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Dynamic Programming

I Control policy: a function π that maps a time step t ∈ N and a state
x ∈ X to a feasible control input u ∈ U

I Value function V π
t (x): expected long-term cost starting in state x at

time t and following policy π

I Objective: construct an optimal control policy:

π∗ = arg min
π

V π
0 (x0)

I Dynamic Programming Algorithm obtains an optimal control policy
given an MDP model
I Idea: uses the value function to structure the search for good policies
I Generality: can handle non-convex and non-linear problems
I Complexity: polynomial in the number of states and actions
I Efficiency: much more efficient than a brute-force approach evaluating all

possible strategies
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Principle of Optimality

I Let π∗0:T−1 be an optimal control policy

I Consider a subproblem, minimizing the value at state x at time t:

V π
t (x) = Ext+1:T

[
γT−tq(xT ) +

T−1∑
τ=t

γτ−t`(xτ , πτ (xτ ))

∣∣∣∣ xt = x

]
I Principle of optimality: the truncated policy π∗t:T−1 is optimal for the

subproblem minπ V
π
t (x) at time t

I Intuition: Suppose π∗t:T−1 were not optimal for the subproblem. Then,
there would exist a policy yielding a lower cost on at least some portion
of the state space.
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Example: Deterministic Scheduling Problem
I Consider a deterministic scheduling problem where 4 operations A, B, C,

D are used to produce a product

I Rules: Operation A must occur before B, and C before D

I Cost: there is a transition cost between each two operations:
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Example: Deterministic Scheduling Problem

I Dynamic programming is applied backwards in time. First, construct an
optimal solution at the last stage and then work backwards.

I The optimal cost-to-go at each state of the scheduling problem is
denoted with red text below the state:
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The Dynamic Programming Algorithm

Algorithm 1 Dynamic Programming

1: Input: MDP (X ,U , p0, pf ,T , `, q, γ)
2:

3: VT (x) = q(x), ∀x ∈ X
4: for t = (T − 1) . . . 0 do
5: Qt(x,u) = `(x,u) + γEx′∼pf (·|x,u) [Vt+1(x′)] , ∀x ∈ X ,u ∈ U(x)
6: Vt(x) = min

u∈U(x)
Qt(x,u), ∀x ∈ X

7: πt(x) = arg min
u∈U(x)

Qt(x,u), ∀x ∈ X

8: return policy π0:T−1 and value function V0

The expected value function at x′ ∼ pf (·|x,u) is:

I Continuous X : Ex′∼pf (·|x,u)
[
Vt+1(x′)

]
=

∫
Vt+1(x′)pf (x′ | x,u)dx′

I Discrete X : Ex′∼pf (·|x,u)
[
Vt+1(x′)

]
=
∑
x′∈X

Vt+1(x′)pf (x′ | x,u)
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The Dynamic Programming Algorithm

I At each step, all possible states x ∈ X are considered because we do not
know a priori which states will be visited

I This point-wise optimization at each x ∈ X is what gives us a policy
πt(x), i.e., a function specifying a control input for every state x ∈ X

I Consider a discrete-space example with |X | = 10 states, |U| = 10
control inputs, planning horizon T = 4, and given x0:
I There are |U|T = 104 different open-loop strategies

I There are |U||X |(T−1)+1 = 1031 different closed-loop strategies

I For each stage t and each state x, the DP algorithm goes through the |U|
control inputs to determine the optimal input. In total, there are
|U||X |(T − 1) + |U| = 310 such operations.
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Dynamic Programming Optimality

Theorem: Optimality of the DP Algorithm

The policy π0:T−1 and value function V0 returned by the DP algorithm are
optimal for the finite-horizon optimal control problem.

I Proof:
I Let V ∗t (x) be the optimal cost for the (T − t)-stage problem that starts

at time t in state x.

I Proceed by induction

I Base-case: V ∗T (x) = q(x) = VT (x)

I Hypothesis: Assume that for t + 1, V ∗t+1(x) = Vt+1(x) for all x ∈ X
I Induction: Show that V ∗t (x) = Vt(x) for all x ∈ X
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Proof of Dynamic Programming Optimality

V ∗t (xt) = min
πt:T−1

Ext+1:T |xt

[
γT−tq(xT ) +

T−1∑
τ=t

γτ−t`(xτ , πτ (xτ ))

]

= min
πt:T−1

Ext+1:T |xt

[
`(xt , πt(xt)) + γT−tq(xT ) +

T−1∑
τ=t+1

γτ−t`(xτ , πτ (xτ ))

]
(1)

=== min
πt:T−1

`(xt , πt(xt)) + Ext+1:T |xt

[
γT−tq(xT ) +

T−1∑
τ=t+1

γτ−t`(xτ , πτ (xτ ))

]
(2)

=== min
πt:T−1

`(xt , πt(xt)) + γExt+1|xt

[
Ext+2:T |xt+1

[
γT−t−1q(xT ) +

T−1∑
τ=t+1

γτ−t−1`(xτ , πτ (xτ ))

]]
(3)

=== min
πt

{
`(xt , πt(xt)) + γExt+1|xt

[
min

πt+1:T−1

Ext+2:T |xt+1

[
γT−t−1q(xT ) +

T−1∑
τ=t+1

γτ−t−1`(xτ , πτ (xτ ))

]]}
(4)

=== min
πt

{
`(xt , πt(xt)) + γExt+1∼pf (·|xt ,πt(xt))

[
V ∗t+1(xt+1)

]}
(5)

=== min
ut∈U(xt)

{
`(xt ,ut) + γExt+1∼pf (·|xt ,ut) [Vt+1(xt+1)]

}
= Vt(xt), ∀xt ∈ X
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Proof of Dynamic Programming Optimality

(1) Since `(xt , πt(xt)) is not a function of xt+1:T

(2) Using conditional probability
p(xt+1:T |xt) = p(xt+2:T |xt+1, xt)p(xt+1|xt) and the Markov assumption

(3) The minimization can be split since the term `(xt , πt(xt)) does not
depend on πt+1:T−1. The expectation Ext+1|xt and minπt+1:T

can be
exchanged since the functions πt+1:T−1 make the cost small for all
initial conditions., i.e., independently of xt+1.

I (1)-(3) is the principle of optimality

(4) By definition of V ∗t+1(·) and the motion model xt+1 ∼ pf (· | xt ,ut)

(5) By the induction hypothesis
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Example: Chess Strategy Optimization
I State: xt ∈ X := {−2,−1, 0, 1, 2} – the difference between our and the

opponent’s score at the end of game t

I Input: ut ∈ U := {timid , bold}

I Dynamics: with pd > pw :

pf (xt+1 = xt | ut = timid , xt) = pd

pf (xt+1 = xt − 1 | ut = timid , xt) = 1− pd

pf (xt+1 = xt + 1 | ut = bold , xt) = pw

pf (xt+1 = xt − 1 | ut = bold , xt) = 1− pw

I Cost: Vt(xt) = E

q(x2) +
∑1

τ=t `(xτ , uτ )︸ ︷︷ ︸
=0

 with

q(x) =


−1 if x > 0

−pw if x = 0

0 if x < 0
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Example: Chess Strategy Optimization

I Initialize: V2(x2) =


−1 if x2 > 0

−pw if x2 = 0

0 if x2 < 0

I Recursion: for all xt ∈ X and t = 1, 0:

Vt(xt) = min
ut∈U

{
`(xt , ut) + Ext+1|xt ,ut [Vt+1(xt+1)]

}
= min

pdVt+1(xt) + (1− pd)Vt+1(xt − 1)︸ ︷︷ ︸
timid

, pwVt+1(xt + 1) + (1− pw )Vt+1(xt − 1)︸ ︷︷ ︸
bold


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Example: Chess Strategy Optimization

I x1 = 1:

V1(1) = −max {pd + (1− pd)pw , pw + (1− pw )pw}
since

=====
pd>pw

= −pd − (1− pd)pw

π∗1(1) = timid

I x1 = 0:

V1(0) = −max {pdpw + (1− pd)0, pw + (1− pw )0} = −pw
π∗1(0) = bold

I x1 = −1:

V1(−1) = −max {pd0 + (1− pd)0, pwpw + (1− pw )0} = −p2w
π∗1(−1) = bold
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Example: Chess Strategy Optimization

I x0 = 0:

V0(0) = −max {pdV1(0) + (1− pd)V1(−1), pwV1(1) + (1− pw )V1(−1)}
= −max

{
pdpw + (1− pd)p2w , pw (pd + (1− pd)pw ) + (1− pw )p2w

}
= −pdpw − (1− pd)p2w − (1− pw )p2w

π∗0(0) = bold

I As before, the optimal strategy is to play timid iff ahead in the score.
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Example: Deterministic Nonlinear System

I Consider a system with state xt ∈ R, control ut := [at , bt ] ∈ R2 and
motion model:

xt+1 = f (xt ,ut) = atxt + bt

I Calculate the optimal value function V ∗0 (x) at time t = 0 and an
optimal policy π∗t (x) for t ∈ {0, 1}, which minimize the total cost:

x2 + a21 + a20 + b21 + b20

I Planning horizon: T = 2

I Terminal cost: q(x) = x

I Stage cost: `(x ,u) = ‖u‖22 = a2 + b2

I Discount factor: γ = 1
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Example: Deterministic Nonlinear System
I Dynamic programming algorithm at t = T = 2:

V ∗2 (x2) = q(x2) = x2, ∀x2 ∈ R

I At t = 1:

V ∗1 (x1) = min
u1
{`(x1,u1) + V ∗2 (f (x1,u1))} = min

a1,b1

{
a21 + b21 + a1x1 + b1

}
I Obtain minimum by setting gradient with respect to u1 to zero:

∂

∂a1

(
a21 + b21 + a1x1 + b1

)
= 2a1 + x1 = 0

∂

∂b1

(
a21 + b21 + a1x1 + b1

)
= 2b1 + 1 = 0

leading to a∗1 = − 1
2x1 and b∗1 = − 1

2

I To confirm this is a minimizer, check that Hessian matrix

[
2 0
0 2

]
is

positive definite

16



Example: Deterministic Nonlinear System

I At t = 1:

I Optimal policy at t = 1: π∗1 (x1) = −1

2

[
x1
1

]
I Substituting the optimal policy into the value function:

V ∗1 (x1) =

(
−1

2
x1

)2

+

(
−1

2

)2

+

(
−1

2
x1

)
x1 +

(
−1

2

)
= −1

4
x21 −

1

4

I At t = 0:

V ∗0 (x0) = min
u0
{`(x0,u0) + V ∗1 (f (x0,u0))}

= min
a0,b0

{
a20 + b20 −

1

4
(a0x0 + b0)2 − 1

4

}
= min

a0,b0

{(
1− 1

4
x20

)
a20 +

3

4
b20 −

1

2
a0b0x0 −

1

4

}
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Example: Deterministic Nonlinear System
I At t = 0:

I Obtain minimum by setting gradient with respect to u0 to zero:

∂

∂a0

((
1− 1

4
x20

)
a20 +

3

4
b20 −

1

2
a0b0x0 −

1

4

)
= 2a0 −

1

2
a0x

2
0 −

1

2
b0x0 = 0

∂

∂b0

((
1− 1

4
x20

)
a20 +

3

4
b20 −

1

2
a0b0x0 −

1

4

)
=

3

2
b0 −

1

2
a0x0 = 0

⇒ 1

2

[
4− x20 −x0
−x0 3

] [
a0
b0

]
=

[
0
0

]
I For x0 6= ±

√
3, the Hessian matrix 1

2

[
4− x20 −x0
−x0 3

]
is positive definite

and a∗0 = b∗0 = 0

I For x0 = ±
√

3, a∗0 = ±
√

3b∗0 . Hence we can still choose b∗0 = a∗0 = 0

I Optimal policy at t = 0: π∗0 (x0) =

[
0
0

]
I Substituting the optimal policy into the value function: V ∗0 (x0) = −1

4
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