ECE276B: Planning \& Learning in Robotics Lecture 4: The Dynamic Programming Algorithm

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Hanwen Cao: h1cao@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Dynamic Programming

- Control policy: a function π that maps a time step $t \in \mathbb{N}$ and a state $\mathbf{x} \in \mathcal{X}$ to a feasible control input $\mathbf{u} \in \mathcal{U}$
- Value function $V_{t}^{\pi}(\mathbf{x})$: expected long-term cost starting in state \mathbf{x} at time t and following policy π
- Objective: construct an optimal control policy:

$$
\pi^{*}=\underset{\pi}{\arg \min } V_{0}^{\pi}\left(\mathbf{x}_{0}\right)
$$

- Dynamic Programming Algorithm obtains an optimal control policy given an MDP model
- Idea: uses the value function to structure the search for good policies
- Generality: can handle non-convex and non-linear problems
- Complexity: polynomial in the number of states and actions
- Efficiency: much more efficient than a brute-force approach evaluating all possible strategies

Principle of Optimality

- Let $\pi_{0: T-1}^{*}$ be an optimal control policy
- Consider a subproblem, minimizing the value at state \mathbf{x} at time t :

$$
V_{t}^{\pi}(\mathbf{x})=\mathbb{E}_{\mathbf{x}_{t+1: T}}\left[\gamma^{T-t} \mathfrak{q}\left(\mathbf{x}_{T}\right)+\sum_{\tau=t}^{T-1} \gamma^{\tau-t} \ell\left(\mathbf{x}_{\tau}, \pi_{\tau}\left(\mathbf{x}_{\tau}\right)\right) \mid \mathbf{x}_{t}=\mathbf{x}\right]
$$

- Principle of optimality: the truncated policy $\pi_{t: T-1}^{*}$ is optimal for the subproblem $\min _{\pi} V_{t}^{\pi}(\mathbf{x})$ at time t
- Intuition: Suppose $\pi_{t: T-1}^{*}$ were not optimal for the subproblem. Then, there would exist a policy yielding a lower cost on at least some portion of the state space.

Example: Deterministic Scheduling Problem

- Consider a deterministic scheduling problem where 4 operations $\mathrm{A}, \mathrm{B}, \mathrm{C}$, D are used to produce a product
- Rules: Operation A must occur before B, and C before D
- Cost: there is a transition cost between each two operations:

Example: Deterministic Scheduling Problem

- Dynamic programming is applied backwards in time. First, construct an optimal solution at the last stage and then work backwards.
- The optimal cost-to-go at each state of the scheduling problem is denoted with red text below the state:

The Dynamic Programming Algorithm

Algorithm 1 Dynamic Programming
1: Input: $\operatorname{MDP}\left(\mathcal{X}, \mathcal{U}, p_{0}, p_{f}, T, \ell, \mathfrak{q}, \gamma\right)$
2:
3: $\quad V_{T}(\mathbf{x})=\mathfrak{q}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X}$
4: for $t=(T-1) \ldots 0$ do
5: $\quad Q_{t}(\mathbf{x}, \mathbf{u})=\ell(\mathbf{x}, \mathbf{u})+\gamma \mathbb{E}_{\mathbf{x}^{\prime} \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})}\left[V_{t+1}\left(\mathbf{x}^{\prime}\right)\right], \quad \forall \mathbf{x} \in \mathcal{X}, \mathbf{u} \in \mathcal{U}(\mathbf{x})$
6: $\quad V_{t}(\mathbf{x})=\min _{\mathbf{u} \in \mathcal{U}(\mathbf{x})} Q_{t}(\mathbf{x}, \mathbf{u}), \quad \forall \mathbf{x} \in \mathcal{X}$
7: $\quad \pi_{t}(\mathbf{x})=\underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg \min } Q_{t}(\mathbf{x}, \mathbf{u}), \quad \forall \mathbf{x} \in \mathcal{X}$
8: return policy $\pi_{0: T-1}$ and value function V_{0}

The expected value function at $\mathbf{x}^{\prime} \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})$ is:

- Continuous $\mathcal{X}: \mathbb{E}_{\mathbf{x}^{\prime} \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})}\left[V_{t+1}\left(\mathbf{x}^{\prime}\right)\right]=\int V_{t+1}\left(\mathbf{x}^{\prime}\right) p_{f}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{u}\right) d \mathbf{x}^{\prime}$
- Discrete $\mathcal{X}: \mathbb{E}_{\mathbf{x}^{\prime} \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})}\left[V_{t+1}\left(\mathbf{x}^{\prime}\right)\right]=\sum_{\mathbf{x}^{\prime} \in \mathcal{X}} V_{t+1}\left(\mathbf{x}^{\prime}\right) p_{f}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{u}\right)$

The Dynamic Programming Algorithm

- At each step, all possible states $\mathbf{x} \in \mathcal{X}$ are considered because we do not know a prior which states will be visited
- This point-wise optimization at each $\mathrm{x} \in \mathcal{X}$ is what gives us a policy $\pi_{t}(\mathbf{x})$, i.e., a function specifying a control input for every state $\mathbf{x} \in \mathcal{X}$
- Consider a discrete-space example with $|\mathcal{X}|=10$ states, $|\mathcal{U}|=10$ control inputs, planning horizon $T=4$, and given x_{0} :
- There are $|\mathcal{U}|^{T}=10^{4}$ different open-loop strategies
- There are $|\mathcal{U}|^{|\mathcal{X}|(T-1)+1}=10^{31}$ different closed-loop strategies
- For each stage t and each state \mathbf{x}, the DP algorithm goes through the $|\mathcal{U}|$ control inputs to determine the optimal input. In total, there are $|\mathcal{U}||\mathcal{X}|(T-1)+|\mathcal{U}|=310$ such operations.

Dynamic Programming Optimality

Theorem: Optimality of the DP Algorithm

The policy $\pi_{0: T-1}$ and value function V_{0} returned by the DP algorithm are optimal for the finite-horizon optimal control problem.

- Proof:

- Let $V_{t}^{*}(\mathbf{x})$ be the optimal cost for the $(T-t)$-stage problem that starts at time t in state \mathbf{x}.
- Proceed by induction
- Base-case: $V_{T}^{*}(\mathbf{x})=\mathfrak{q}(\mathbf{x})=V_{T}(\mathbf{x})$
- Hypothesis: Assume that for $t+1, V_{t+1}^{*}(\mathbf{x})=V_{t+1}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$
- Induction: Show that $V_{t}^{*}(\mathbf{x})=V_{t}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$

Proof of Dynamic Programming Optimality

$$
\begin{aligned}
& V_{t}^{*}\left(\mathbf{x}_{t}\right)=\min _{\pi_{t: T-1}} \mathbb{E}_{\mathbf{x}_{t+1: T} \mid \mathbf{x}_{t}}\left[\gamma^{T-t} \mathfrak{q}\left(\mathbf{x}_{T}\right)+\sum_{\tau=t}^{T-1} \gamma^{\tau-t} \ell\left(\mathbf{x}_{\tau}, \pi_{\tau}\left(\mathbf{x}_{\tau}\right)\right)\right] \\
& \quad=\min _{\pi_{t: T-1}} \mathbb{E}_{\mathbf{x}_{t+1: T} \mid \mathbf{x}_{t}}\left[\ell\left(\mathbf{x}_{t}, \pi_{t}\left(\mathbf{x}_{t}\right)\right)+\gamma^{T-t} \mathfrak{q}\left(\mathbf{x}_{T}\right)+\sum_{\tau=t+1}^{T-1} \gamma^{\tau-t} \ell\left(\mathbf{x}_{\tau}, \pi_{\tau}\left(\mathbf{x}_{\tau}\right)\right)\right] \\
& \quad \stackrel{(1)}{=} \min _{\pi_{t: T-1}} \ell\left(\mathbf{x}_{t}, \pi_{t}\left(\mathbf{x}_{t}\right)\right)+\mathbb{E}_{\mathbf{x}_{t+1: T} \mid \mathbf{x}_{t}}\left[\gamma^{T-t} \mathfrak{q}\left(\mathbf{x}_{T}\right)+\sum_{\tau=t+1}^{T-1} \gamma^{\tau-t} \ell\left(\mathbf{x}_{\tau}, \pi_{\tau}\left(\mathbf{x}_{\tau}\right)\right)\right] \\
& \quad \xlongequal{(2)} \min _{\pi_{t: T-1}} \ell\left(\mathbf{x}_{t}, \pi_{t}\left(\mathbf{x}_{t}\right)\right)+\gamma \mathbb{E}_{\mathbf{x}_{t+1} \mid \mathbf{x}_{t}}\left[\mathbb{E}_{\mathbf{x}_{t+2: T} \mid \mathbf{x}_{t+1}}\left[\gamma^{T-t-1} \mathfrak{q}\left(\mathbf{x}_{T}\right)+\sum_{\tau=t+1}^{T-1} \gamma^{\tau-t-1} \ell\left(\mathbf{x}_{\tau}, \pi_{\tau}\left(\mathbf{x}_{\tau}\right)\right)\right]\right] \\
& \quad \xlongequal[=]{(3)} \min _{\pi_{t}}\left\{\ell\left(\mathbf{x}_{t}, \pi_{t}\left(\mathbf{x}_{t}\right)\right)+\gamma \mathbb{E}_{\mathbf{x}_{t+1} \mid \mathbf{x}_{t}}\left[\min _{\pi_{t+1: T-1}} \mathbb{E}_{\mathbf{x}_{t+2: T} \mid \mathbf{x}_{t+1}}\left[\gamma^{T-t-1} \mathfrak{q}\left(\mathbf{x}_{T}\right)+\sum_{\tau=t+1}^{T-1} \gamma^{\tau-t-1} \ell\left(\mathbf{x}_{\tau}, \pi_{\tau}\left(\mathbf{x}_{\tau}\right)\right)\right]\right]\right\} \\
& \quad \xlongequal[=]{(4)} \min _{\pi_{t}}\left\{\ell\left(\mathbf{x}_{t}, \pi_{t}\left(\mathbf{x}_{t}\right)\right)+\gamma \mathbb{E}_{\mathbf{x}_{t+1} \sim p_{f}\left(\cdot \mid \mathbf{x}_{t}, \pi_{t}\left(\mathbf{x}_{t}\right)\right)}\left[V_{t+1}^{*}\left(\mathbf{x}_{t+1}\right)\right]\right\} \\
& \stackrel{(5)}{=} \min _{\mathbf{u}_{t} \in \mathcal{U}\left(\mathbf{x}_{t}\right)}\left\{\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma \mathbb{E}_{\mathbf{x}_{t+1} \sim p_{f}\left(\cdot \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right)}\left[V_{t+1}\left(\mathbf{x}_{t+1}\right)\right]\right\} \\
& \quad=V_{t}\left(\mathbf{x}_{t}\right), \forall \mathbf{x}_{t} \in \mathcal{X}
\end{aligned}
$$

Proof of Dynamic Programming Optimality

(1) Since $\ell\left(\mathbf{x}_{t}, \pi_{t}\left(\mathbf{x}_{t}\right)\right)$ is not a function of $\mathbf{x}_{t+1: T}$
(2) Using conditional probability
$p\left(\mathbf{x}_{t+1: T} \mid \mathbf{x}_{t}\right)=p\left(\mathbf{x}_{t+2: T} \mid \mathbf{x}_{t+1}, \mathbf{x}_{t}\right) p\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}\right)$ and the Markov assumption
(3) The minimization can be split since the term $\ell\left(\mathbf{x}_{t}, \pi_{t}\left(\mathbf{x}_{t}\right)\right)$ does not depend on $\pi_{t+1: T-1}$. The expectation $\mathbb{E}_{\mathbf{x}_{t+1} \mid \mathbf{x}_{t}}$ and $\min _{\pi_{t+1: T}}$ can be exchanged since the functions $\pi_{t+1: T-1}$ make the cost small for all initial conditions., i.e., independently of \mathbf{x}_{t+1}.

- (1)-(3) is the principle of optimality
(4) By definition of $V_{t+1}^{*}(\cdot)$ and the motion model $\mathbf{x}_{t+1} \sim p_{f}\left(\cdot \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right)$
(5) By the induction hypothesis

Example: Chess Strategy Optimization

- State: $x_{t} \in \mathcal{X}:=\{-2,-1,0,1,2\}$ - the difference between our and the opponent's score at the end of game t
- Input: $u_{t} \in \mathcal{U}:=\{$ timid, bold $\}$
- Dynamics: with $p_{d}>p_{w}$:

$$
\begin{aligned}
p_{f}\left(x_{t+1}=x_{t} \mid u_{t}=\text { timid }, x_{t}\right) & =p_{d} \\
p_{f}\left(x_{t+1}=x_{t}-1 \mid u_{t}=\text { timid }, x_{t}\right) & =1-p_{d} \\
p_{f}\left(x_{t+1}=x_{t}+1 \mid u_{t}=\text { bold, }, x_{t}\right) & =p_{w} \\
p_{f}\left(x_{t+1}=x_{t}-1 \mid u_{t}=\text { bold, }, x_{t}\right) & =1-p_{w}
\end{aligned}
$$

- Cost: $V_{t}\left(x_{t}\right)=\mathbb{E}[\mathfrak{q}\left(x_{2}\right)+\sum_{\tau=t}^{1} \underbrace{\ell\left(x_{\tau}, u_{\tau}\right)}_{=0}]$ with

$$
\mathfrak{q}(x)= \begin{cases}-1 & \text { if } x>0 \\ -p_{w} & \text { if } x=0 \\ 0 & \text { if } x<0\end{cases}
$$

Example: Chess Strategy Optimization

- Initialize: $V_{2}\left(x_{2}\right)= \begin{cases}-1 & \text { if } x_{2}>0 \\ -p_{w} & \text { if } x_{2}=0 \\ 0 & \text { if } x_{2}<0\end{cases}$
- Recursion: for all $x_{t} \in \mathcal{X}$ and $t=1,0$:

$$
\begin{aligned}
& V_{t}\left(x_{t}\right)=\min _{u_{t} \in \mathcal{U}}\left\{\ell\left(x_{t}, u_{t}\right)+\mathbb{E}_{x_{t+1} \mid x_{t}, u_{t}}\left[V_{t+1}\left(x_{t+1}\right)\right]\right\} \\
& \quad=\min \{\underbrace{p_{d} V_{t+1}\left(x_{t}\right)+\left(1-p_{d}\right) V_{t+1}\left(x_{t}-1\right)}_{\text {timid }}, \underbrace{p_{w} V_{t+1}\left(x_{t}+1\right)+\left(1-p_{w}\right) V_{t+1}\left(x_{t}-1\right)}_{\text {bold }}\}
\end{aligned}
$$

Example: Chess Strategy Optimization

- $x_{1}=1$:

$$
\begin{aligned}
V_{1}(1) & =-\max \left\{p_{d}+\left(1-p_{d}\right) p_{w}, p_{w}+\left(1-p_{w}\right) p_{w}\right\} \xlongequal[p_{d}>p_{w}]{\text { since }} \\
& =-p_{d}-\left(1-p_{d}\right) p_{w}
\end{aligned}
$$

$$
\pi_{1}^{*}(1)=\text { timid }
$$

- $x_{1}=0$:

$$
\begin{aligned}
& V_{1}(0)=-\max \left\{p_{d} p_{w}+\left(1-p_{d}\right) 0, p_{w}+\left(1-p_{w}\right) 0\right\}=-p_{w} \\
& \pi_{1}^{*}(0)=\text { bold }
\end{aligned}
$$

- $x_{1}=-1$:

$$
\begin{aligned}
& V_{1}(-1)=-\max \left\{p_{d} 0+\left(1-p_{d}\right) 0, p_{w} p_{w}+\left(1-p_{w}\right) 0\right\}=-p_{w}^{2} \\
& \pi_{1}^{*}(-1)=\text { bold }
\end{aligned}
$$

Example: Chess Strategy Optimization

- $x_{0}=0$:

$$
\begin{aligned}
& \begin{aligned}
V_{0}(0) & =-\max \left\{p_{d} V_{1}(0)+\left(1-p_{d}\right) V_{1}(-1), p_{w} V_{1}(1)+\left(1-p_{w}\right) V_{1}(-1)\right\} \\
& =-\max \left\{p_{d} p_{w}+\left(1-p_{d}\right) p_{w}^{2}, p_{w}\left(p_{d}+\left(1-p_{d}\right) p_{w}\right)+\left(1-p_{w}\right) p_{w}^{2}\right\} \\
& =-p_{d} p_{w}-\left(1-p_{d}\right) p_{w}^{2}-\left(1-p_{w}\right) p_{w}^{2} \\
\pi_{0}^{*}(0) & =\text { bold }
\end{aligned} .
\end{aligned}
$$

- As before, the optimal strategy is to play timid iff ahead in the score.

Example: Deterministic Nonlinear System

- Consider a system with state $x_{t} \in \mathbb{R}$, control $\mathbf{u}_{t}:=\left[a_{t}, b_{t}\right] \in \mathbb{R}^{2}$ and motion model:

$$
x_{t+1}=f\left(x_{t}, \mathbf{u}_{t}\right)=a_{t} x_{t}+b_{t}
$$

- Calculate the optimal value function $V_{0}^{*}(x)$ at time $t=0$ and an optimal policy $\pi_{t}^{*}(x)$ for $t \in\{0,1\}$, which minimize the total cost:

$$
x_{2}+a_{1}^{2}+a_{0}^{2}+b_{1}^{2}+b_{0}^{2}
$$

- Planning horizon: $T=2$
- Terminal cost: $\mathfrak{q}(x)=x$
- Stage cost: $\ell(x, \mathbf{u})=\|\mathbf{u}\|_{2}^{2}=a^{2}+b^{2}$
- Discount factor: $\gamma=1$

Example: Deterministic Nonlinear System

- Dynamic programming algorithm at $t=T=2$:

$$
V_{2}^{*}\left(x_{2}\right)=\mathfrak{q}\left(x_{2}\right)=x_{2}, \quad \forall x_{2} \in \mathbb{R}
$$

- At $t=1$:

$$
V_{1}^{*}\left(x_{1}\right)=\min _{\mathbf{u}_{1}}\left\{\ell\left(x_{1}, \mathbf{u}_{1}\right)+V_{2}^{*}\left(f\left(x_{1}, \mathbf{u}_{1}\right)\right)\right\}=\min _{a_{1}, b_{1}}\left\{a_{1}^{2}+b_{1}^{2}+a_{1} x_{1}+b_{1}\right\}
$$

- Obtain minimum by setting gradient with respect to \mathbf{u}_{1} to zero:

$$
\begin{aligned}
& \frac{\partial}{\partial a_{1}}\left(a_{1}^{2}+b_{1}^{2}+a_{1} x_{1}+b_{1}\right)=2 a_{1}+x_{1}=0 \\
& \frac{\partial}{\partial b_{1}}\left(a_{1}^{2}+b_{1}^{2}+a_{1} x_{1}+b_{1}\right)=2 b_{1}+1=0
\end{aligned}
$$

leading to $a_{1}^{*}=-\frac{1}{2} x_{1}$ and $b_{1}^{*}=-\frac{1}{2}$

- To confirm this is a minimizer, check that Hessian matrix $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ is positive definite

Example: Deterministic Nonlinear System

- At $t=1$:
- Optimal policy at $t=1: \pi_{1}^{*}\left(x_{1}\right)=-\frac{1}{2}\left[\begin{array}{c}x_{1} \\ 1\end{array}\right]$
- Substituting the optimal policy into the value function:

$$
V_{1}^{*}\left(x_{1}\right)=\left(-\frac{1}{2} x_{1}\right)^{2}+\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2} x_{1}\right) x_{1}+\left(-\frac{1}{2}\right)=-\frac{1}{4} x_{1}^{2}-\frac{1}{4}
$$

- At $t=0$:

$$
\begin{aligned}
V_{0}^{*}\left(x_{0}\right) & =\min _{\mathbf{u}_{0}}\left\{\ell\left(x_{0}, \mathbf{u}_{0}\right)+V_{1}^{*}\left(f\left(x_{0}, \mathbf{u}_{0}\right)\right)\right\} \\
& =\min _{a_{0}, b_{0}}\left\{a_{0}^{2}+b_{0}^{2}-\frac{1}{4}\left(a_{0} x_{0}+b_{0}\right)^{2}-\frac{1}{4}\right\} \\
& =\min _{a_{0}, b_{0}}\left\{\left(1-\frac{1}{4} x_{0}^{2}\right) a_{0}^{2}+\frac{3}{4} b_{0}^{2}-\frac{1}{2} a_{0} b_{0} x_{0}-\frac{1}{4}\right\}
\end{aligned}
$$

Example: Deterministic Nonlinear System

- At $t=0$:
- Obtain minimum by setting gradient with respect to \mathbf{u}_{0} to zero:

$$
\begin{gathered}
\frac{\partial}{\partial a_{0}}\left(\left(1-\frac{1}{4} x_{0}^{2}\right) a_{0}^{2}+\frac{3}{4} b_{0}^{2}-\frac{1}{2} a_{0} b_{0} x_{0}-\frac{1}{4}\right)=2 a_{0}-\frac{1}{2} a_{0} x_{0}^{2}-\frac{1}{2} b_{0} x_{0}=0 \\
\frac{\partial}{\partial b_{0}}\left(\left(1-\frac{1}{4} x_{0}^{2}\right) a_{0}^{2}+\frac{3}{4} b_{0}^{2}-\frac{1}{2} a_{0} b_{0} x_{0}-\frac{1}{4}\right)=\frac{3}{2} b_{0}-\frac{1}{2} a_{0} x_{0}=0 \\
\Rightarrow \quad \frac{1}{2}\left[\begin{array}{cc}
4-x_{0}^{2} & -x_{0} \\
-x_{0} & 3
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
b_{0}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gathered}
$$

- For $x_{0} \neq \pm \sqrt{3}$, the Hessian matrix $\frac{1}{2}\left[\begin{array}{cc}4-x_{0}^{2} & -x_{0} \\ -x_{0} & 3\end{array}\right]$ is positive definite and $a_{0}^{*}=b_{0}^{*}=0$
- For $x_{0}= \pm \sqrt{3}, a_{0}^{*}= \pm \sqrt{3} b_{0}^{*}$. Hence we can still choose $b_{0}^{*}=a_{0}^{*}=0$
- Optimal policy at $t=0: \pi_{0}^{*}\left(x_{0}\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- Substituting the optimal policy into the value function: $V_{0}^{*}\left(x_{0}\right)=-\frac{1}{4}$

