ECE276B: Planning \& Learning in Robotics Lecture 6: Configuration Space

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu
Teaching Assistant:
Hanwen Cao: h1cao@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Motion Planning

- Motion planning is a deterministic shortest path (DSP) problem with continuous state and control spaces and state constraints introduced by the obstacles in a known environment

- The problem is also known as the Piano Movers Problem

Motion Planning

- Objective: find a feasible and cost-minimal path from an initial state to a goal region
- Cost function: distance, time, energy, risk, etc.
- Constraints:
- environment constraints (e.g., obstacles)
- kinematics/dynamics of the robot

Example: Six-joint Robot Arm

Planning vs Control

- Distinction between planning and control
- Planning: the automatic generation of global collision-free trajectories (global reasoning)
- Control: the automatic generation of control inputs for local, reactive trajectory tracking (local reasoning)

Analyzing Motion Planning Algorithms

- Completeness: a planning algorithm is called complete if it:
- returns a feasible solution, if one exists,
- returns FAIL in finite time, otherwise.
- Optimality:
- a planning algorithm is optimal if it returns a path with shortest length J^{*} among all possible paths from start to goal
- a planning algorithm is ϵ-suboptimal if it returns a path with length $J \leq \epsilon J^{*}$ for $\epsilon \geq 1$ where J^{*} is the optimal length
- Efficiency: a planning algorithm is efficient if it finds a solution with the least possible computation operations across all inputs
- Generality: a planning algorithm is general if it can handle high-dimensional robots or environments and various obstacle or kinematics/dynamics constraints

Motion Planning Approaches

- Exact algorithms in continuous space
- Computationally expensive and unsuitable for high-dimensional spaces
- Search-based planning algorithms
- discretize the state space into a regular grid
- contruct a graph incrementally
- solve a DSP problem via label correcting
- inefficient in high-dim spaces without heuritic function guidance due to the regular discretization
- resolution complete with finite-time (sub)optimality guarantees
- Sampling-based planning algorithms
- discretize the state space irregularly by sampling
 states
- construct a graph incrementally
- solve a DSP problem via label correcting
- efficient in high-dim spaces but problems with "narrow passages"
- probabilistically complete with asmyptotic (sub)optimality guarantees

Configuration Space

- A configuration is a specification of the position of every point on a robot body
- A configuration \mathbf{q} is expressed as a vector of the Degrees Of Freedom (DOF) of the robot:

$$
\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)
$$

- 3 DOF: Differential drive robot $(x, y, \theta) \in \mathbb{R}^{2} \times[-\pi, \pi)$
- 6 DOF: Rigid body with pose $T \in S E(3)$
- 7 DOF: 7 -link manipulator (humanoid arm): $\left(\theta_{1}, \ldots, \theta_{7}\right) \in[-\pi, \pi)^{7}$
- Configuration space C : set of all possible robot configurations
- $\operatorname{dim}(C):$ min DOF needed to completely specify a robot configuration
- Work space $W:$ 2D or 3D Euclidean space where the robot operates

Example: C-Space of a Two Link Manipulator

Degrees of Freedom for Robots with Joints

- An articulated object is a set of rigid bodies connected by joints.
- Examples of articulated robots: arms, humanoids

Revolute
1 Degree of Freedom

2 Degrees of Freedom

Obstacles in C-Space

- A configuration $\mathbf{q} \in C$ is collision-free, or free, if the robot placed at \mathbf{q} does not intersect any obstacles in the work space W
- The free space $C_{\text {free }} \subseteq C$ is the set of all free configurations

- The obstacle space $C_{o b s} \subseteq C$ is the set of all configurations in which the robot collides either with an obstacle or with itself (self-collision)

How do we compute $C_{o b s}$?

- Input: polygonal robot body R and polygonal obstacle O in environment
- Output: polygonal obstacle CO in configuration space
- Assumption: the robot translates only
- Idea:
- Circular robot: expand all obstacles by the radius of the robot
- Symmetric robot: Minkowski (set) sum
- Asymmetric robot: Minkowski (set) difference

$C_{o b s}$ for Symmetric Robots

- The obstacle CO in C-Space is obtained via the Minkowski sum of the obstacle set O and the robot set R :

$$
C O=O \oplus R:=\{a+b \mid a \in O, b \in R\}
$$

Cobs for Asymmetric Robots

- When the robot is not symmetric about the origin, we need to flip the robot set R before adding it to the obtacle set O :

$$
C O=O \oplus(-R)=\{a-b \mid a \in O, b \in R\}
$$

Properties of $C_{o b s}$

- Properties of $C_{o b s}$
- If O and R are convex, then $C_{o b s}$ is convex
- If O and R are closed, then $C_{o b s}$ is closed
- If O and R are compact, then $C_{o b s}$ is compact
- If O and R are algebraic, then $C_{o b s}$ is algebraic
- If O and R are connected, then $C_{o b s}$ is connected
- After a C-Space transform, planning can be done for a point robot
- Advantage: collision checking for a point robot is very efficient
- Disadvantage: need to transform the obstacles every time the map is updated (e.g., if the robot is circular, $O(n)$ methods exist to compute distance transforms)
- Disadvantage: expensive to compute in higher dimensions
- Alternative: plan in the original space and only check configurations of interest for collisions

Minkowski Sums in Higher Dimensions

- The configuration space for a rigid non-circular robot in a 2D world is 3 dimensional (2D position + orientation)

Configuration Space for Articulated Robots

- The configuration space for a N -DOF robot arm is N -dimensional
- Computing exact C-Space obstacles becomes complicated

Workspace

Configuration space

Motion Planning as Graph Search Problem

- Motion planning as a deterministic shortest path problem on a graph:

1. Decide:
a) pre-compute the C-Space (e.g., inflate the obstacles with the robot radius)
b) perform collision checking on the fly
2. Construct a graph representing the planning problem
3. Search the graph for a (close-to) optimal path

- Often collision checking, graph construction, and planning are all interleaved and performed on the fly

Graph Construction

- Cell decomposition: decompose the free space into simple cells and represent its connectivity by the adjacency graph of these cells
- X-connected grids
- Tree decompositions
- Lattice-based graphs
- Skeletonization: represent the connectivity of free space by a network of 1-D curves:
- Visibility graphs
- Generalized Voronoi diagrams
- Other Roadmaps

X-connected Grid

1. Overlay a uniform grid over the C-space

2. Convert the grid into a graph:

X-connected Grid

- How many neighbors?
- 8-connected grid: paths restricted to 45° turns
- 16-connected grid: paths restricted to 22.5° turns
- 3-D (x, y, θ) discretization of $S E(2)$

- Problems:

1. What should we do with partially blocked cells?
2. Discretization leads to a very dense graph in high dimensions and many of the transitions are difficult to execute due to dynamics constraints

Adaptive Quadtree Decomposition

\square empty
\square mixed
full

Adaptive Octree Decomposition

Lattice-based Graph

- Instead of dense discretization, construct a graph by a recursive application of a finite set of dynamically feasible motions (e.g., action template, motion primitive, movement primitive, macro action, etc.)
- Pros: sparse graph, feasible paths
- Cons: possibly incomplete

Visibility Graph

- Shakey Project, SRI [Nilsson, 1969]
- Also called Shortest Path Roadmap
- Shortest paths are like rubber-bands: if there is a collision-free path between two points, then there is a piecewise linear path that bends only at the
 obstacle vertices.
- Visibility Graph:
- Nodes: start, goal, and all obstacle vertices
- Edges: between any two vertices that "see" each other, i.e., the edge does not intersect obstacles or is an obstacle edge

Visibility Graph Construction

Algorithm 1 Visibility Graph Construction

1: Input: $\mathbf{q}_{/}, \mathbf{q}_{G}$, polygonal obstacle vertices \mathcal{P}
2: Output: visibility graph G
3: for every pair of vertices u, v in $\mathcal{P} \cup\left\{\mathbf{q}_{I}, \mathbf{q}_{G}\right\}$ do
$\triangleright O\left(n^{2}\right)$
4: if segment (u, v) is an obstacle edge then
$\triangleright O(n)$
5: \quad insert edge (u, v) into G
6: else
7: \quad for every obstacle edge e do
if segment (u, v) intersects e then break and go to line 3
insert edge (u, v) into G

- Time complexity: $O\left(n^{3}\right)$ but can be reduced to $O\left(n^{2} \log n\right)$ with rotational sweep or even to $O\left(n^{2}\right)$ with an optimal algorithm
- Space complexity: $O\left(n^{2}\right)$

Reduced Visibility Graph

- In fact, not all edges are needed
- Reduced visibility graph - keep only edges between consecutive reflex vertices and bitangents
- A vertex of a polygonal obstacle is reflex if the exterior angle (computed in $C_{\text {free }}$) is larger than π
- A bitangent edge must touch two reflex vertices that are mutually visible from each other, and the the line must extend outward past each of them without poking into $C_{o b s}$

Reduced Visibility Graph

Reflex Vertices and Bitangents

- A vertex of a polygonal obstacle is reflex if the exterior angle (computed in $C_{\text {free }}$) is larger than π

(a) 10 reflex vertices

(b) 9 reflex vertices
- A bitangent edge must touch two reflex vertices that are mutually visible from each other, and the the line must extend outward past each of them without poking into $C_{\text {obs }}$

Reduced Visibility Graph

- The reduced visibility graph includes edges between consecutive reflex vertices on $C_{o b s}$ and bitangent edges
- The shortest path in a reduced visibility graph is the shortest path between start $\mathbf{q}_{\text {I }}$ and goal \mathbf{q}_{G}

Reduced Visibility Graph

- What do we need to construct a reduced visibility graph?
- Subroutine to check if a vertex is reflex
- Subroutine to check if two vertices are visible
- Subroutine to check if there exists a bitangent
- Pros:
- independent of the size of the environment
- can make multiple shortest path queries for the same graph, i.e., the environment remains the same but the start and goal change
- Cons:
- shortest paths always graze the obstacles
- hard to deal with a non-uniform cost function
- hard to deal with non-polygonal obstacles
- can get expensive in high dimensions with a lot of obstacles

Voronoi Diagram

- Suppose there are n point obstacles \mathbf{o}_{k} for $k=1, \ldots, n$
- Voronoi diagram: a collection of Voronoi cells V_{k} for $k=1, \ldots, n$
- Voronoi cell of \mathbf{o}_{k} : a set V_{k} of points x such that:

$$
d\left(\mathbf{x}, \mathbf{o}_{k}\right) \leq d\left(\mathbf{x}, \mathbf{o}_{j}\right), \text { for all } j \neq k
$$

- Example: the points may represent fire stations and the Voronoi cells specify their serving areas

Maximum Clearance Roadmap

- Maximize clearance instead of minimizing travel distance
- Maintains a set of points that are equidistant to two nearest obstacles

- Suppose we have just two line obstacles. What is the set of points that keeps the robots as far away from the obstacles as possible?

Maximum Clearance Roadmap

- Construction:
- Naive implementation: take every pair of obstacle features, compute locus of equally spaced points, and take the intersection
- Efficient algorithms available, e.g., CGAL, distance transform + skeletonization (e.g., Zhang-Suen or Guo-Hall algorithms)
- Motion Planning:
- Add a shortest path from start to the nearest segment of the diagram
- Add a shortest path from goal to the nearest segment of the diagram
- Complexity:
- Time complexity for n points in $\mathbb{R}^{d}: O\left(n \log n+n^{\lceil d / 2\rceil}\right)$
- Space complexity: $O(n)$
- Pros:
- paths tend to stay away from obstacles
- independent of the size of the environment
- Cons:
- difficult to construct in higher dimensions
- can result in highly suboptimal paths

Maximum Clearance Roadmap

Trapezoidal Decomposition

- The free space $C_{\text {free }}$ is represented by a collection of non-overlapping trapezoids whose union is exactly $C_{\text {free }}$:
- Draw a vertical line from every vertex until you hit an obstacle
- Nodes: trapezoid centroids and line midpoints
- Edges: between every pair of nodes whose cells are adjacent

Cylindrical Decomposition

- Similar to trapezoidal decomposition, except the vertical lines continue after obstacles
- Generalizes better to high dimensions and complex configuration spaces

Triangular Decomposition

Probabilistic Roadmaps

- Construction:
- Randomly sample valid configurations
- Add edges between samples that are easy to connect with a simple local controller (e.g., straight line controller)
- Add start and goal configurations to the graph with appropriate edges
- Pros and Cons:
- Simple and highly effective in high dimensions
- Can result in suboptimal paths, no guarantees on suboptimality
- Difficulty with narrow passages

