
ECE276B: Planning & Learning in Robotics
Lecture 5: Deterministic Shortest Path

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Hanwen Cao: h1cao@ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:h1cao@ucsd.edu

The Deterministic Shortest Path (DSP) Problem
I Consider a graph with a finite vertex set V, edge set E ⊆ V × V, and

edge weights C := {cij ∈ R ∪ {∞} | (i , j) ∈ E} where cij denotes the arc
length or cost from vertex i to vertex j .

I Objective: find a shortest path from a start node s to an end node τ

I The DSP problem is equivalent to a finite-horizon deterministic
finite-state (DFS) optimal control problem

2

The Deterministic Shortest Path (DSP) Problem

I Path: a sequence i1:q := (i1, i2, . . . , iq) of nodes ik ∈ V.

I All paths from s ∈ V to τ ∈ V: Ps,τ := {i1:q | ik ∈ V, i1 = s, iq = τ}.

I Path length: sum of edge weights along the path: J i1:q =
∑q−1

k=1 cik ,ik+1
.

I Objective: find a path that has the min length from node s to node τ :

dist(s, τ) = min
i1:q∈Ps,τ

J i1:q i∗1:q = arg min
i1:q∈Ps,τ

J i1:q

I Assumption: There are no negative cycles in the graph, i.e., J i1:q ≥ 0,
for all i1:q ∈ Pi ,i and all i ∈ V

I Solving DSP problems:
I Map to a deterministic finite-state optimal control problem

I Apply the DPA or a label correcting method (variant of a “forward” DPA)

3

Deterministic Finite State (DFS) Optimal Control Problem

I DFS: the optimal control problem with no disturbances, wt ≡ 0, and
finite state space, |X | <∞

I Deterministic problem: closed-loop control does not offer any advantage
over open-loop control

I Given x0 ∈ X , construct an optimal control sequence u0:T−1 such that:

min
u0:T−1

q(xT) +
T−1∑
t=0

`(xt ,ut)

s.t. xt+1 = f (xt ,ut), t = 0, . . . ,T − 1

xt ∈ X , ut ∈ U(xt),

I The DFS problem can be solved via Dynamic Programming

4

Equivalence of DFS and DSP Problems (DFS to DSP)

I We can construct a graph representation of the DFS problem

I Start node: s := (0, x0) given state x0 ∈ X at time 0

I Every state x ∈ X at time t is represented by a node i := (t, x):

V := {s} ∪

(
T⋃
t=1

{(t, x) | x ∈ X}

)
∪ {τ}

I End node: an artificial node τ with arc length ci ,τ from node i = (t, x)
to τ equal to the terminal cost q(x) of the DFS

5

Equivalence of DFS and DSP Problems (DFS to DSP)
I The edge weight between two nodes i = (t, x) and j = (t ′, x′) is finite,

cij <∞, only if t ′ = t + 1 and x′ = f (x,u) for some u ∈ U(x).

I The edge weight between two nodes i = (t, x) and j = (t + 1, x′) is the
smallest stage cost between x and x′:

C :=

c(t,x),(t+1,x′) = min
u∈U(x)

s.t. x′=f (x,u)

`(x,u)

⋃{

c(T ,x),τ = q(x)
}

6

Equivalence of DFS and DSP Problems (DSP to DFS)

I Consider a DSP problem with vertices V, edges E , edge weights C, start
node s ∈ V and terminal node τ ∈ V

I No negative cycles assumption: an optimal path need not have more
than |V| elements

I We can formulate the DSP problem as a DFS with T := |V| − 1 stages:
I State space X = V, control space: U = V

I Motion model: xt+1 = f (xt , ut) :=

{
xt if xt = τ

ut otherwise

I Stage and terminal costs:

`(x , u) :=

{
0 if x = τ

cx,u otherwise
q(x) :=

{
0 if x = τ

∞ otherwise

7

Dynamic Programming Applied to DSP
I Due to the equivalence, a DSP problem can be solved via the DPA

I Vt(i) is the optimal cost from node i to node τ in at most T − t steps

I Upon termination, V0(s) = J i
∗
1:q = dist(s, τ)

I The algorithm can be terminated early if Vt(i) = Vt+1(i), ∀i ∈ V \ {τ}

Algorithm 1 Deterministic Shortest Path via Dynamic Programming
1: Input: vertices V, start s ∈ V, goal τ ∈ V, and costs cij for i , j ∈ V
2: T = |V| − 1
3: VT (τ) = VT−1(τ) = . . . = V0(τ) = 0
4: VT (i) =∞, ∀i ∈ V \ {τ}
5: VT−1(i) = ci,τ , ∀i ∈ V \ {τ}
6: πT−1(i) = τ, ∀i ∈ V \ {τ}
7: for t = (T − 2), . . . , 0 do
8: Qt(i , j) = ci,j + Vt+1(j), ∀i ∈ V \ {τ}, j ∈ V
9: Vt(i) = minj∈V Qt(i , j), ∀i ∈ V \ {τ}

10: πt(i) = argmin
j∈V

Qt(i , j), ∀i ∈ V \ {τ}

11: if Vt(i) = Vt+1(i), ∀i ∈ V \ {τ} then
12: break

8

Forward Dynamic Programming Applied to DSP
I The DSP problem is symmetric: a shortest path from s to τ is also a

shortest path from τ to s, where all arc directions are flipped.

I This view leads to a forward Dynamic Programming algorithm.

I V F
t (j) is the optimal cost-to-arrive to node j from node s in at most t

moves

Algorithm 2 Deterministic Shortest Path via Forward Dynamic Programming
1: Input: vertices V, start s ∈ V, goal τ ∈ V, and costs cij for i , j ∈ V
2: T = |V| − 1
3: V F

0 (s) = V F
1 (s) = . . .V F

T (s) = 0
4: V F

0 (j) =∞, ∀j ∈ V \ {s}
5: V F

1 (j) = cs,j , ∀j ∈ V \ {s}
6: for t = 2, . . . ,T do
7: V F

t (j) = mini∈V
(
ci,j + V F

t−1(i)
)
, ∀j ∈ V \ {s}

8: if V F
t (i) = V F

t−1(i), ∀i ∈ V \ {s} then
9: break

9

Example: Forward DP Algorithm

I s = 1 and τ = 5

I T = |V| − 1 = 6

1 2 3 4 5 6 7

V F
0 0 ∞ ∞ ∞ ∞ ∞ ∞

V F
1 0 5 3 ∞ ∞ 5 ∞

V F
2 0 5 3 15 13 5 4

V F
3 0 5 3 15 12 5 4

V F
4 0 5 3 15 12 5 4

I Since V F
t (i) = V F

t−1(i), ∀i ∈ V at
time t = 4, the algorithm can
terminate early, i.e., without
computing V F

5 (i) and V F
6 (i)

10

Label Correcting Methods for the DSP Problem
I The (backward) DP algorithm applied to the DSP problem computes

the shortest paths from all nodes to the goal τ

I The forward DP algorithm computes the shortest paths from the start s
to all nodes

I Often many nodes are not part of the shortest path from s to τ

I Label correcting (LC) algorithms for the DSP problem do not
necessarily visit every node of the graph

I LC algorithms prioritize the visited nodes i using the cost-to-arrive
values V F

t (i)

I Key Ideas:
I Label gi : estimate of the optimal cost from s to each visited node i ∈ V
I Each time gi is reduced, the labels gj of the children of i are corrected:

gj = gi + cij

I OPEN: set of nodes that can potentially be part of the shortest path to τ

11

Label Correcting Algorithm

Algorithm 3 Label Correcting Algorithm
1: OPEN ← {s}, gs = 0, gi =∞ for all i ∈ V \ {s}
2: while OPEN is not empty do
3: Remove i from OPEN
4: for j ∈ Children(i) do
5: if (gi + cij) < gj and (gi + cij) < gτ then . Only when cij ≥ 0 for all i , j ∈ V
6: gj = gi + cij
7: Parent(j) = i
8: if j 6= τ then
9: OPEN = OPEN ∪{j}

Theorem

If there exists at least one finite cost path from s to τ , then the Label
Correcting (LC) algorithm terminates with gτ = dist(s, τ), the shortest path
length from s to τ . Otherwise, the LC algorithm terminates with gτ =∞.

12

Label Correcting Algorithm

13

Label Correcting Algorithm Proof
1. Claim: The LC algorithm terminates in a finite number of steps

I Each time a node j enters OPEN, its label is decreased and becomes
equal to the length of some path from s to j .

I The number of distinct paths from s to j whose length is smaller than any
given number is finite (no negative cycles assumption)

I There can only be a finite number of label reductions for each node j

I Since the LC algorithm removes nodes from OPEN in line 3, the
algorithm will eventually terminate

2. Claim: The LC algorithm terminates with gτ =∞ if there is no finite
cost path from s to τ
I A node i ∈ V is in OPEN only if there is a finite cost path from s to i

I If there is no finite cost path from s to τ , then for any node i in OPEN
ci,τ =∞; otherwise there would be a finite cost path from s to τ

I Since ci,τ =∞ for every i in OPEN, line 5 ensures that gτ is never
updated and remains ∞

14

Label Correcting Algorithm Proof
3. Claim: Assume cij ≥ 0 (special case). The LC algorithm terminates

with gτ = dist(s, τ) if there is at least one finite cost path from s to τ .
I Let i∗1:q ∈ Ps,τ be a shortest path from s to τ with i∗1 = s, i∗q = τ , and

length J i
∗
1:q = dist(s, τ).

I By the principle of optimality, i∗1:m is a shortest path from s to i∗m with
length J i

∗
1:m = dist(s, i∗m) for any m = 1, . . . , q − 1.

I Suppose that gτ > J i
∗
1:q = dist(s, τ) (proof by contradiction).

I Since gτ only decreases in the algorithm and every cost is nonnegative,
gτ > J i

∗
1:m = dist(s, i∗m) for all m = 2, . . . , q − 1.

I Thus, i∗q−1 does not enter OPEN with gi∗q−1
= J i

∗
1:q−1 = dist(s, i∗q−1) since

if it did, then the next time i∗q−1 is removed from OPEN, gτ would be

updated to J i
∗
1:q = dist(s, i∗q−1).

I Similarly, i∗q−2 does not enter OPEN with gi∗q−2
= J i

∗
1:q−2 = dist(s, i∗q−2).

I Continuing this way, i∗2 will not enter OPEN with gi∗2 = J i
∗
1:2 = cs,i∗2 but

this happens at the first iteration of the algorithm, which is a
contradiction.

15

Example: Deterministic Scheduling Problem

I Consider a deterministic scheduling problem where 4 operations A, B, C,
D are used to produce a product

I Rules: Operation A must occur before B, and C before D

I Cost: there is a transition cost between each two operations:

16

Example: Deterministic Scheduling Problem

I The state transition diagram of the scheduling problem can be simplified
in order to reduce the number of nodes

I This results in a DFS problem with T = 4 and X = {I.C., A, C, AB,
AC,CA, CD, ABC, ACD or CAD, CAB or ACB, CDA, DONE}

I We can map the DFS problem to a DSP problem

17

Example: Deterministic Scheduling Problem

I We can map the DFS
problem to a DSP problem
and apply the LC algorithm

I Keeping track of the
parents when a child node
is added to OPEN, it can
be determined that a
shortest path is
(s, 2, 5, 9, τ) with total cost
10, which corresponds to
(C ,CA,CAB,CABD) in
the original problem

Iteration Remove OPEN gs g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 gτ
0 – s 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 s 1, 2 0 5 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 2 1, 5, 6 0 5 3 ∞ ∞ 7 9 ∞ ∞ ∞ ∞ ∞
3 6 1, 5, 10 0 5 3 ∞ ∞ 7 9 ∞ ∞ ∞ 12 ∞
4 10 1, 5 0 5 3 ∞ ∞ 7 9 ∞ ∞ ∞ 12 14
5 5 1, 8, 9 0 5 3 ∞ ∞ 7 9 ∞ 11 9 12 14
6 9 1, 8 0 5 3 ∞ ∞ 7 9 ∞ 11 9 12 10
7 8 1 0 5 3 ∞ ∞ 7 9 ∞ 11 9 12 10
8 1 3, 4 0 5 3 7 8 7 9 ∞ 11 9 12 10
9 4 3 0 5 3 7 8 7 9 ∞ 11 9 12 10

10 3 – 0 5 3 7 8 7 9 ∞ 11 9 12 10

18

Specific Label Correcting Methods
I There is freedom in selecting the node to be removed from OPEN at

each iteration, which gives rise to several different methods:

I Breadth-first search (BFS) (Bellman-Ford Algorithm): “first-in,
first-out” policy with OPEN implemented as a queue.

I Depth-first search (DFS): ”last-in, first-out” policy with OPEN
implemented as a stack; often saves memory

I Best-first search (Dijkstra’s Algorithm): the node with minimum label
i∗ = arg min

j∈OPEN
gj is removed, which guarantees that a node will enter OPEN

at most once. OPEN is implemented as a priority queue.

I D’Esopo-Pape: removes nodes at the top of OPEN. If a node has been
in OPEN before it is inserted at the top; otherwise at the bottom.

I Small-label-first (SLF): removes nodes at the top of OPEN. If gi ≤ gTOP

node i is inserted at the top; otherwise at the bottom.

I Large-label-last (LLL): the top node is compared with the average of
OPEN and if it is larger, it is placed at the bottom of OPEN; otherwise it
is removed.

19

A* Algorithm

I The A* algorithm is a modification to the LC algorithm for special case
cij ≥ 0 in which the requirement for admission to OPEN is strengthened:

from gi + cij < gτ to gi + cij + hj < gτ

where hj is a positive lower bound on the optimal cost from node j to τ ,
known as a heuristic function.

I The more stringent criterion can reduce the number of iterations
required by the LC algorithm.

I The heuristic is constructed using special knowledge about the problem.
The more accurately hj estimates the optimal cost from j to τ , the more
efficient the A* algorithm becomes.

20

