ECE276B: Planning & Learning in Robotics
Lecture 5: Deterministic Shortest Path

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Hanwen Cao: hlcaoQucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu
mailto:h1cao@ucsd.edu

The Deterministic Shortest Path (DSP) Problem

» Consider a graph with a finite vertex set V, edge set £ CV x V, and
edge weights C := {¢;j € RU {oo} | (i,j) € £} where ¢jj denotes the arc
length or cost from vertex i to vertex j.

» Objective: find a shortest path from a start node s to an end node 7

» The DSP problem is equivalent to a finite-horizon deterministic
finite-state (DFS) optimal control problem

The Deterministic Shortest Path (DSP) Problem

» Path: a sequence i1.q 1= (i1, 2, . . ., iq) of nodes i, € V.

» All paths fromseVtoreV: Ps, ={iqg|ik €V,ih=5,ig=T}
» Path length: sum of edge weights along the path: Js = Z;i Ciisisr -

» Objective: find a path that has the min length from node s to node 7:

dist(s,7) = min J%a iy = arg min J':a
’ , l:q
g€ Ps s e Por

» Assumption: There are no negative cycles in the graph, i.e., J9 >0,
for all i.q € PijandallicV

» Solving DSP problems:
» Map to a deterministic finite-state optimal control problem

> Apply the DPA or a label correcting method (variant of a “forward” DPA)

3

Deterministic Finite State (DFS) Optimal Control Problem

» DFS: the optimal control problem with no disturbances, w; = 0, and
finite state space, |X| < oo

» Deterministic problem: closed-loop control does not offer any advantage
over open-loop control

» Given xg € X, construct an optimal control sequence ug.7_1 such that:

T-1
min q(x7) + £(x¢,uy)
Uo:7-1 t—0
sit. Xep1 = f(xe,ue), t=0,..., T =1

Xt € X, up € U(x¢),

» The DFS problem can be solved via Dynamic Programming

Equivalence of DFS and DSP Problems (DFS to DSP)

» We can construct a graph representation of the DFS problem
> Start node: s := (0,xg) given state xg € X" at time 0
> Every state x € X" at time t is represented by a node i := (t, x):
T
Vi={s}U (U{(t,x) |x € X}) u{r}
t=1

» End node: an artificial node 7 with arc length ¢; ; from node i = (¢, x)
to 7 equal to the terminal cost q(x) of the DFS

Equivalence of DFS and DSP Problems (DFS to DSP)
» The edge weight between two nodes i = (t,x) and j = (t/,x’) is finite,
cij < oo, only if ' =t+1 and x' = f(x, u) for some u € U(x).

> The edge weight between two nodes i = (t,x) and j = (t + 1,x’) is the
smallest stage cost between x and x':

C = C(t’x)’(t+1vxl) = ug;/;?X) g(x’ u) U {C(T’x)’T - q(x)}

s.t. X' =f(x,u)

L]
L]
L]
...9 e
B
=
DO
. ~ R}
—
—
~—

Equivalence of DFS and DSP Problems (DSP to DFS)

» Consider a DSP problem with vertices V, edges £, edge weights C, start
node s € V and terminal node 7 € V

» No negative cycles assumption: an optimal path need not have more
than |V| elements

» We can formulate the DSP problem as a DFS with T := |V| — 1 stages:
» State space X =V, control space: U =V

. Xy ifxp=1
> Motion model: xp41 = f(Xe, ue) =< ° £
us otherwise

» Stage and terminal costs:

g(}gu)::{o if x =7 q(x)::{o if x =7

Cx,u Otherwise oo otherwise

Dynamic Programming Applied to DSP
» Due to the equivalence, a DSP problem can be solved via the DPA

» Vi(i) is the optimal cost from node i to node 7 in at most T — t steps

» Upon termination, Vo(s) = JTa = dist(s, 7)

» The algorithm can be terminated early if Vi(i) = Vip1(i), Vi € V\ {7}

Algorithm 1 Deterministic Shortest Path via Dynamic Programming

1:

©

10:

11:
12:

I L

Input: vertices V, start s € V, goal 7 € V, and costs ¢; for i,j € V
T=|V| -1
VT(T)I V'[‘,l(T):... = Vo(T)ZO
Vr(i) =00, VieV\{r}
\/T71(I')=C,‘7-,—7 VIGV\{T}
rmr—(i)=71, VieV\{r}
for t =(T —2),...,0do

Qf(i7j) =Gij+ Vt+1(j)7 Viey \ {T}aj eV

Vt(l) = minjev Qt(l',j)7 Vl S V \ {7_}

me(i) = arg r;r)in Q:(i,j), Viev\{r}

Jj€
if Vt(l) = Vf+1(i), Vi c % \ {T} then
break

Forward Dynamic Programming Applied to DSP

» The DSP problem is symmetric: a shortest path from s to 7 is also a

shortest path from 7 to s, where all arc directions are flipped.

» This view leads to a forward Dynamic Programming algorithm.

» V[(j) is the optimal cost-to-arrive to node j from node s in at most t

moves

Algorithm 2 Deterministic Shortest Path via Forward Dynamic Programming

1:

LHONITRLN

Input: vertices V, start s € V, goal 7 € V, and costs ¢; for i,j € V
T=|V| -1
Vi(s)=Vf(s)=...Vf(s)=0
Vo (j) =00, VjeV\{s}
V() =cjs VieV\{s}
fort=2,..., T do

VtF(j) = min;ey (Ci,j + VtF—l(i)) , VieV\{s}

if VE(i)= V(i) VieV\ {s} then

break

Example: Forward DP Algorithm

» s=land7=5
>» T=|V|-1=6

1 2 3 4 5 6 7
Vi 0 o0 o0 © oo o o0
Vi 005 3 o0 o 5 o
Vi 0 5 3 15 13 5 4
vi 0 5 3 15 12 5 4
vi 0 5 3 15 12 5 4

» Since V(i) = V[(i), VieV at

time t = 4, the algorithm can
terminate early, i.e., without
computing Vi (i) and V£ (i)

10

Label Correcting Methods for the DSP Problem

>

| 2

The (backward) DP algorithm applied to the DSP problem computes
the shortest paths from all nodes to the goal 7

The forward DP algorithm computes the shortest paths from the start s
to all nodes

» Often many nodes are not part of the shortest path from s to 7

Label correcting (LC) algorithms for the DSP problem do not
necessarily visit every node of the graph

LC algorithms prioritize the visited nodes i using the cost-to-arrive
values V[(/)

Key ldeas:
> Label g;: estimate of the optimal cost from s to each visited node / € V

> Each time g; is reduced, the labels g; of the children of / are corrected:
8 =8 T Cj

> OPEN: set of nodes that can potentially be part of the shortest path to 7
11

Label Correcting Algorithm

Algorithm 3 Label Correcting Algorithm

1: OPEN <« {s}, gs =0, gi=o0 forall i € V'\ {s}

2: while OPEN is not empty do

3: Remove i from OPEN

4 for j € Children(/i) do

5 if (gi + ¢cj) < g and (gi + ¢;j) < g- then > Only when ¢; > 0 forall i,j € V
6: g = 8+ Cj
7.
8
9

Parent(j) =i
if j # 7 then
OPEN = OPEN U{j}

If there exists at least one finite cost path from s to 7, then the Label
Correcting (LC) algorithm terminates with g, = dist(s, 7), the shortest path
length from s to 7. Otherwise, the LC algorithm terminates with g, = cc.

12

Label Correcting Algorithm

Yes

Set 85 =gi + Cij

Isgitea;<gs?

Yes

Is g, + ¢ < gj?

Insert
Children
O O,
2o
OPEN)

Remove

Label Correcting Algorithm Proof

1. Claim: The LC algorithm terminates in a finite number of steps
P Each time a node j enters OPEN, its label is decreased and becomes
equal to the length of some path from s to j.

» The number of distinct paths from s to j whose length is smaller than any
given number is finite (no negative cycles assumption)

P> There can only be a finite number of label reductions for each node j
» Since the LC algorithm removes nodes from OPEN in line 3, the

algorithm will eventually terminate

2. Claim: The LC algorithm terminates with g = oo if there is no finite
cost path from s to 7
> A node i€V isin OPEN only if there is a finite cost path from s to i

» If there is no finite cost path from s to 7, then for any node i in OPEN
Ci.r = 00; otherwise there would be a finite cost path from s to 7

» Since ¢j» = oo for every i in OPEN, line 5 ensures that g, is never
updated and remains oo

14

Label Correcting Algorithm Proof
3. Claim: Assume cj; > 0 (special case). The LC algorithm terminates
with g; = dist(s, 7) if there is at least one finite cost path from s to 7.
> Let if,; € Ps be a shortest path from s to 7 with i =s, iy = 7, and
length J'a = dist(s, 7).

> By the principle of optimality, /7., is a shortest path from s to i;, with
length Jiim = dist(s, i*)) forany m=1,...,q — 1.

> Suppose that g, > Js = dist(s,) (proof by contradiction).

» Since g, only decreases in the algorithm and every cost is nonnegative,
gr > Juim =dist(s, %) forall m=2,...,¢g—1.

> Thus, i;_; does not enter OPEN with g;» = Jita—1 = dist(s, ig_1) since
if it did, then the next time i;_; is removed from OPEN, g would be
updated to Js = dist(s, i}_;).

> Similarly, i5_, does not enter OPEN with g;- = Jita—2 = dist(s, in_2)-

> Continuing this way, iy will not enter OPEN with gj; = Ji2 = Cs,iy but
this happens at the first iteration of the algorithm, which is a

contradiction.
15

Example: Deterministic Scheduling Problem

» Consider a deterministic scheduling problem where 4 operations A, B, C,
D are used to produce a product

» Rules: Operation A must occur before B, and C before D

» Cost: there is a transition cost between each two operations:

16

Example: Deterministic Scheduling Problem

» The state transition diagram of the scheduling problem can be simplified
in order to reduce the number of nodes

2 AB 3
A
5
3 AC
4
1.C.
4
3 4 CA D)
C
I CD [———»|CDA

» This results in a DFS problem with T =4 and X = {I.C,, A, C, AB,
AC,CA, CD, ABC, ACD or CAD, CAB or ACB, CDA, DONE}

» We can map the DFS problem to a DSP problem

17

Example: Deterministic Scheduling Problem

» We can map the DFS
problem to a DSP problem
and apply the LC algorithm

» Keeping track of the
parents when a child node
is added to OPEN, it can
be determined that a

- lteration Remove OPEN g g1 g g & & & & & & 8o &

. 1 s 1,2 0 5 3 o0 o0 o0 00 00 00 00 00 00

(S, 27 5, 9, 7-) W|th tOta' COSt 2 2 1,56 0 5 3 oo oo 7 9 o o0 o0 00 00
. 3 6 1,510 0 5 3 oo oo 7 9 oo oo oo 12 o0

10, which corresponds to 4 00 15 0 5 3 w00 7 9 0o 0 co 12 14
. 5 5 1,89 0 5 3 oo oo 7 9 oo 11 9 12 14

(C, CA, CAB7 CABD) n 6 9 1,8 0 5 3 o0 oo 7 9 o0 11 9 12 10
L 7 8 1 005 3 o0 o0 7 9 oo 11 9 12 10

the original problem 8 1 34 0 5 3 7 8 7 9 oc 11 9 12 10
9 4 3 0 5 3 7 8 7 9 oo 11 9 12 10

10 3 - 005 3 7 8 7 9 oo 11 9 12 10

18

Specific Label Correcting Methods

» There is freedom in selecting the node to be removed from OPEN at
each iteration, which gives rise to several different methods:

>

Breadth-first search (BFS) (Bellman-Ford Algorithm): “first-in,
first-out” policy with OPEN implemented as a queue.

Depth-first search (DFS): "last-in, first-out” policy with OPEN
implemented as a stack; often saves memory

Best-first search (Dijkstra's Algorithm): the node with minimum label

i* = arg min gj is removed, which guarantees that a node will enter OPEN
JEOPEN
at most once. OPEN is implemented as a priority queue.

D’Esopo-Pape: removes nodes at the top of OPEN. If a node has been
in OPEN before it is inserted at the top; otherwise at the bottom.

Small-label-first (SLF): removes nodes at the top of OPEN. If g; < grop
node / is inserted at the top; otherwise at the bottom.

Large-label-last (LLL): the top node is compared with the average of
OPEN and if it is larger, it is placed at the bottom of OPEN; otherwise it

is removed.
19

A* Algorithm

» The A* algorithm is a modification to the LC algorithm for special case
cjj > 0 in which the requirement for admission to OPEN is strengthened:

from g t+cj<gr| to ‘g,-—l—c,-j—l—hj<gT

where h; is a positive lower bound on the optimal cost from node j to T,
known as a heuristic function.

» The more stringent criterion can reduce the number of iterations
required by the LC algorithm.

» The heuristic is constructed using special knowledge about the problem.
The more accurately h; estimates the optimal cost from j to 7, the more
efficient the A* algorithm becomes.

20

