
ECE276B: Planning & Learning in Robotics
Lecture 1: Introduction

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Hanwen Cao: h1cao@ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:h1cao@ucsd.edu


What is this class about?

I ECE276A: sensing and estimation in robotics:
I how to model robot motion and observations
I how to estimate (a distribution of) the robot/environment state xt from

the history of observations z0:t and control inputs u0:t−1

I ECE276B: planning and decision making in robotics:
I how to select control inputs u0:t−1 to accomplish a task

I References (optional):
I Dynamic Programming and Optimal Control: Bertsekas

I Planning Algorithms: LaValle (http://planning.cs.uiuc.edu)

I Reinforcement Learning: Sutton & Barto
(http://incompleteideas.net/book/the-book.html)

I Calculus of Variations and Optimal Control Theory: Liberzon
(http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)

2

http://planning.cs.uiuc.edu
http://incompleteideas.net/book/the-book.html
http://liberzon.csl.illinois.edu/teaching/cvoc.pdf


Logistics
I Course website: https://natanaso.github.io/ece276b

I Includes links to:
I Canvas: lecture recordings

I Piazza: course announcement, Q&A, discussion – check Piazza regularly

I Gradescope: homework submission and grades

I Assignments:
I 3 theoretical homeworks (16% of grade)
I 3 programming assignments in python + project report:

I Project 1: Dynamic Programming (18% of grade)
I Project 2: Motion Planning (18% of grade)
I Project 3: Optimal Control (18% of grade)

I Final exam (30% of grade)

I Grading:
I standard grade scale (93%+ = A) plus curve based on class performance

(e.g., if the top students have grades in the 86% - 89% range, then this
will correspond to letter grade A)

I no late submissions: work submitted past the deadline receives 0 credit
3

https://natanaso.github.io/ece276b


Prerequisites

I Probability theory: random variables, probability density functions,
expectation, covariance, total probability, conditioning, Bayes rule

I Linear algebra/systems: eigenvalues, symmetric positive definite
matrices, linear equations, linear systems of ODEs, matrix exponential

I Optimization: unconstrained optimization, gradient descent

I Programming: experience with at least one language
(python/C++/Matlab), classes/objects, data structures (e.g., queue,
list), data input/output processing, plotting

I It is up to you to judge if you are ready for this course!
I Consult with your classmates who took ECE276A

I Take a look at the material from last year:
https://natanaso.github.io/ece276b2021

I If the first assignment seems hard, the rest will be hard as well

4

https://natanaso.github.io/ece276b2021


Syllabus (Tentative)

I Check website for updates: https://natanaso.github.io/ece276b 5

https://natanaso.github.io/ece276b


Markov Chain and Markov Decision Process

I Markov Chain (MC): a probabilistic
model used to represent the state
evolution of a system
I The state xt can be discrete or

continuous and is fully observed

I The state transitions are random and
uncontrolled, determined by a transition
matrix or function

I Markov Decision Process (MDP): a
Markov chain whose transitions are
controlled by system control inputs ut

I Motion planning, optimal control, and
reinforcement learning problems are
defined using a Markov decision process

P =

0.6 0.2 0.2
0.3 0.4 0.3
0.0 0.3 0.7


Pij = P(xt+1 = j | xt = i)

6



Motion Planning

7



A* Search

I Invented by Hart, Nilsson and
Raphael of Stanford Research
Institute in 1968 for the Shakey
robot

I MDP with deterministic
transitions, i.e., directed graph

I Minimize cumulative transition
costs subject to a goal constraint

I Graph search using a specific
node visitation rule

I Video: https://youtu.be/

qXdn6ynwpiI?t=3m55s

8

https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s


Search-based Motion Planning

I CMU’s autonomous car used search-based motion planning in the
DARPA Urban Challenge in 2007

I Likhachev and Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,” IJRR’09

I Video: https://www.youtube.com/watch?v=4hFhl0Oi8KI

I Video: https://www.youtube.com/watch?v=qXZt-B7iUyw

I Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

9

https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=qXZt-B7iUyw
http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445


Sampling-based Motion Planning

I RRT algorithm on the PR2 – planning with both arms (12 DOF)
I Karaman and Frazzoli, “Sampling-based algorithms for optimal motion

planning,” IJRR’11
I Video: https://www.youtube.com/watch?v=vW74bC-Ygb4
I Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

10

https://www.youtube.com/watch?v=vW74bC-Ygb4
https://www.youtube.com/watch?v=vW74bC-Ygb4
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761


Sampling-based Motion Planning

I RRT* algorithm on a high-fidelity car model – 270 degree turn
I Karaman and Frazzoli, “Sampling-based algorithms for optimal motion

planning,” IJRR’11
I Video: https://www.youtube.com/watch?v=p3nZHnOWhrg
I Video: https://www.youtube.com/watch?v=LKL5qRBiJaM
I Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761 11

https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=LKL5qRBiJaM
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761


Optimal Control using Dynamic Programming

I Tassa, Mansard and Todorov, “Control-limited Differential Dynamic
Programming,” ICRA’14

I Video: https://www.youtube.com/watch?v=tCQSSkBH2NI
I Paper: http://ieeexplore.ieee.org/document/6907001/ 12

https://www.youtube.com/watch?v=tCQSSkBH2NI
https://www.youtube.com/watch?v=tCQSSkBH2NI
http://ieeexplore.ieee.org/document/6907001/


Model-free Reinforcement Learning

I A robot learns to flip pancakes

I Kormushev, Calinon and Caldwell, “Robot Motor Skill Coordination with
EM-based Reinforcement Learning,” IROS’10

I Video: https://www.youtube.com/watch?v=W_gxLKSsSIE

I Paper: http://www.dx.doi.org/10.1109/IROS.2010.5649089

13

https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=W_gxLKSsSIE
http://www.dx.doi.org/10.1109/IROS.2010.5649089


Applications of Optimal Control & Reinforcement Learning

(a) Autonomous Driving (b) Marketing (c) Computational Biology

(d) Games (e) Character Animation (f) Robotics

14



Model
I discrete time t ∈ {0, . . . ,T} with finite or infinite horizon T

I state xt ∈ X and state space X

I control ut ∈ U and control space U

I noise wt : random vector with known probability density function (pdf),
independent of wτ for τ 6= t conditioned on xt and ut

I motion model: a function f or equivalently a pdf pf describing the
change in the state xt when a control input ut is applied:

xt+1 = f (xt ,ut ,wt) or xt+1 ∼ pf (· | xt ,ut)

I Markov assumption: xt+1 depends only on ut and xt

I stage cost `(x,u) measures the cost of applying control u in state x

I terminal cost q(x) measures the cost of terminating at state x

15



Problem Statement

I control policy πt : X 7→ U maps a state x at time t to a control input u

I A control policy π induces a system transition from state xt at time t
with control input ut = πt(xt) to state xt+1 ∼ pf (· | xt ,ut)

I value function V π
t (x) of policy π is the expected long-term cost of

starting at state x at time t and following transitions induced by π:

V π
t (x) := Ext+1:T

[
q(xT )︸ ︷︷ ︸

terminal cost

+
T−1∑
τ=t

`(xτ , πτ (xτ ))︸ ︷︷ ︸
stage cost

∣∣∣∣ xt = x

]

I optimal control problem: given initial state x at time t, determine a
policy that minimizes the value function V π

t (x):

I optimal value: V ∗
t (x) = minπ V

π
t (x)

I optimal policy: π∗(x) ∈ arg min
π

V π
t (x)

16



Naming Conventions

I The problem is called:
I Motion planning (MP): when the motion model pf is known and

deterministic and the cost functions `, q are known

I Optimal control (OC): when the motion model pf is known but may be
stochastic and cost functions `, q are known

I Reinforcement Learning (RL): when the motion model pf and cost
functions `, q are unknown but samples xt , `(xt ,ut), q(xt) can be
obtained from them

I Naming conventions differ:
I OC: minimization, cost, state x, control u, policy µ

I RL: maximization, reward, state s, action a, policy π

I ECE276B: minimization, cost, state x, control u, policy π

17



Policy Types

I Controls may have long-term consequences, e.g., delayed cost/reward

I It may be better to sacrifice immediate rewards to gain long-term
rewards:
I A financial investment may take months to mature
I Re-fueling a helicopter now might prevent a crash in several hours
I Blocking an opponent move now might help winning chances many moves

from now

I A policy defines fully at any time t and any state x which control u to
apply

I A policy can be:
I stationary (π0 ≡ π1 ≡ · · · ) ⊂ non-stationary (π0 6≡ π1 6≡ · · · )
I deterministic (ut = πt(xt)) ⊂ stochastic (ut ∼ πt(· | xt))

I open-loop (sequence u0:T−1 regardless of xt) ⊂ closed-loop
(ut = πt(xt) depends on xt)

18



Problem Types
I deterministic (no motion noise) vs stochastic (with motion noise)
I fully observable (zt = xt) vs partially observable (zt ∼ ph(·|xt))

I Markov Decision Process (MDP) vs Partially Observable Markov Decision
Process (POMDP)

I stationary vs non–stationary (time-dependent motion pf ,t and cost `t)
I discrete vs continuous state space X

I tabular approach vs function approximation

I discrete vs continuous control space U :
I tabular approach vs optimization

I discrete vs continuous time t

I finite vs infinite horizon T
I reinforcement learning (pf , `, q are unknown):

I Model-based RL: explicitly approximate the models p̂f , ˆ̀, q̂ from data
and apply optimal control algorithms

I Model-free RL: directly approximate V ∗
t and π∗

t without approximating
the motion or cost models

19



Example: Inventory Control
I Consider keeping an item stocked in a warehouse:

I If there is too little, we may run out (not preferred).
I If there is too much, the storage cost will be high (not preferred).

I Model:
I xt ∈ R: stock available in the warehouse at the beginning of the t-th time

period

I ut ∈ R≥0: stock ordered and immediately delivered at the beginning of
the t-th time period (supply)

I wt : random demand during the t-th time period with known pdf. Note
that excess demand is back-logged, i.e., corresponds to negative stock xt

I Motion model: xt+1 = f (xt , ut ,wt) := xt + ut − wt

I Cost function: E
[
q(xT ) +

∑T−1
t=0 (r(xt) + cut − pwt)

]
where

I pwt : revenue
I cut : cost of items
I r(xt): penalizes too much stock or negative stock
I q(xT ): remaining items we cannot sell or demand that we cannot meet

20



Example: Rubik’s Cube

I Invented in 1974 by Ernõ Rubik

I Model:
I State space size: ∼ 4.33× 1019

I Control space size: 12

I Cost: 1 for each time step

I Deterministic, Fully Observable

I The cube can be solved in 20 or fewer moves

21



Example: Cart-Pole Problem

I Move a cart left, right to keep a pole balanced

I Model:
I State space: 4-D continuous (x , ẋ , θ, θ̇)

I Control space: {−N,N}
I Cost:

I 0 when in the goal region
I 1 when outside the goal region
I 100 when outside the feasible region

I Deterministic, Fully Observable

22



Example: Chess

I Model:
I State space size: ∼ 1047

I Control space size: from 0 to 218

I Cost: 0 each step, {−1, 0, 1} at the end of the
game

I Deterministic, opponent-dependent state
transitions (can be modeled as a game)

I The size of the game tree (all possible policies)
is 10123

23



Example: Grid World Navigation

I Navigate to a goal without crashing into
obstacles

I Model:
I State space: 2-D robot position

I Control space: U = {left, right, up, down}
I Cost: 1 until the goal is reached, ∞ if an

obstacles is hit

I Can be deterministic or stochastic; fully or
partially observable

24



25


