## ECE276B: Planning \& Learning in Robotics <br> Lecture 2: Markov Chains

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Hanwen Cao: h1cao@ucsd.edu

# UCSanDiego 

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

## Markov Chain

- Intuitive definition:
- The distribution of the state $x_{t+1} \mid x_{0: t}$ depends only on $x_{t}$ and not the history $x_{0: t-1}$ (memoryless stochastic process)
- Markov Assumption:
"The future is independent of the past given the present"
- Formal definition:
- A stochastic process is an indexed collection of random variables $\left\{x_{0}, x_{1}, \ldots\right\}$ whose range is a measurable space $\mathcal{X}$ with sigma algebra $\mathcal{F}$
- A temporally homogeneous Markov chain is a stochastic process $\left\{x_{0}, x_{1}, \ldots\right\}$ such that:
- $x_{0} \sim p_{0}(\cdot)$ for a prior probability density function (pdf) $p_{0}(\cdot)$ on $(\mathcal{X}, \mathcal{F})$
- $x_{t+1} \sim p_{f}\left(\cdot \mid x_{t}\right)$ for a conditional pdf $p_{f}\left(\cdot \mid x_{t}\right)$ on $(\mathcal{X}, \mathcal{F})$


## Markov Chain

A Markov Chain is a stochastic process defined by a tuple $\left(\mathcal{X}, p_{0}, p_{f}, T\right)$ :

- $\mathcal{X}$ is a discrete/continuous set of states
- $p_{0}$ is a prior pmf/pdf defined on $\mathcal{X}$
- $p_{f}(\cdot \mid \mathbf{x})$ is a conditional $\mathrm{pmf} / \mathrm{pdf}$ defined on $\mathcal{X}$ for given $\mathbf{x} \in \mathcal{X}$ that specifies the stochastic process transitions.
- $T$ is a finite/infinite time horizon
- When there is a finite number of states, $\mathcal{X}:=\{1, \ldots, N\}$, the motion model $p_{f}$ is a probability mass function (pmf) and can be represented by an $N \times N$ transition matrix with elements:

$$
P_{i j}:=\mathbb{P}\left(x_{t+1}=j \mid x_{t}=i\right)=p_{f}\left(j \mid x_{t}=i\right)
$$

## Example: Student Markov Chain



## Example: Student Markov Chain

- Sample paths:
- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 Sleep

- Transition matrix:

$$
P=\begin{gathered}
F B \\
C 1 \\
C 2 \\
C 3 \\
\text { Pub } \\
\text { Pass } \\
\text { Sleep }
\end{gathered}\left[\begin{array}{ccccccc}
0.9 & 0.1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.8 & 0 & 0 & 0.2 \\
0 & 0 & 0 & 0 & 0.4 & 0.6 & 0 \\
0 & 0.2 & 0.4 & 0.4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

## Chapman-Kolmogorov Equation

- n-step transition probabilities of a time-homogeneous Markov chain on $\mathcal{X}=\{1, \ldots, N\}$

$$
P_{i j}^{(n)}:=\mathbb{P}\left(x_{t+n}=j \mid x_{t}=i\right)=\mathbb{P}\left(x_{n}=j \mid x_{0}=i\right)
$$

- Chapman-Kolmogorov: the $n$-step transition probabilities can be obtained recursively from the 1 -step transition probabilities:

$$
\begin{aligned}
P_{i j}^{(n)} & =\sum_{k=1}^{N} P_{i k}^{(m)} P_{k j}^{(n-m)}, \quad \forall i, j, n, 0 \leq m \leq n \\
P^{(n)} & =\underbrace{P \cdots P}_{n \text { times }}=P^{n}
\end{aligned}
$$

- Given the transition matrix $P$ and a vector $\mathbf{p}_{0}:=\left[p_{0}(1), \ldots, p_{0}(N)\right]^{\top}$ of prior probabilities, the vector of probabilities $\mathbf{p}_{t}$ after $t$ steps is:

$$
\mathbf{p}_{t}^{\top}=\mathbf{p}_{0}^{\top} P^{t}
$$

## Example: Student Markov Chain

$$
\begin{array}{r}
\text { PB } \begin{array}{r}
\text { Cl } \\
\text { C2 } \\
\text { C3 } \\
\text { Pub } \\
\text { Pass } \\
\text { Sleep }
\end{array}\left[\begin{array}{ccccccc}
0.9 & 0.1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.8 & 0 & 0 & 0.2 \\
0 & 0 & 0 & 0 & 0.4 & 0.6 & 0 \\
0 & 0.2 & 0.4 & 0.4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
\\
\\
\text { PB } \\
\text { C1 } \\
P^{2}= \\
\text { C2 } \\
\text { CB } \\
\text { Pub } \\
\text { Pass } \\
\\
\text { Sleep }
\end{array}\left[\begin{array}{ccccccc}
0.86 & 0.09 & 0.05 & 0 & 0 & 0 & 0 \\
0.45 & 0.05 & 0 & 0.4 & 0 & 0 & 0.1 \\
0 & 0 & 0 & 0 & 0.32 & 0.48 & 0.2 \\
0 & 0.08 & 0.16 & 0.16 & 0 & 0 & 0.6 \\
0.1 & 0 & 0.1 & 0.32 & 0.16 & 0.24 & 0.08 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

## First Passage Time

- First passage time: the number of transitions necessary to reach state $j$ for the first time is a random variable:

$$
\tau_{j}:=\inf \left\{t \geq 1 \mid x_{t}=j\right\}
$$

- Recurrence time: the first passage time $\tau_{i}$ to go from $x_{0}=i$ to $j=i$
- Probability of first passage in $n$ steps: $\rho_{i j}^{(n)}:=\mathbb{P}\left(\tau_{j}=n \mid x_{0}=i\right)$

$$
\begin{aligned}
\rho_{i j}^{(1)} & =P_{i j} \\
\rho_{i j}^{(2)} & =\left[P^{2}\right]_{i j}-\rho_{i j}^{(1)} P_{j j} \quad \text { (first time we visit } j \text { should not be } 1!\text { ) } \\
& \vdots \\
\rho_{i j}^{(n)} & =\left[P^{n}\right]_{i j}-\rho_{i j}^{(1)}\left[P^{n-1}\right]_{j j}-\rho_{i j}^{(2)}\left[P^{n-2}\right]_{j j}-\cdots-\rho_{i j}^{(n-1)} P_{j j}
\end{aligned}
$$

- Probability of first passage: $\rho_{i j}:=\mathbb{P}\left(\tau_{j}<\infty \mid x_{0}=i\right)=\sum_{n=1}^{\infty} \rho_{i j}^{(n)}$
- Number of visits to $j$ up to time $n$ :

$$
v_{j}^{(n)}:=\sum_{t=0}^{n} \mathbb{1}\left\{x_{t}=j\right\} \quad v_{j}:=\lim _{n \rightarrow \infty} v_{j}^{(n)}
$$

## Recurrence and Transience

- Absorbing state: a state $j$ such that $P_{j j}=1$
- Transient state: a state $j$ such that $\rho_{j j}<1$
- Recurrent state: a state $j$ such that $\rho_{j j}=1$
- Positive recurrent state: a recurrent state $j$ with $\mathbb{E}\left[\tau_{j} \mid x_{0}=j\right]<\infty$
- Null recurrent state: a recurrent state $j$ with $\mathbb{E}\left[\tau_{j} \mid x_{0}=j\right]=\infty$
- Periodic state: can only be visited at integer multiples of $t$
- Ergodic state: a positive recurrent state that is aperiodic


## Recurrence and Transience

## Total Number of Visits Lemma

$$
\mathbb{P}\left(v_{j} \geq k+1 \mid x_{0}=j\right)=\rho_{j j}^{k} \text { for all } k \geq 0
$$

Proof: By the Markov property and induction
$\left(\mathbb{P}\left(v_{j} \geq k+1 \mid x_{0}=j\right)=\rho_{j j} \mathbb{P}\left(v_{j} \geq k \mid x_{0}=j\right)\right)$.

## $0-1$ Law for the Total Number of Visits

$j$ is recurrent iff $\mathbb{E}\left[v_{j} \mid x_{0}=j\right]=\infty$
Proof: Since $v_{j}$ is discrete, we can write $v_{j}=\sum_{k=0}^{\infty} \mathbb{1}\left\{v_{j}>k\right\}$ and

$$
\mathbb{E}\left[v_{j} \mid x_{0}=j\right]=\sum_{k=0}^{\infty} \mathbb{P}\left(v_{j} \geq k+1 \mid x_{0}=j\right)=\sum_{k=0}^{\infty} \rho_{j j}^{k}=\frac{\rho_{j j}}{1-\rho_{j j}}
$$

## Theorem: Recurrence is contagious

$i$ is recurrent and $\rho_{i j}>0 \Rightarrow j$ is recurrent and $\rho_{j i}=1$

## Mean First Passage Time

- Mean first passage time: $m_{i j}:=\mathbb{E}\left[\tau_{j} \mid x_{0}=i\right]$
- By the law of total probability:

$$
m_{i j}=P_{i j}+\sum_{k \neq j} P_{i k}\left(1+m_{k j}\right)=1+\sum_{k \neq j} P_{i k} m_{k j}
$$

- Let $M \in \mathbb{R}^{N \times N}$ with elements $m_{i j}$ contain all mean first passage times
- Let $D=\boldsymbol{\operatorname { d i a g }}\left(m_{11}, \ldots, m_{N N}\right)$
- The matrix of mean first passage times satisfies:

$$
M=\mathbf{1 1}^{\top}+P(M-D)
$$

## Equivalence Classes

- $i \rightarrow j$ : state $j$ is accessible from state $i$ if $P_{i j}^{(n)}>0$ for some $n$
- Every state is accessible from itself since $P_{i i}^{(0)}=1$
- $i \leftrightarrow j$ : state $i$ and $j$ communicate if they are accessible from each other
- Equivalence class: a set of states which communicate with each other
- Example: find the equivalence classes for this Markov chain



## Classification of Markov Chains

- Absorbing Markov Chain: contains at least one absorbing state that can be reached from every other state (not necessarily in one step)
- Irreducible Markov Chain: all states communicate with each other
- Ergodic Markov Chain: an aperiodic, irreducible and positive recurrent Markov chain


## Periodicity

- Periodicity plays an important role when discussing the long-term behavior of a Markov chain
- The period of a state $i$ is the largest integer $d_{i}$ such that $P_{i i}^{(n)}=0$ whenever $n$ is not divisible by $d_{i}$
- If $d_{i}>1$, then $i$ is periodic
- If $d_{i}=1$, then $i$ is aperiodic
- If $i \leftrightarrow j$, then $d_{i}=d_{j}$. Hence, all states of an irreducible Markov chain have the same period.
- Two integers are co-prime if their greatest common divisor (gcd) is 1
- If we can find co-prime $I$ and $m$ such that $P_{i i}^{(I)}>0$ and $P_{i i}^{(m)}>0$, then $i$ is aperiodic
- Since 1 is co-prime to every integer, any state $i$ with a self-transition is aperiodic


## Periodicity

- A matrix $P$ is non-negative if all $P_{i j} \geq 0$
- A matrix $P$ is stochastic if its rows sum to 1 , i.e., $\sum_{j} P_{i j}=1$ for all $i$
- A non-negative matrix $P$ is quasi-positive if there exists a natural number $m \geq 1$ such that all entries of $P^{m}$ are strictly positive
- If $P$ is a stochastic matrix and is quasi-positive, i.e., all entries of $P^{m}$ are positive, then for all $n \geq m$ all entries of $P^{n}$ are positive
- Aperiodicity Lemma: A stochastic transition matrix $P$ is irreducible and aperiodic if and only if $P$ is quasi-positive.
- A finite Markov chain with transition matrix $P$ is ergodic if and only if $P$ is quasi-positive


## Stationary and Limiting Distributions

- Stationary distribution: a vector $\mathbf{w} \in\left\{\mathbf{p} \in[0,1]^{N} \mid \mathbf{1}^{\top} \mathbf{p}=1\right\}$ such that $\mathbf{w}^{\top} P=\mathbf{w}^{\top}$
- Limiting distribution: a vector $\mathbf{w} \in\left\{\mathbf{p} \in[0,1]^{N} \mid \mathbf{1}^{\top} \mathbf{p}=1\right\}$ such that:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(x_{t}=j \mid x_{0}=i\right)=\mathbf{w}_{j}
$$

- If it exists, the limiting distribution of a Markov chain is stationary
- Absorbing chains have limiting distributions with nonzero elements only in absorbing states
- Ergodic chains have a unique limiting distribution (Perron-Frobenius Theorem)
- Periodic chains may not have a limiting distribution but satisfy a weaker condition, where $w_{j}>0$ only for recurrent states and $w_{j}$ is the frequency $\frac{v_{j}^{(n)}}{n+1}$ of being in state $j$ as $n \rightarrow \infty$


## Example

- Consider a Markov chain with:
- state space $\mathcal{X}=\{0,1\}$
- prior pmf $\mathbf{p}_{0}=\left[\mathbb{P}\left(x_{0}=0\right), \mathbb{P}\left(x_{0}=1\right)\right]^{\top}=[\gamma, 1-\gamma]^{\top}$
- transition matrix with $a, b \in[0,1], 0<a+b<2$ :

$$
P=\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]
$$

- By induction: $P^{n}=\frac{1}{a+b}\left[\begin{array}{ll}b & a \\ b & a\end{array}\right]+\frac{(1-a-b)^{n}}{a+b}\left[\begin{array}{rr}a & -a \\ -b & b\end{array}\right]$
- Since $-1<1-a-b<1: \lim _{n \rightarrow \infty} P^{n}=\frac{1}{a+b}\left[\begin{array}{ll}b & a \\ b & a\end{array}\right]$
- Limiting distribution: exists and is not dependent on the initial pmf $\mathbf{p}_{0}$ :

$$
\lim _{t \rightarrow \infty} \mathbf{p}_{t}^{\top}=\lim _{t \rightarrow \infty} \mathbf{p}_{0}^{\top} P^{t}=\frac{1}{a+b} \mathbf{p}_{0}^{\top}\left[\begin{array}{ll}
b & a \\
b & a
\end{array}\right]=\left[\frac{b}{a+b}, \frac{b}{a+b}\right]
$$

## Example

- If $a=b=1$, the transition matrix is $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- This Markov chain is periodic:

$$
x_{t}= \begin{cases}x_{0} & \text { if } t \text { is even } \\ x_{1} & \text { if } t \text { is odd }\end{cases}
$$

- The pmf $\mathbf{p}_{t}$ does not converge as $t \rightarrow \infty$ and depends on $\mathbf{p}_{0}$


## Absorbing Markov Chains

- Interesting questions:

Q1: On average, how mant times is the process in state $j$ ?
Q2: What is the probability that the state will eventually be absorbed?
Q3: What is the expected absorption time?
Q4: What is the probability of being absorbed by $j$ given that we started in $i$ ?

## Absorbing Markov Chains

- Canonical form: reorder the states so that the transient ones come first: $P=\left[\begin{array}{cc}Q & R \\ 0 & I\end{array}\right]$
- One can show that $P^{n}=\left[\begin{array}{cc}Q^{n} & * \\ 0 & I\end{array}\right]$ and $Q^{n} \rightarrow 0$ as $n \rightarrow \infty$ Proof: If $j$ is transient, then $\rho_{i j}<1$ and from the 0-1 Law:

$$
\infty>\mathbb{E}\left[v_{j} \mid x_{0}=i\right]=\mathbb{E}\left[\sum_{n=0}^{\infty} \mathbb{1}\left\{x_{n}=j\right\} \mid x_{0}=i\right]=\sum_{n=0}^{\infty}\left[P^{n}\right]_{i j}
$$

- Fundamental matrix: $Z^{A}=(I-Q)^{-1}=\sum_{n=0}^{\infty} Q^{n}$ exists for an absorbing Markov chain
- Expected number of times the chain is in state $j: Z_{i j}^{A}=\mathbb{E}\left[v_{j} \mid x_{0}=i\right]$
- Expected absorption time when starting from state $i: \sum_{j} Z_{i j}^{A}$
- Let $B=Z^{A} R$. The probability of reaching absorbing state $j$ starting from state $i$ is $B_{i j}$


## Example: Drunkard's Walk

- Transition matrix:

$$
P=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- Canonical form:

$$
P=\left[\begin{array}{ccccc}
0 & 0.5 & 0 & 0.5 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0.5 & 0 & 0 & 0.5 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$



- Fundamental matrix:

$$
Z^{A}=(I-Q)^{-1}=\left[\begin{array}{ccc}
1.5 & 1 & 0.5 \\
1 & 2 & 1 \\
0.5 & 1 & 1.5
\end{array}\right]
$$

## General Finite Markov Chain

- A finite Markov chain might have several transient and several recurrent classes
- As $t$ increases, the chain is absorbed in one of the recurrent classes
- We can replace each recurrent class with an absorbing state to obtain a chain with only transient and absorbing states
- We can obtain the absorbtion probabilities from $B=Z^{A} R$
- Each recurrent class can then be analyzed separately


## Perron-Frobenius Theorem (Finite Ergodic Markov Chain)

## Theorem

Let $P$ be the transition matrix of an irreducible, aperiodic, finite, time-homogeneous Markov chain. Then, the following hold for $P$ :

- 1 is the eigenvalue of max modulus, i.e., $|\lambda|<1$ for all other eigenvalues
- 1 is a simple eigenvalue, i.e., the associated eigenspace and left-eigenspace have dimension 1
- The eigenvector associated with 1 is $\mathbf{1}$
- The unique left eigenvector $\mathbf{w}$ is nonnegative and $\lim _{n \rightarrow \infty} P^{n}=\mathbf{1} \mathbf{w}^{\top}$

Hence, wis the unique stationary distribution for the Markov chain and any initial distribution converges to it.

## Perron-Frobenius Theorem (Ergodic Markov Chain)

## Theorem

Consider an irreducible, aperiodic, countably infinite Markov chain. Then, one of the following holds:

- All states are transient and $\lim _{t \rightarrow \infty} \mathbb{P}\left(x_{t}=j \mid x_{0}=i\right)=0, \forall i, j$
- All states are null-recurrent and $\lim _{t \rightarrow \infty} \mathbb{P}\left(x_{t}=j \mid x_{0}=i\right)=0, \forall i, j$
- All states are positive-recurrent and there exists a limiting distribution $\mathbf{w}_{j}=\sum_{i} \mathbf{w}_{i} P_{i j}, \sum_{j} \mathbf{w}_{j}=1$ such that:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(x_{t}=j \mid x_{0}=i\right)=\mathbf{w}_{j}>0
$$

## Fundamental Matrix for Ergodic Chains

- We can try to get a fundamental matrix as in the absorbing case but $(I-P)^{-1}$ does not exist because $P \mathbf{1}=\mathbf{1}$ (Perron-Frobenius)
- $I+Q+Q^{2}+\ldots=(I-Q)^{-1}$ converges because $Q^{n} \rightarrow 0$
- Try $I+\left(P-\mathbf{1} \mathbf{w}^{\top}\right)+\left(P^{2}-\mathbf{1} \mathbf{w}^{\top}\right)+\ldots$ because $P^{n} \rightarrow \mathbf{1} \mathbf{w}^{\top}$ (Perron-Frobenius)
- Note that $P \mathbf{1} \mathbf{w}^{\top}=\mathbf{1} \mathbf{w}^{\top}$ and $\left(\mathbf{1} \mathbf{w}^{\top}\right)^{2}=\mathbf{1} \mathbf{w}^{\top} \mathbf{1} \mathbf{w}^{\top}=\mathbf{1} \mathbf{w}^{\top}$

$$
\begin{aligned}
\left(P-\mathbf{1} \mathbf{w}^{\top}\right)^{n} & =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} P^{n-i}\left(\mathbf{1} \mathbf{w}^{\top}\right)^{i}=P^{n}+\sum_{i=1}^{n}(-1)^{i}\binom{n}{i}\left(\mathbf{1} \mathbf{w}^{\top}\right)^{i} \\
& =P^{n}+\underbrace{\left[\sum_{i=1}^{n}(-1)^{i}\binom{n}{i}\right]}_{(1-1)^{n}-1}\left(\mathbf{1} \mathbf{w}^{\top}\right)=P^{n}-\mathbf{1} \mathbf{w}^{\top}
\end{aligned}
$$

- Thus, the following inverse exists:

$$
I+\sum_{n=1}^{\infty}\left(P^{n}-\mathbf{1} \mathbf{w}^{\top}\right)=I+\sum_{n=1}^{\infty}\left(P-\mathbf{1} \mathbf{w}^{\top}\right)^{n}=\left(I-P+\mathbf{1} \mathbf{w}^{\top}\right)^{-1}
$$

## Fundamental Matrix for Ergodic Chains

- Fundamental matrix: $Z^{E}:=\left(I-P+\mathbf{1} \mathbf{w}^{\top}\right)^{-1}$ where $P$ is the transition matrix and $\mathbf{w}$ is the stationary distribution.
- Properties: $\mathbf{w}^{\top} Z^{E}=\mathbf{w}^{\top}, Z^{E} \mathbf{1}=\mathbf{1}$, and $Z^{E}(I-P)=I-\mathbf{1} \mathbf{w}^{\top}$
- Mean first passage time:
$m_{i j}=\mathbb{E}\left[\tau_{j} \mid x_{0}=i\right]=\frac{Z_{j j}^{E}-Z_{i j}^{E}}{w_{j}}, i \neq j$
$m_{i i}=\mathbb{E}\left[\tau_{i} \mid x_{0}=i\right]=\frac{1}{w_{i}}$


## Example: Land of Oz

- Transition matrix:

$$
P=\left[\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.5 & 0 & 0.5 \\
0.25 & 0.25 & 0.5
\end{array}\right]
$$

- Stationary distribution:

$$
\mathbf{w}^{\top}=\left[\begin{array}{lll}
0.4 & 0.2 & 0.4
\end{array}\right]
$$

- Fundamental matrix:

$$
\begin{aligned}
I-P+\mathbf{1} \mathbf{w}^{\top} & =\left[\begin{array}{ccc}
0.9 & -0.05 & 0.15 \\
-0.1 & 1.2 & -0.1 \\
0.15 & -0.05 & 0.9
\end{array}\right] \\
Z^{E} & =\left[\begin{array}{ccc}
1.147 & 0.04 & -0.187 \\
0.08 & 0.84 & 0.08 \\
-0.187 & 0.04 & 1.147
\end{array}\right]
\end{aligned}
$$



- Mean first passage time:

$$
m_{12}=\frac{z_{22}^{E}-Z_{12}^{E}}{w_{2}}=\frac{0.84-0.04}{0.2}=4
$$

