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Markov Chain

» Intuitive definition:
> The distribution of the state x;11 | xo.r depends only on x; and not the
history xo.t—1 (memoryless stochastic process)

» Markov Assumption:
“The future is independent of the past given the present”

» Formal definition:

» A stochastic process is an indexed collection of random variables
{x0,x1, - ..} whose range is a measurable space X’ with sigma algebra F

» A temporally homogeneous Markov chain is a stochastic process
{x0, X1, ...} such that:

> xo ~ po(-) for a prior probability density function (pdf) po(-) on (X, F)
» xer1 ~ pr(- | xt) for a conditional pdf pr(- | x¢) on (X, F)



A Markov Chain is a stochastic process defined by a tuple (X, po, pr, T):

» X is a discrete/continuous set of states
» po is a prior pmf/pdf defined on X

» pr(- | x) is a conditional pmf/pdf defined on X for given x € X" that
specifies the stochastic process transitions.

» T is a finite/infinite time horizon

» When there is a finite number of states, X := {1,..., N}, the motion
model pr is a probability mass function (pmf) and can be represented by
an N x N transition matrix with elements:

Pij :=Plxes1=J | xe =i) =pe(J | xe = i)



Example: Student Markov Chain




Example: Student Markov Chain

» Sample paths:
> C1 C2 C3 Pass Sleep
> C1 FB FB C1 C2 Sleep
» C1 C2 C3 Pub C2 C3 Pass Sleep
» CI1FBFBC1C2C3PubCl1FB
FB FB C1 C2 Sleep

» Transition matrix:

FB [09 01 0 O 0O 0 O
C1 05 0 05 0 0 O

o

C2 0O 0O O 08 0 0 02
P= (3 0O 0 O 0 04 06 O
Pub 0 02 04 04 0 0 O
Pass 0 0 0 0 0 0 1
Sleep O 0o O o0 o0 o0 1 ]



Chapman-Kolmogorov Equation

» n-step transition probabilities of a time-homogeneous Markov chain
on X ={1,...,N}

P = Blxepn = | xe = 1) = B(xa = j | x0 = i)

» Chapman-Kolmogorov: the n-step transition probabilities can be
obtained recursively from the 1-step transition probabilities:

ZP(m)P(" m, Vi, j, n,0<m<n

n times

» Given the transition matrix P and a vector pg := [po(1), ..., po(N)]" of
prior probabilities, the vector of probabilities p; after t steps is:

pt —pO'Dt




Example: Student Markov Chain

P? =

ploo _

Pub
Pass
Sleep

FB
C1

c3
Pub
Pass
Sleep

r0.9 0.1 00 0 O

05 0 05 0 0 0 0

0 0 08 0 0 02

0 0 0 04 06 0

0 020404 0 0 0

0 0 00 0 1

Lo o 0 0 0 1

[0.86 0.09 005 0 0 0 0
045 005 0 04 0 0 01
0 0 0 0 032 048 02
0 008 016 016 0 0 06
01 0 01 032 016 024 0.08
0o o o0 0 0 o0 1
Lo o o o 0 0 1
[0.01 0 0 0 0 0 0.99

001 0 0 0 0 0 099

0 00000 1

0 00000 1

0 00000 1

0 00000 1

0 00000 1



First Passage Time

» First passage time: the number of transitions necessary to reach state
j for the first time is a random variable:

=inf{t >1]|x =/}
» Recurrence time: the first passage time 7; to go from xg =i toj =i
» Probability of first passage in n steps: pgj") =P(rj=n|xg =1)

1

PEJ) = Py

PP =[P — p{P;  (first time we visit j should not be 11)
n n n— n— n—1

pg’ [Py = 2 [P = i 1Py = - = o P

> Probability of first passage: pjj :=P(1j <oo|xp=1i)= 0, pfj )

» Number of visits to j up to time n:

):Z]l{thJ} vj == lim VJ()
t=0

n—oo



Recurrence and Transience

> Absorbing state: a state j such that P; =1

> Transient state: a state j such that p; <1

> Recurrent state: a state j such that p;j =1

> Positive recurrent state: a recurrent state j with E[7; | xo = j] < 00
» Null recurrent state: a recurrent state j with E[7; | xg = j] = o0

» Periodic state: can only be visited at integer multiples of t

» Ergodic state: a positive recurrent state that is aperiodic



Recurrence and Transience

Total Number of Visits Lemma

IP’(vjzk—i—l\xo:j):pj-‘jforallkZO

Proof: By the Markov property and induction
(P(v; = k+1[x0 =J) = pjP(v; = k| x0 = j))-

0-1 Law for the Total Number of Visits

J is recurrent iff E[v; | xo = j] = 00

Proof: Since v; is discrete, we can write v; = Y, 1{v; > k} and

o
Elvi|xo=j1=) P(y>k+1|x=j)= ZPJJ
k=0

1 - pJJ

Theorem: Recurrence is contagious

i is recurrent and p;; >0 = jisrecurrent and p;; =1
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Mean First Passage Time

» Mean first passage time: m;; :=E[7; | xo = /]

» By the law of total probability:

mjj = P,J + Z P,'k(]_ + mkj) =1+ Z P,-kmkj
ki ki

» Let M € RV*N with elements mj; contain all mean first passage times
> Let D= diag(mll, ce mNN)
» The matrix of mean first passage times satisfies:

M=11" + P(M — D)
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Equivalence Classes

» | — j: state j is accessible from state / if P,-(j") > 0 for some n

Every state is accessible from itself since PI.(,.O) =1

i <> j: state / and j communicate if they are accessible from each other
Equivalence class: a set of states which communicate with each other

Example: find the equivalence classes for this Markov chain
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Classification of Markov Chains

» Absorbing Markov Chain: contains at least one absorbing state that
can be reached from every other state (not necessarily in one step)

» Irreducible Markov Chain: all states communicate with each other

» Ergodic Markov Chain: an aperiodic, irreducible and positive recurrent
Markov chain
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Periodicity

» Periodicity plays an important role when discussing the long-term
behavior of a Markov chain

» The period of a state i/ is the largest integer d; such that P,-(,-”) =0
whenever n is not divisible by d;

» If d; > 1, then / is periodic
» If d; =1, then / is aperiodic

» If i <+ j, then d; = d;. Hence, all states of an irreducible Markov chain
have the same period.

» Two integers are co-prime if their greatest common divisor (ged) is 1
» If we can find co-prime / and m such that P,-(il) > 0 and P,.(,-m) > 0, then i/
is aperiodic
» Since 1 is co-prime to every integer, any state / with a self-transition is
aperiodic
14



Periodicity

» A matrix P is non-negative if all P; >0
» A matrix P is stochastic if its rows sum to 1, i.e., ZJ. Pj =1 for all i

» A non-negative matrix P is quasi-positive if there exists a natural
number m > 1 such that all entries of P™ are strictly positive

» If P is a stochastic matrix and is quasi-positive, i.e., all entries of P™ are
positive, then for all n > m all entries of P" are positive

» Aperiodicity Lemma: A stochastic transition matrix P is irreducible
and aperiodic if and only if P is quasi-positive.

» A finite Markov chain with transition matrix P is ergodic if and only if P
is quasi-positive
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Stationary and Limiting Distributions

> Stationary distribution: a vector w € {p € [0,1]Y | 1Tp = 1} such
thatw'P=w'

» Limiting distribution: a vector w € {p € [0,1]" | 1Tp = 1} such that:
tin;oIP(xt =jlxo=1)=w;
» If it exists, the limiting distribution of a Markov chain is stationary

» Absorbing chains have limiting distributions with nonzero elements
only in absorbing states

» Ergodic chains have a unique limiting distribution (Perron-Frobenius
Theorem)

» Periodic chains may not have a limiting distribution but satisfy a
weaker condition, where w; > 0 only for recurrent states and w; is the
oo .
' of being in state j as n — oo

frequency -
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Example

» Consider a Markov chain with:
> state space X = {0,1}

> prior pmf pg = [P(xo = 0), P(xo =1)]" = [y, 1—7]"

> transition matrix with a,b € [0,1], 0 < a+ b < 2:
1-a a
P= { b 1—b]

» By induction: P" = —t [b 3] _I_(l—a—b)"[ a —a]

ath |p a3 atb  |_p b

» Since —1<1l—a—b<1: Iim,HOOP”:aJrlb[Z Z]

» Limiting distribution: exists and is not dependent on the initial pmf po:

1 b a b b
. T_ Tpt T —
A Pe = lim po P = 27 Po [b a} - L+b’ a+b}
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Example

» |f a= b =1, the transition matrix is P = B é]

» This Markov chain is periodic:

Xxo if tis even
Xt = L
x; if tis odd

» The pmf p; does not converge as t — oo and depends on pg
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Absorbing Markov Chains

» Interesting questions:

Q1: On average, how mant times is the process in state j7
Q2: What is the probability that the state will eventually be absorbed?
Q3: What is the expected absorption time?

Q4: What is the probability of being absorbed by j given that we started in i?
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Absorbing Markov Chains

» Canonical form: reorder the states so that the transient ones come

. .5 Q@ R
flrst.P—[O /
Q" *
» One can show that P" = 0 J and Q" — 0as n— oo

Proof: If j is transient, then p; < 1 and from the 0-1 Law:

> 1{xe=j} | x0 = l} => [Pl
n=0 n=0

» Fundamental matrix: Z4 = (I — Q)~! = 37 ) Q" exists for an
absorbing Markov chain

co>E[vy|x=i=E

> Expected number of times the chain is in state j: Z,-j-‘ =E[v | xo =]
» Expected absorption time when starting from state i: Zj Z,f‘

> Let B = Z”R. The probability of reaching absorbing state j starting from
state / is By
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Example: Drunkard’s Walk

> Transition matrix:

P =

» Canonical form:

p =

1 0
05 O
0 05
0 O
0 O
0 05
05 O
0 05
0 O
0 O

0
0.5
0
0.5
0

0
0

» Fundamental matrix:

ZA=(1-Q)t=

0 0
0 0
05 0
0 05
0 1|
05 0]
0 0
0 05
1 0
0 1|
15 1 05
1 2 1
05 1 15
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General Finite Markov Chain

» A finite Markov chain might have several transient and several recurrent
classes

» As t increases, the chain is absorbed in one of the recurrent classes

» We can replace each recurrent class with an absorbing state to obtain a
chain with only transient and absorbing states

» We can obtain the absorbtion probabilities from B = ZAR

» Each recurrent class can then be analyzed separately
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Perron-Frobenius Theorem (Finite Ergodic Markov Chain)

Let P be the transition matrix of an irreducible, aperiodic, finite,
time-homogeneous Markov chain. Then, the following hold for P:

> 1 is the eigenvalue of max modulus, i.e., || < 1 for all other eigenvalues

» 1 is a simple eigenvalue, i.e., the associated eigenspace and
left-eigenspace have dimension 1

» The eigenvector associated with 1 is 1
» The unique left eigenvector w is nonnegative and limp_o P" = 1w "

Hence, w is the unique stationary distribution for the Markov chain and any
initial distribution converges to it.
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Perron-Frobenius Theorem (Ergodic Markov Chain)

Consider an irreducible, aperiodic, countably infinite Markov chain. Then,
one of the following holds:

> All states are transient and lim¢_oo P(x¢ = jlxo = i) =0, Vi, j
» All states are null-recurrent and lim;_,o P(x = j|xo = i) =0, Vi, j

» All states are positive-recurrent and there exists a limiting distribution
w; =) w;Pj, Zj w; = 1 such that:

t&n;OP(xt =jlxo=1i)=w;>0
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Fundamental Matrix for Ergodic Chains

» We can try to get a fundamental matrix as in the absorbing case but
(I — P)~! does not exist because P1 = 1 (Perron-Frobenius)

> | +Q+Q%*+...= (I — Q)L converges because Q" — 0

> Try I+ (P—1w") +(P?>—1w') + ... because P" — 1w '
(Perron-Frobenius)

> Note that Plw' = 1w and (Iw')? = 1w 1w’ = 1w'

n

(Pt = 32 () iy - P"+Z () awy
i(—l)"(’,’)] (W) =P~ 1w’

(1-1)n—1

= P74+

» Thus, the following inverse exists:

o
I+) (P -1 —/+Z —w)"=(-P+1w")?
n=1
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Fundamental Matrix for Ergodic Chains

» Fundamental matrix: ZF := (/ — P+ 1w")~! where P is the
transition matrix and w is the stationary distribution.

> Properties: w' ZF =w', ZF1 =1, and ZE(I —-P)=1- 1w’

» Mean first passage time:
ZE ZE
/]

> my ===
J

I F

1
> mi=E[r|x=i]=—
w;
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Example: Land of Oz

» Transition matrix:

0.5 0.25 0.25
P=|05 0 05
0.25 0.25 0.5
» Stationary distribution:
w' =[04 02 04] 025
» Fundamental matrix: 05 0.25
109 —005 0157 os @@ 05
|—-P+1w' = [-01 12 -01 025 05
1015 —0.05 0.9
[ 1.147 0.04 —0.187 025
ZE =1 008 084 0.08
| —0.187 0.04 1.147

» Mean first passage time:

ZH-2Z _ 0.84-004 _ 4

mio =

w2

0.2
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