(t)$ is globally optimal

LQR via the HJB PDE

- Hamiltonian: $H(\mathbf{x}, \mathbf{u}, \mathbf{p})=\frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}+\frac{1}{2} \mathbf{u}^{\top} R \mathbf{u}+\mathbf{p}^{\top} A \mathbf{x}+\mathbf{p}^{\top} B \mathbf{u}$
- HJB PDE:

$$
\begin{array}{rlr}
\pi^{*}(t, \mathbf{x}) & =\underset{\mathbf{u} \in \mathcal{U}}{\arg \min } H\left(\mathbf{x}, \mathbf{u}, V_{x}(t, \mathbf{x})\right)=-R^{-1} B^{\top} V_{x}(t, \mathbf{x}), & t \in[0, T], \mathbf{x} \in \mathcal{X} \\
-V_{t}(t, \mathbf{x}) & =\frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}+\mathbf{x}^{\top} A^{\top} V_{x}(t, \mathbf{x})-\frac{1}{2} V_{x}(t, \mathbf{x})^{\top} B R^{-1} B^{\top} V_{x}(t, \mathbf{x}), & \\
V(T, \mathbf{x}) & =\frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} &
\end{array}
$$

- Guess a solution to the HJB PDE based on the intuition from the PMP:

$$
\begin{aligned}
\pi(t, \mathbf{x}) & =-R^{-1} B^{\top} M(t) \mathbf{x} \\
V(t, \mathbf{x}) & =\frac{1}{2} \mathbf{x}^{\top} M(t) \mathbf{x} \\
V_{t}(t, \mathbf{x}) & =\frac{1}{2} \mathbf{x}^{\top} \dot{M}(t) \mathbf{x} \\
V_{x}(t, \mathbf{x}) & =M(t) \mathbf{x}
\end{aligned}
$$

LQR via the HJB PDE

- Substituting the candidate $V(t, \mathbf{x})$ into the HJB PDE leads to the same RDE as before and we know that $M(t)$ satisfies it!

$$
\begin{aligned}
\frac{1}{2} \mathbf{x}^{\top} M(T) \mathbf{x} & =\frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} \\
-\frac{1}{2} \mathbf{x}^{\top} \dot{M}(t) \mathbf{x} & =\frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}+\mathbf{x}^{\top} A^{\top} M(t) \mathbf{x}-\frac{1}{2} \mathbf{x}^{\top} M(t) B R^{-1} B^{\top} M(t) \mathbf{x}, t \in[0, T], \mathbf{x} \in \mathcal{X}
\end{aligned}
$$

- Conclusion: Since $M(t)$ satisfies the RDE, $V(t, \mathbf{x})=\mathbf{x}^{\top} M(t) \mathbf{x}$ is the unique solution to the HJB PDE and is the optimal value function for the linear quadratic problem with an associated optimal policy $\pi(t, \mathbf{x})=-R^{-1} B^{\top} M(t) \mathbf{x}$.
- General strategy for continuous-time optimal control problems:

1. Identify a candidate policy using the PMP
2. Use intuition from 1. to guess a candidate value function
3. Verify that the candidate policy and value function satisfy the HJB PDE

Continuous-time Finite-horizon LQG

- Linear Quadratic Gaussian (LQG) regulation problem:
$\min _{\pi} \quad V^{\pi}\left(0, \mathbf{x}_{0}\right):=\frac{1}{2} \mathbb{E}\left\{\int_{0}^{T} e^{-\frac{t}{\gamma}}\left[\begin{array}{ll}\mathbf{x}^{\top}(t) & \left.\mathbf{u}^{\top}(t)\right]\end{array}\right]\left[\begin{array}{cc}Q & P^{\top} \\ P & R\end{array}\right]\left[\begin{array}{l}\mathbf{x}(t) \\ \mathbf{u}(t)\end{array}\right] d t+e^{-\frac{T}{\gamma}} \mathbf{x}(T)^{\top} \mathbf{Q} \mathbf{x}(T)\right\}$
s.t. $\quad \dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u}+C \boldsymbol{\omega}, \quad \mathbf{x}(0)=\mathbf{x}_{0}$

$$
\mathbf{x}(t) \in \mathbb{R}^{n}, \mathbf{u}(t)=\pi(t, \mathbf{x}(t)) \in \mathbb{R}^{m}
$$

- Discount factor: $\gamma \in[0, \infty]$
- Optimal value: $V^{*}(t, \mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} M(t) \mathbf{x}+m(t)$
- Optimal policy: $\pi^{*}(t, \mathbf{x})=-R^{-1}\left(P+B^{\top} M(t)\right) \mathbf{x}$
- Riccati Equation:

$$
\left.\left.\begin{array}{rlrl}
-\dot{M}(t) & =Q+A^{\top} M(t)+M(t) A-\left(P+B^{\top} M(t)\right)^{\top} R^{-1}\left(P+B^{\top} M(t)\right)-\frac{1}{\gamma} M(t), & & M(T)
\end{array}\right)=\mathbb{Q}\right)
$$

- $M(t)$ is independent of the noise amplitude C, which implies that the optimal policy $\pi^{*}(t, \mathbf{x})$ is the same for the stochastic (LQG) and deterministic (LQR) problems!

Continuous-time Infinite-horizon LQG

- Linear Quadratic Gaussian (LQG) regulation problem:

$$
\begin{array}{ll}
\min _{\pi} & V^{\pi}\left(\mathbf{x}_{0}\right):=\frac{1}{2} \mathbb{E}\left\{\int _ { 0 } ^ { \infty } e ^ { - \frac { t } { \gamma } } \left[\mathbf{x}^{\top}(t)\right.\right. \\
\left.\left.\mathbf{u}^{\top}(t)\right]\left[\begin{array}{cc}
Q & P^{\top} \\
P & R
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}(t) \\
\mathbf{u}(t)
\end{array}\right] d t\right\} \\
\text { s.t. } & \dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u}+C \boldsymbol{\omega}, \mathbf{x}(0)=\mathbf{x}_{0} \\
& \mathbf{x}(t) \in \mathbb{R}^{n}, \mathbf{u}(t)=\pi(\mathbf{x}(t)) \in \mathbb{R}^{m}
\end{array}
$$

- Discount factor: $\gamma \in[0, \infty)$
- Optimal value: $V^{*}(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} M \mathbf{x}+m$
- Optimal policy: $\pi^{*}(\mathbf{x})=-R^{-1}\left(P+B^{\top} M\right) \mathbf{x}$
- Riccati Equation ('care' in Matlab):

$$
\begin{aligned}
\frac{1}{\gamma} M & =Q+A^{\top} M+M A-\left(P+B^{\top} M\right)^{\top} R^{-1}\left(P+B^{\top} M\right) \\
m & =\frac{\gamma}{2} \operatorname{tr}\left(C C^{\top} M\right)
\end{aligned}
$$

- M is independent of the noise amplitude C, which implies that the optimal policy $\pi^{*}(\mathbf{x})$ is the same for LQG and LQR!

Discrete-time Linear Quadratic Control

Discrete-time Finite-horizon Linear Quadratic Regulator

- Linear Quadratic Regulator (LQR) problem:

$$
\begin{array}{cl}
\min _{\pi_{0: T-1}} & V_{0}^{\pi}(\mathbf{x}):=\frac{1}{2}\left\{\sum_{t=0}^{T-1}\left(\mathbf{x}_{t}^{\top} Q \mathbf{x}_{t}+\mathbf{u}_{t}^{\top} R \mathbf{u}_{t}\right)+\mathbf{x}_{T}^{\top} \mathbb{Q} \mathbf{x}_{T}\right\} \\
\text { s.t. } & \mathbf{x}_{t+1}=A \mathbf{x}_{t}+B \mathbf{u}_{t}, \quad \mathbf{x}_{0}=\mathbf{x} \\
& \mathbf{x}(t) \in \mathbb{R}^{n}, \mathbf{u}_{t}=\pi_{t}\left(\mathbf{x}_{t}\right) \in \mathbb{R}^{m}
\end{array}
$$

- Since this is a discrete-time finite-horizon problem, we can use Dynamic Programming
- At $t=T$, there are no control choices and the value function is quadratic in \mathbf{x} :

$$
V_{T}^{*}(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} M_{T} \mathbf{x}:=\frac{1}{2} \mathbf{x}^{\top} \mathbb{Q} \mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

- Iterate backwards in time $t=T-1, \ldots, 0$:

$$
V_{t}^{*}(\mathbf{x})=\min _{\mathbf{u}}\left\{\frac{1}{2}\left(\mathbf{x}^{\top} Q \mathbf{x}+\mathbf{u}^{\top} R \mathbf{u}\right)+V_{t+1}^{*}(A \mathbf{x}+B \mathbf{u})\right\}
$$

Discrete-time Finite-horizon Linear Quadratic Regulator

- At $t=T-1$:

$$
V_{T-1}^{*}(\mathbf{x})=\min _{\mathbf{u}} \frac{1}{2}\left\{\mathbf{x}^{\top} Q \mathbf{x}+\mathbf{u}^{\top} R \mathbf{u}+(A \mathbf{x}+B \mathbf{u})^{\top} M_{T}(A \mathbf{x}+B \mathbf{u})\right\}
$$

- $V_{T-1}^{*}(\mathbf{x})$ is a positive-definite quadratic function of \mathbf{u} since $R \succ 0$
- Taking the gradient and setting it equal to 0 :

$$
\begin{aligned}
\pi_{T-1}^{*}(\mathbf{x}) & =-\left(B^{\top} \mathrm{Q} B+R\right)^{-1} B^{\top} \mathrm{Q} A \mathbf{x} \\
V_{T-1}^{*}(\mathbf{x}) & =\frac{1}{2} \mathbf{x}^{\top} M_{T-1} \mathbf{x} \\
M_{T-1} & =A^{\top} M_{T} A+Q-A^{\top} M_{T} B\left(B^{\top} M_{T} B+R\right)^{-1} B^{\top} M_{T} A
\end{aligned}
$$

Discrete-time Finite-horizon Linear Quadratic Regulator

- At $t=T-2$:

$$
V_{T-2}^{*}(\mathbf{x})=\min _{\mathbf{u}} \frac{1}{2}\left\{\mathbf{x}^{\top} Q \mathbf{x}+\mathbf{u}^{\top} R \mathbf{u}+(A \mathbf{x}+B \mathbf{u})^{\top} M_{T-1}(A \mathbf{x}+B \mathbf{u})\right\}
$$

- $V_{T-2}^{*}(\mathbf{x})$ is a positive-definite quadratic function of \mathbf{u} since $R \succ 0$
- Taking the gradient and setting it equal to 0 :

$$
\begin{aligned}
\pi_{T-2}^{*}(\mathbf{x}) & =-\left(B^{\top} M_{T-1} B+R\right)^{-1} B^{\top} M_{T-1} A \mathbf{x} \\
V_{T-2}^{*}(\mathbf{x}) & =\frac{1}{2} \mathbf{x}^{\top} M_{T-2} \mathbf{x} \\
M_{T-2} & =A^{\top} M_{T-1} A+Q-A^{\top} M_{T-1} B\left(B^{\top} M_{T-1} B+R\right)^{-1} B^{\top} M_{T-1} A
\end{aligned}
$$

Discrete-time Finite-horizon Linear Quadratic Regulator

- Batch Approach: instead of using the DP algorithm, express the system evolution as a large matrix system

$$
\underbrace{\left[\begin{array}{c}
\mathbf{x}_{0} \\
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{T}
\end{array}\right]}_{\mathbf{s}}=\underbrace{\left[\begin{array}{c}
I \\
A \\
\vdots \\
A^{T}
\end{array}\right]}_{\mathcal{A}} \mathbf{x}_{0}+\underbrace{\left[\begin{array}{cccc}
0 & \cdots & \cdots & 0 \\
B & 0 & \cdots & 0 \\
A B & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
A^{T-1} B & \cdots & \cdots & B
\end{array}\right]}_{\mathcal{B}} \underbrace{\left[\begin{array}{c}
\mathbf{u}_{0} \\
\mathbf{u}_{1} \\
\vdots \\
\mathbf{u}_{T-1}
\end{array}\right]}_{\mathbf{v}}
$$

- Write the objective function in terms of \mathbf{s} and \mathbf{v} :

$$
\begin{array}{ll}
V_{0}^{\pi}\left(\mathbf{x}_{0}\right)=\frac{1}{2}\left(\mathbf{s}^{T} \mathcal{Q} \mathbf{s}+\mathbf{v}^{\top} \mathcal{R} \mathbf{v}\right) & \mathcal{Q}:=\boldsymbol{\operatorname { d i a g }}(Q, \ldots, Q, \mathbb{Q}) \succeq 0 \\
\mathcal{R}:=\operatorname{diag}(R, \ldots, R) \succ 0
\end{array}
$$

Discrete-time Finite-horizon Linear Quadratic Regulator

- Express $V_{0}^{\pi}\left(\mathrm{x}_{0}\right)$ only in terms of the initial condition x_{0} and the control sequence \mathbf{v} by using the batch dynamics $\mathbf{s}=\mathcal{A} \mathbf{x}_{0}+\mathcal{B} \mathbf{v}$:

$$
V_{0}^{\pi}\left(\mathbf{x}_{0}\right)=\frac{1}{2}\left(\mathbf{v}^{\top}\left(\mathcal{B}^{\top} \mathcal{Q B}+\mathcal{R}\right) \mathbf{v}+2 \mathbf{x}_{0}^{\top}\left(\mathcal{A}^{\top} \mathcal{Q} \mathcal{A}\right) \mathbf{v}+\mathbf{x}_{0}^{\top} \mathcal{A}^{\top} \mathcal{Q} \mathcal{A} \mathbf{x}_{0}\right)
$$

- $V_{0}^{\pi}\left(\mathbf{x}_{0}\right)$ is a positive-definite quadratic function of \mathbf{v} since $\mathcal{R} \succ 0$
- Taking the gradient wrt \mathbf{v} and setting it equal to 0 :

$$
\begin{aligned}
\mathbf{v}^{*} & =-\left(\mathcal{B}^{\top} \mathcal{Q B}+\mathcal{R}\right)^{-1} \mathcal{B}^{\top} \mathcal{Q} \mathcal{A} \mathbf{x}_{0} \\
V_{0}^{*}\left(\mathbf{x}_{0}\right) & =\frac{1}{2} \mathbf{x}_{0}^{\top}\left(\mathcal{A}^{\top} \mathcal{Q} \mathcal{A}-\mathcal{A}^{\top} \mathcal{Q B}\left(\mathcal{B}^{\top} \mathcal{Q B}+\mathcal{R}\right)^{-1} \mathcal{B}^{\top} \mathcal{Q A}\right) \mathbf{x}_{0}
\end{aligned}
$$

- The optimal sequence of control inputs $\mathbf{u}_{0: T-1}^{*}$ is a linear function of \mathbf{x}_{0}
- The optimal value function $V_{0}^{*}\left(\mathbf{x}_{0}\right)$ is a quadratic function of \mathbf{x}_{0}

Discrete-time Finite-horizon LQG

- Linear Quadratic Gaussian (LQG) regulation problem:
$\min _{\pi_{0}: T-1} V_{0}^{\pi}(\mathbf{x}):=\frac{1}{2} \mathbb{E}\left\{\sum_{t=0}^{T-1} \gamma^{t}\left(\mathbf{x}_{t}^{\top} Q \mathbf{x}_{t}+2 \mathbf{u}_{t}^{\top} P \mathbf{x}_{t}+\mathbf{u}_{t}^{\top} R \mathbf{u}_{t}\right)+\gamma^{T} \mathbf{x}_{T}^{\top} \mathbb{Q} \mathbf{x}_{T}\right\}$
s.t. $\quad \mathbf{x}_{t+1}=A \mathbf{x}_{t}+B \mathbf{u}_{t}+C \mathbf{w}_{t}, \quad \mathbf{x}_{0}=\mathbf{x}, \mathbf{w}_{t} \sim \mathcal{N}(0, I)$
$\mathbf{x}_{t} \in \mathbb{R}^{n}, \mathbf{u}_{t}=\pi_{t}\left(\mathbf{x}_{t}\right) \in \mathbb{R}^{m}$
- Discount factor: $\gamma \in[0,1]$
- Optimal value: $V_{t}^{*}(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} M_{t} \mathbf{x}+m_{t}$
- Optimal policy: $\pi_{t}^{*}(\mathbf{x})=-\left(R+\gamma B^{\top} M_{t+1} B\right)^{-1}\left(P+\gamma B^{\top} M_{t+1} A\right) \mathbf{x}$
- Riccati Equation:
$M_{t}=Q+\gamma A^{\top} M_{t+1} A-\left(P+\gamma B^{\top} M_{t+1} A\right)^{\top}\left(R+\gamma B^{\top} M_{t+1} B\right)^{-1}\left(P+\gamma B^{\top} M_{t+1} A\right), \quad M_{T}=\mathbb{Q}$
$m_{t}=\gamma m_{t+1}+\gamma \frac{1}{2} \operatorname{tr}\left(C C^{\top} M_{t+1}\right)$,
- M_{t} is independent of the noise amplitude C, which implies that the optimal policy $\pi_{t}^{*}(\mathbf{x})$ is the same for LQG and LQR!

Discrete-time Infinite-horizon LQG

- Linear Quadratic Gaussian (LQG) regulation problem:

$$
\begin{array}{ll}
\min _{\pi} & V^{\pi}(\mathbf{x}):=\frac{1}{2} \mathbb{E}\left\{\sum_{t=0}^{\infty} \gamma^{t}\left(\mathbf{x}_{t}^{\top} Q \mathbf{x}_{t}+2 \mathbf{u}_{t}^{\top} P \mathbf{x}_{t}+\mathbf{u}_{t}^{\top} R \mathbf{u}_{t}\right)\right\} \\
\text { s.t. } & \mathbf{x}_{t+1}=A \mathbf{x}_{t}+B \mathbf{u}_{t}+C \mathbf{w}_{t}, \mathbf{x}_{0}=\mathbf{x}, \mathbf{w}_{t} \sim \mathcal{N}(0, l) \\
& \mathbf{x}_{t} \in \mathbb{R}^{n}, \mathbf{u}_{t}=\pi\left(\mathbf{x}_{t}\right) \in \mathbb{R}^{m}
\end{array}
$$

- Discount factor: $\gamma \in[0,1)$
- Optimal value: $V^{*}(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} M \mathbf{x}+m$
- Optimal policy: $\pi^{*}(\mathbf{x})=-\left(R+\gamma B^{\top} M B\right)^{-1}\left(P+\gamma B^{\top} M A\right) \mathbf{x}$
- Riccati Equation ('dare' in Matlab):

$$
\begin{aligned}
M & =Q+\gamma A^{\top} M A-\left(P+\gamma B^{\top} M A\right)^{\top}\left(R+\gamma B^{\top} M B\right)^{-1}\left(P+\gamma B^{\top} M A\right) \\
m & =\frac{\gamma}{2(1-\gamma)} \operatorname{tr}\left(C C^{\top} M\right)
\end{aligned}
$$

- M is independent of the noise amplitude C, which implies that the optimal policy $\pi^{*}(\mathbf{x})$ is the same for LQG and LQR!

Relation between Continuous- and Discrete-time LQR

- The continuous-time system:

$$
\begin{aligned}
\dot{\mathbf{x}} & =A \mathbf{x}+B \mathbf{u} \\
\ell(\mathbf{x}, \mathbf{u}) & =\frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}+\frac{1}{2} \mathbf{u}^{\top} R \mathbf{u}
\end{aligned}
$$

can be discretized with time step τ :

$$
\begin{aligned}
\mathbf{x}_{t+1} & =(I+\tau A) \mathbf{x}_{t}+\tau B \mathbf{u}_{t} \\
\tau \ell(\mathbf{x}, \mathbf{u}) & =\frac{\tau}{2} \mathbf{x}^{\top} Q \mathbf{x}+\frac{\tau}{2} \mathbf{u}^{\top} R \mathbf{u}
\end{aligned}
$$

- In the limit as $\tau \rightarrow 0$, the discrete-time Riccati equation reduces to the continuous one:

$$
\begin{aligned}
M= & \tau Q+(I+\tau A)^{\top} M(I+\tau A) \\
& \quad-(I+\tau A)^{\top} M \tau B\left(\tau R+\tau B^{\top} M \tau B\right)^{-1} \tau B^{\top} M(I+\tau A) \\
M= & \tau Q+M+\tau A^{\top} M+\tau M A-\tau M B\left(R+\tau B^{\top} M B\right)^{-1} B^{\top} M+o\left(\tau^{2}\right) \\
0=Q+ & A^{\top} M+M A-M B\left(R+\tau B^{\top} M B\right)^{-1} B^{\top} M+\frac{1}{\tau} o\left(\tau^{2}\right)
\end{aligned}
$$

Encoding Goals as Quadratic Costs

- In the finite-horizon case, the matrices A, B, Q, R can be time-varying which is useful for specifying reference trajectories \mathbf{x}_{t}^{*} and for approximating non-LQG problems
- The cost $\left\|\mathbf{x}_{t}-\mathbf{x}_{t}^{*}\right\|^{2}$ can be captured in the LQG formulation by modifying the state and cost as follows:

$$
\begin{aligned}
& \tilde{\mathbf{x}}=\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right] \quad \tilde{A}=\left[\begin{array}{ll}
A & 0 \\
0 & 1
\end{array}\right], \text { etc. } \\
& \frac{1}{2} \tilde{\mathbf{x}}^{\top} \tilde{Q}_{t} \tilde{\mathbf{x}}=\frac{1}{2} \tilde{\mathbf{x}}^{\top}\left(D_{t}^{T} D_{t}\right) \tilde{\mathbf{x}} \quad D_{t} \tilde{\mathbf{x}}_{t}:=\left[\begin{array}{ll}
1 & -\mathbf{x}_{t}^{*}
\end{array}\right] \tilde{\mathbf{x}}_{t}=\mathbf{x}_{t}-\mathbf{x}_{t}^{*}
\end{aligned}
$$

- If the target/goal is stationary, we can instead include it in the state $\tilde{\mathbf{x}}$ and use $D:=\left[\begin{array}{ll}l & -I\end{array}\right]$. This has the advantage that the resulting policy is independent of \mathbf{x}^{*} and can be used for any target \mathbf{x}^{*}.

