ECE276B: Planning & Learning in Robotics Lecture 1: Introduction

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant: Hanwen Cao: h1cao@ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

What is this class about?

ECE276A: sensing and estimation in robotics:

- how to model robot motion and observations
- how to estimate (a distribution of) the robot/environment state x_t from the history of observations z_{0:t} and control inputs u_{0:t-1}

ECE276B: planning and decision making in robotics:

• how to select control inputs $\mathbf{u}_{0:t-1}$ to accomplish a task

References (optional):

- Dynamic Programming and Optimal Control: Bertsekas
- Planning Algorithms: LaValle (http://planning.cs.uiuc.edu)
- Reinforcement Learning: Sutton & Barto (http://incompleteideas.net/book/the-book.html)
- Calculus of Variations and Optimal Control Theory: Liberzon (http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)

Logistics

Course website: https://natanaso.github.io/ece276b

Includes links to:

- Canvas: lecture recordings
- ▶ Piazza: course announcement, Q&A, discussion check Piazza regularly
- Gradescope: homework submission and grades
- Assignments:
 - 3 theoretical homeworks (16% of grade)
 - 3 programming assignments in python + project report:
 - Project 1: Dynamic Programming (18% of grade)
 - Project 2: Motion Planning (18% of grade)
 - Project 3: Optimal Control (18% of grade)
 - Final exam (30% of grade)

Grading:

- standard grade scale (93%+ = A) plus curve based on class performance (e.g., if the top students have grades in the 86% - 89% range, then this will correspond to letter grade A)
- no late submissions: work submitted past the deadline receives 0 credit

Prerequisites

- Probability theory: random variables, probability density functions, expectation, covariance, total probability, conditioning, Bayes rule
- Linear algebra/systems: eigenvalues, symmetric positive definite matrices, linear equations, linear systems of ODEs, matrix exponential
- > Optimization: unconstrained optimization, gradient descent
- Programming: experience with at least one language (python/C++/Matlab), classes/objects, data structures (e.g., queue, list), data input/output processing, plotting
- It is up to you to judge if you are ready for this course!
 - Consult with your classmates who took ECE276A
 - Take a look at the material from last year: https://natanaso.github.io/ece276b2021
 - If the first assignment seems hard, the rest will be hard as well

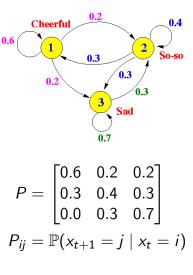
Syllabus (Tentative)

Date	Lecture	Materials	Assignments
Mar 29	Introduction		
Mar 31	Markov Chains	Grinstead-Snell-Ch11	
Apr 05	Markov Decision Processes	Bertsekas 1.1-1.2	
Apr 07	Dynamic Programming	Bertsekas 1.3-1.4	HW1, PR1
Apr 12	Deterministic Shortest Path	Bertsekas 2.1-2.3	HW1 Solutions
Apr 14	Configuration Space	LaValle 4.3, 6.2-6.3	
Apr 19	Search-based Planning	LaValle 2.1-2.3, JPS	
Apr 21	Catch-up		
Apr 26	Anytime Incremental Search	RTAA*, ARA*, AD*, Anytime Search	HW2, PR2
Apr 28	Sampling-based Planning	LaValle 5.5-5.6	HW2 Solutions
May 03	Stochastic Shortest Path	Bertsekas 7.1-7.3	
May 05	Bellman Equations I	Sutton-Barto 4.1-4.4	
May 10	Bellman Equations II	Sutton-Barto 4.5-4.8	
May 12	Catch-up		
May 17	Model-free Prediction	Sutton-Barto 6.1-6.3	HW3, PR3
May 19	Model-free Control	Sutton-Barto 6.4-6.7	HW3 Solutions
May 24	Value Function Approximation	Sutton-Barto Ch.9	
May 26	Continuous-time Optimal Control	Bertsekas 3.1-3.2	
May 31	Pontryagin's Minimum Principle	Bertsekas 3.3-3.4, Liberzon Ch. 2.4 and Ch. 4	
Jun 02	Linear Quadratic Control	Bertsekas 4.1	
Jun 09	Final Exam		

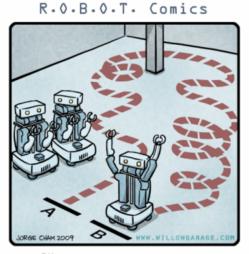
Check website for updates: https://natanaso.github.io/ece276b 5

Markov Chain and Markov Decision Process

- Markov Chain (MC): a probabilistic model used to represent the state evolution of a system
 - The state x_t can be discrete or continuous and is fully observed
 - The state transitions are random and uncontrolled, determined by a transition matrix or function
- Markov Decision Process (MDP): a Markov chain whose transitions are controlled by system control inputs u_t
- Motion planning, optimal control, and reinforcement learning problems are defined using a Markov decision process



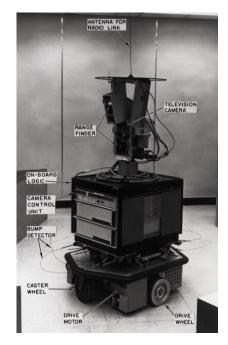
Motion Planning



"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

A* Search

- Invented by Hart, Nilsson and Raphael of Stanford Research Institute in 1968 for the Shakey robot
- MDP with deterministic transitions, i.e., directed graph
- Minimize cumulative transition costs subject to a goal constraint
- Graph search using a specific node visitation rule
- Video: https://youtu.be/ qXdn6ynwpiI?t=3m55s



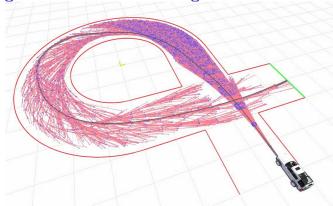
Search-based Motion Planning

- CMU's autonomous car used search-based motion planning in the DARPA Urban Challenge in 2007
- Likhachev and Ferguson, "Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles," IJRR'09
- Video: https://www.youtube.com/watch?v=4hFh100i8KI
- Video: https://www.youtube.com/watch?v=qXZt-B7iUyw
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

Sampling-based Motion Planning

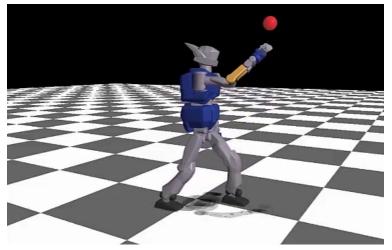
- RRT algorithm on the PR2 planning with both arms (12 DOF)
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR'11
- Video: https://www.youtube.com/watch?v=vW74bC-Ygb4
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761 _

Sampling-based Motion Planning



- RRT* algorithm on a high-fidelity car model 270 degree turn
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR'11
- Video: https://www.youtube.com/watch?v=p3nZHnOWhrg
- Video: https://www.youtube.com/watch?v=LKL5qRBiJaM
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761 1

Optimal Control using Dynamic Programming



- Tassa, Mansard and Todorov, "Control-limited Differential Dynamic Programming," ICRA'14
- Video: https://www.youtube.com/watch?v=tCQSSkBH2NI
- Paper: http://ieeexplore.ieee.org/document/6907001/

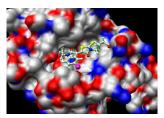
Model-free Reinforcement Learning

- A robot learns to flip pancakes
- Kormushev, Calinon and Caldwell, "Robot Motor Skill Coordination with EM-based Reinforcement Learning," IROS'10
- Video: https://www.youtube.com/watch?v=W_gxLKSsSIE
- Paper: http://www.dx.doi.org/10.1109/IROS.2010.5649089

Applications of Optimal Control & Reinforcement Learning

(a) Autonomous Driving

(b) Marketing



(c) Computational Biology

(e) Character Animation

(f) Robotics

Model

- discrete time $t \in \{0, ..., T\}$ with finite or infinite horizon T
- state $x_t \in \mathcal{X}$ and state space \mathcal{X}
- control $\mathbf{u}_t \in \mathcal{U}$ and control space \mathcal{U}
- **noise** \mathbf{w}_t : random vector with known probability density function (pdf), independent of \mathbf{w}_{τ} for $\tau \neq t$ conditioned on \mathbf{x}_t and \mathbf{u}_t
- motion model: a function f or equivalently a pdf p_f describing the change in the state x_t when a control input u_t is applied:

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t)$$
 or $\mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$

Markov assumption: x_{t+1} depends only on u_t and x_t

stage cost l(x, u) measures the cost of applying control u in state x

terminal cost q(x) measures the cost of terminating at state x

Problem Statement

- **control policy** $\pi_t : \mathcal{X} \mapsto \mathcal{U}$ maps a state **x** at time *t* to a control input **u**
- A control policy π induces a system transition from state x_t at time t with control input u_t = π_t(x_t) to state x_{t+1} ~ p_f(· | x_t, u_t)
- value function V^π_t(x) of policy π is the expected long-term cost of starting at state x at time t and following transitions induced by π:

$$V_t^{\pi}(\mathbf{x}) := \mathbb{E}_{\mathbf{x}_{t+1:T}} \left[\underbrace{\mathfrak{q}(\mathbf{x}_T)}_{\text{terminal cost}} + \sum_{\tau=t}^{T-1} \underbrace{\ell(\mathbf{x}_{\tau}, \pi_{\tau}(\mathbf{x}_{\tau}))}_{\text{stage cost}} \middle| \mathbf{x}_t = \mathbf{x} \right]$$

- optimal control problem: given initial state x at time t, determine a policy that minimizes the value function V^π_t(x):
 - optimal value: $V_t^*(\mathbf{x}) = \min_{\pi} V_t^{\pi}(\mathbf{x})$

• optimal policy:
$$\pi^*(\mathsf{x}) \in rgmin V^\pi_t(\mathsf{x})$$

Naming Conventions

- ► The problem is called:
 - Motion planning (MP): when the motion model p_f is known and deterministic and the cost functions l, q are known
 - Optimal control (OC): when the motion model p_f is known but may be stochastic and cost functions l, q are known
 - Reinforcement Learning (RL): when the motion model p_f and cost functions l, q are unknown but samples x_t, l(x_t, u_t), q(x_t) can be obtained from them
- Naming conventions differ:
 - OC: minimization, cost, state x, control u, policy µ
 - RL: maximization, reward, state s, action a, policy π
 - **ECE276B**: minimization, cost, state \mathbf{x} , control \mathbf{u} , policy π

Policy Types

- ► Controls may have long-term consequences, e.g., delayed cost/reward
- It may be better to sacrifice immediate rewards to gain long-term rewards:
 - A financial investment may take months to mature
 - Re-fueling a helicopter now might prevent a crash in several hours
 - Blocking an opponent move now might help winning chances many moves from now
- A policy defines fully at <u>any</u> time t and <u>any</u> state x which control u to apply
- A policy can be:
 - ▶ stationary $(\pi_0 \equiv \pi_1 \equiv \cdots) \subset$ non-stationary $(\pi_0 \not\equiv \pi_1 \not\equiv \cdots)$
 - ► deterministic $(\mathbf{u}_t = \pi_t(\mathbf{x}_t)) \subset \text{stochastic} (\mathbf{u}_t \sim \pi_t(\cdot \mid \mathbf{x}_t))$
 - open-loop (sequence $\mathbf{u}_{0:T-1}$ regardless of \mathbf{x}_t) \subset closed-loop $(\mathbf{u}_t = \pi_t(\mathbf{x}_t)$ depends on \mathbf{x}_t)

Problem Types

- deterministic (no motion noise) vs stochastic (with motion noise)
- ▶ fully observable $(z_t = x_t)$ vs partially observable $(z_t \sim p_h(\cdot | x_t))$
 - Markov Decision Process (MDP) vs Partially Observable Markov Decision Process (POMDP)
- **stationary** vs non-stationary (time-dependent motion $p_{f,t}$ and cost ℓ_t)
- discrete vs continuous state space X
 - tabular approach vs function approximation
- discrete vs continuous control space U:
 - tabular approach vs optimization
- discrete vs continuous time t
- finite vs infinite horizon T
- reinforcement learning (p_f, l, q are unknown):
 - Model-based RL: explicitly approximate the models \hat{p}_f , $\hat{\ell}$, \hat{q} from data and apply optimal control algorithms
 - Model-free RL: directly approximate V^{*}_t and π^{*}_t without approximating the motion or cost models

Example: Inventory Control

- Consider keeping an item stocked in a warehouse:
 - If there is too little, we may run out (not preferred).
 - If there is too much, the storage cost will be high (not preferred).
- Model:
 - *x_t* ∈ ℝ: stock available in the warehouse at the beginning of the *t*-th time period
 - *u_t* ∈ ℝ_{≥0}: stock ordered and immediately delivered at the beginning of the *t*-th time period (supply)
 - w_t: random demand during the t-th time period with known pdf. Note that excess demand is back-logged, i.e., corresponds to negative stock x_t
 - Motion model: $x_{t+1} = f(x_t, u_t, w_t) := x_t + u_t w_t$
 - **Cost function**: $\mathbb{E}\left[q(x_T) + \sum_{t=0}^{T-1} (r(x_t) + cu_t pw_t)\right]$ where
 - pwt: revenue
 - cu_t: cost of items
 - r(x_t): penalizes too much stock or negative stock
 - q(x_T): remaining items we cannot sell or demand that we cannot meet

Example: Rubik's Cube

Invented in 1974 by Ernő Rubik

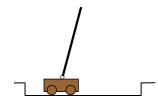
- Model:
 - State space size: $\sim 4.33 \times 10^{19}$
 - Control space size: 12
 - Cost: 1 for each time step
 - Deterministic, Fully Observable
- The cube can be solved in 20 or fewer moves

Example: Cart-Pole Problem

Move a cart left, right to keep a pole balanced

Model:

- State space: 4-D continuous $(x, \dot{x}, \theta, \dot{\theta})$
- Control space: $\{-N, N\}$
- Cost:
 - 0 when in the goal region
 - 1 when outside the goal region
 - 100 when outside the feasible region
- Deterministic, Fully Observable



Example: Chess

Model:

- State space size: $\sim 10^{47}$
- Control space size: from 0 to 218
- Cost: 0 each step, {−1, 0, 1} at the end of the game
- Deterministic, opponent-dependent state transitions (can be modeled as a game)

The size of the game tree (all possible policies) is 10¹²³

Example: Grid World Navigation

- Navigate to a goal without crashing into obstacles
- Model:
 - State space: 2-D robot position
 - Control space: $U = \{left, right, up, down\}$
 - \blacktriangleright Cost: 1 until the goal is reached, ∞ if an obstacles is hit
 - Can be deterministic or stochastic; fully or partially observable

