ECE276B: Planning & Learning in Robotics
Lecture 4: The Dynamic Programming Algorithm

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Hanwen Cao: hlcaoQucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu
mailto:h1cao@ucsd.edu

Dynamic Programming

>

Control policy: a function 7 that maps a time step t € N and a state
x € X to a feasible control input u € U

Value function V["(x): expected long-term cost starting in state x at
time t and following policy «

Objective: construct an optimal control policy:

7 = arg min V' (xo)
™

Dynamic Programming Algorithm obtains an optimal control policy
given an MDP model
» |dea: uses the value function to structure the search for good policies
» Generality: can handle non-convex and non-linear problems
» Complexity: polynomial in the number of states and actions
» Efficiency: much more efficient than a brute-force approach evaluating all
possible strategies

Principle of Optimality

» Let 7y +_, be an optimal control policy

» Consider a subproblem, minimizing the value at state x at time t:

Xt:X]

» Principle of optimality: the truncated policy 7}.+_; is optimal for the
subproblem min, V{(x) at time t

T-1
VE(X) = By |77 fa(xr) + D77 ke, (7))

T=t

» Intuition: Suppose 7}._; were not optimal for the subproblem. Then,
there would exist a policy yielding a lower cost on at least some portion
of the state space.

Example: Deterministic Scheduling Problem

» Consider a deterministic scheduling problem where 4 operations A, B, C,
D are used to produce a product

» Rules: Operation A must occur before B, and C before D

» Cost: there is a transition cost between each two operations:

Acs}—L
cap|—3
(60—} o]

Example: Deterministic Scheduling Problem

» Dynamic programming is applied backwards in time. First, construct an
optimal solution at the last stage and then work backwards.

» The optimal cost-to-go at each state of the scheduling problem is

denoted with red text below the state:

AC(;B 1
2 C%B 1
3 C];A 2

2

The Dynamic Programming Algorithm

Algorithm 1 Dynamic Programming

1: Input: MDP (X, U, po, pr, T, 4, 4,7)

2:
3 Vr(x) =q(x), vxe X
4: for t=(T —1)...0do
5: Qe (x,)—[(X u)+’yEXNPf (+]%,u) [Vt+1()]7 VXEX,UGZ/{(X)
6: Vi(x) = min Qi(x,u), Vx e X
uel(x)
7: me(x) = argmin Q¢(x, u), Vx e X
ucld(x)

8: return policy 7. 7_1 and value function V

The expected value function at x' ~ pr(-|x, u) is:

» Continuous X' By p.(.xu) [Vt.H(x')] = / Vi1 (X)pr(X | x, u)dx’

» Discrete X: EX/NPf(,l)(M) Vir1(x Z Vi1 (X)pr(X' | x,u)
x'eX

The Dynamic Programming Algorithm

» At each step, all possible states x € X" are considered because we do not
know a priori which states will be visited

» This point-wise optimization at each x € X is what gives us a policy
m¢(x), i.e., a function specifying a control input for every state x € X’

» Consider a discrete-space example with |X’| = 10 states,
control inputs, planning horizon T = 4, and given xg:
» There are [U|T = 10* different open-loop strategies

U| = 10

> There are [U/||*|(T=1+1 — 103! different closed-loop strategies

> For each stage t and each state x, the DP algorithm goes through the |I/|
control inputs to determine the optimal input. In total, there are
[U||X (T — 1)+ |U| = 310 such operations.

Dynamic Programming Optimality

Theorem: Optimality of the DP Algorithm

The policy 7. 7—1 and value function V4 returned by the DP algorithm are
optimal for the finite-horizon optimal control problem.

» Proof:

> Let V/*(x) be the optimal cost for the (T — t)-stage problem that starts
at time t in state x.

Proceed by induction
Base-case: Vi(x) = q(x) = Vr(x)
Hypothesis: Assume that for t + 1, V' ;(x) = Viyi(x) forall x € X

vV v.v .Yy

Induction: Show that V{*(x) = Vi(x) for all x € X

Proof of Dynamic Programming Optimality

T-1
Vi(xe) = WTTi[‘l Exzﬂ.r\xz |:'YTtC|(XT) + Z 7745()(1_7 TFT(XT)):|

T=t

T-1
= min Ee,yrie [f(xm(xowf-fq(xrw > vf-faxw(xm}
- T=t+1

== min {(x¢,m¢(x¢)) + E

Xe+1:T [Xt
Te:T—1 2.7l

T-1
7T ta(xr) + Z V(e 777'(x7')):|

T=t+1

== min {(x¢, me(x¢)) +VE E

Xt+1|Xt Xt4+2:T [Xt+1
min l sarlxes

T-1
,yT—t—lq(xT)+ Z fflﬁ(xr,ﬂr(xﬂ)”

T=t+1

= n;.an {é(xt, Te(Xt)) + Vs i1 [xe

T T=t+1

T-1
mm‘hll]Ext+2:T‘xt+l |:7Tt1q(x7—) + Z /yTth(XT?ﬂ-T(XT)):H }

- n)rlrn {Z(Xt7 7Tt(xt)) + /YEXHINPI("XrJ\'r(Xt)) [Vt:»l(XtJrl)} }

uﬁg‘bj&) {€0xe,ue) + VExy s e Cixee) [Ver1 (xe41)]}

= Vi(x¢), Vxr€X

Proof of Dynamic Programming Optimality

Since ¢(x¢, m¢(x¢)) is not a function of X;y1.7

Using conditional probability

p(Xt41:7|Xt) = p(Xe42:7|Xe4+1, Xe)p(Xt+1|X¢) and the Markov assumption

The minimization can be split since the term £(x:, w+(x+)) does not
depend on m41.7—1. The expectation Eyirjxe and ming,_, . can be
exchanged since the functions 7;y1.7_1 make the cost small for all
initial conditions., i.e., independently of x;41.

(1)-(3) is the principle of optimality
By definition of V/;(-) and the motion model x;y1 ~ pr(- | X¢, u¢)

By the induction hypothesis

10

Example: Chess Strategy Optimization

> State: x; € X :={—2,—1,0,1,2} — the difference between our and the

opponent'’s score at the end of game t
» Input: u; € U := {timid, bold}

» Dynamics: with pg > py:

pr(xe+1 = Xt | ue = timid, x;

pr(xer1 = x¢ — 1 | up = timid, x;

pr(xt+1 = x¢ + 1| ur = bold, x;

) = Pd
)=1-pg
) = Pw
Pf(Xt+1 =xt—1 ‘ ug = bO/d,Xt) 1-pw

> Cost: Vi(x:) =E |q(x2) + Sr_, (xr, ur) | with
N—_——

=0
-1 ifx>0
q(x) =4 —pn fx=0
0 if x <0

11

Example: Chess Strategy Optimization

-1 if xo >0
> Initialize: Vo(x2) = ¢ —pn if xo=0
0 if xo <0

» Recursion: for all x; € X and t =1,0:

Vi(xe) = 6'2, {0xe, ue) + By e [Vier1 (xe41)1}

ue

= min {Pth+1(Xt) + (1= pd) Virr(xe — 1), pw Vi1 (xe + 1) + (1 — pw) Vg1 (xe — 1)}
timid bold

12

Example: Chess Strategy Optimization
> x; =1:

since

Vi(1) = —max{pg + (1 — pa)pw, pw + (1 — pw)pw}

Pd>Ppw
= —pd — (1 — pd)Pw
(1) = timid

> x; =0:

V1(0) = — max {pgpw + (L — pd)0, pw + (1 — pw)0} = —pw
73(0) = bold
> x; =1
Vl(_l) = — max {de + (1 - Pd)O, PwPw + (1 - Pw)O} = _Pa,
73(~1) = bold

13

Example: Chess Strategy Optimization

> xg = 0:

Vo(0) = — max {paVA(0) + (1 — pa)Vi(—1), puVA(1) + (1 — pu) Vi(~1)}
= —max {pgpw + (1 — pa)Pa: Pw(Pa + (1 — pa)pw) + (1 — pu)pi }
= —papw — (1 — pa)pa, — (1 — pw)ps,

75(0) = bold

» As before, the optimal strategy is to play timid iff ahead in the score.

14

Example: Deterministic Nonlinear System

» Consider a system with state x; € R, control u; := [a;, bt] € R? and
motion model:
Xeq1 = F(x¢,ue) = arxe + by

» Calculate the optimal value function V{(x) at time t = 0 and an
optimal policy 7} (x) for t € {0,1}, which minimize the total cost:

X + at + ag + b} + b3
» Planning horizon: T =2
» Terminal cost: q(x) = x
» Stage cost: {(x,u) = ||u||3 = a°® + b?

» Discount factor: v =1

15

Example: Deterministic Nonlinear System
» Dynamic programming algorithm at t = T = 2:

V2*(X2) = q(Xz) = X2, Vxo € R
> Att=1:

Vi (xa) = min {€(x1,u1) + V5 (f(x1,u1))} = min {a% + b7 + a1xq + by }
up

a1,by

» Obtain minimum by setting gradient with respect to u; to zero:

0
8—3(af+b%+alx1+b1)=2al+x1:0
1
0
ﬁ(a%+bf+alx1+bl):2bl+1:0
1

H * 1 * 1
leading to a; = —5x; and by = —3

» To confirm this is a minimizer, check that Hessian matrix {(2) (2)} is

positive definite
16

Example: Deterministic Nonlinear System
> At t=1:
1

» Optimal policy at t = 1: 77 (x1) =) [)ﬂ

P Substituting the optimal policy into the value function:

1\ 1\° 1 1 1, 1
Vi'(xi) = <—2X1) + <—2> + <—2X1> x1 + <—2> = _ZX12 2
> At t=0:

Vo (x0) = min {¢(x0, uo) + V1 (f(x0, uo))}

1 1

- 2, 42 2

2)1)12) {ao + by 2 (aoxo + bo) 4}
. 1 3 1 1

= ;:)],I[Q) { (1 — 4Xg> 3(2) + Zb(z) — §aob0X0 — 4}

17

Example: Deterministic Nonlinear System
> At t=0:

>

Obtain minimum by setting gradient with respect to ug to zero:
0 1 3 1 1 1 1
8730 ((1 4 2) dg + - b2 230b0X0 - 4) = 230 - 520X02 - §b0X0 =0

0 1 1 1 3 1
i 1— = 2 I R A _
. <<) + - b 2aob0X 4) = 2[30 230X0 =0

114 x2 —xo| [a0] _[O
2 —Xpo 3 bo o 0
2

— X5

For xo # /3, the Hessian matrix 3 [4 ;
—Xo

;O} is positive definite
and ag = by =0

For xo = £/3, aj = +1/3b. Hence we can still choose b} = a; = 0

Optimal policy at t = 0: 75(x0) = [8}

1
Substituting the optimal policy into the value function: V{(xo) = ~2

18

