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Back to the Deterministic Shortest Path Problem

I Once a graph is constructed (via cell decomposition, skeletonization,
lattice, etc.), we need to search it for the least-cost path

I Assumption: there are no negative cycles in the graph, i.e., J i1:q ≥ 0 for
all i1:q ∈ Pi ,i and all i ∈ V

I So far, we saw that the DSP problem can be solved via:
I DPA: computes the shortest paths from all nodes to the goal

I Forward DPA: computes the shortest paths from the start to all nodes

I Label correcting methods: visit only promising nodes

I Key Ideas of LC methods:
I Label gi : lowest cost discovered so far from s to each visited node i ∈ V
I Node expansion: each time gi is reduced, the labels gj of the children of

i can be corrected: gj = gi + cij

I OPEN: set of nodes that can potentially be part of the shortest path to τ
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Label Correcting Algorithm

Algorithm 1 Label Correcting Algorithm

1: OPEN ← {s}, gs = 0, gi =∞ for all i ∈ V \ {s}
2: while OPEN is not empty do
3: Remove i from OPEN
4: for j ∈ Children(i) do
5: if (gi + cij) < gj and (gi + cij) < gτ then . Only when cij ≥ 0 for all i , j ∈ V
6: gj ← (gi + cij)
7: Parent(j) ← i
8: if j 6= τ then
9: OPEN ← OPEN ∪{j}

Theorem

If there exists at least one finite cost path from s to τ , then the Label
Correcting (LC) algorithm terminates with gτ = dist(s, τ), the shortest path
length from s to τ . Otherwise, the LC algorithm terminates with gτ =∞.
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Label Correcting Algorithm
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Properties of LC Algorithms
I LC algorithms update the labels (g -values) of relevant states until:

gi = min
j∈Parents(i)

gj + cj ,i

I Once optimal g -values are available, the least-cost path i∗q , . . . , i
∗
1 is a

greedy path computed starting from i∗1 = τ and backtracking:

i∗k+1 = arg min
j∈Parents(i∗k )

gj + cj ,i∗k until i∗k+1 = s
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Dijkstra’s Algorithm

I Best-first search: removes nodes with minimum label gi from OPEN
(implemented as a priority queue):

i = arg min
j∈OPEN

gj

I Node expansion: once removed from OPEN, node i is expanded by
updating the labels of its children

I Termination: gi equals the true cost dist(s, i) of the shortest path from
s to i for all expanded nodes

6



Dijkstra’s Algorithm Properties
I When cij ≥ 0

I The algorithm expands nodes in the order of distance from s
I Each node is expanded at most once
I If i ∈ OPEN, its label gi may change as we discover new paths to i
I gi ≥ dist(s, i) always with equality once i is expanded
I Once we remove i from OPEN, its label gi can no longer change because

all other nodes in OPEN have higher g-values. We cannot hope to find a
shorter path to i passing through a node in OPEN.

I OPEN is the “search frontier” and separates expanded from unexplored
nodes. Hence, once a node is removed from OPEN, we cannot hope to
find a better path to it. A node will enter OPEN at most once.

I Once τ is removed from OPEN, we cannot discover a shorter path to τ :
Done!

I When cij may be negative but there are no negative cycles and
dist(i , τ) ≥ 0 for all i ∈ V
I Nodes may be expanded more than once, i.e., may re-enter OPEN
I No guarantee that gi ≥ dist(s, i) throughout the execution
I The algorithm terminates with gi = dist(s, i)
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OPEN is the Search Frontier
I Dijkstra’s algorithm may be thought of as a simulation of fluid flow

starting from s
I The costs cij specify the time for the fluid to traverse edge i → j
I When the fluid arrives at a node i , update the ETA gj of its neighbors j
I Some ETA estimates may be too large since the fluid may find shortcuts

I The order of node expansions in Dijkstra only considers gi , the cost from
s to i but does not consider how costly the path from i to τ might be.
Can this be estimated and used to improve the search?

8



A* Algorithm

I The A* algorithm is a modification to the LC algorithm in which the
requirement for admission to OPEN is strengthened:

from gi + cij < gτ to gi + cij + hj < gτ

where hj is a positive lower bound on the optimal cost from node j to τ
known as a heuristic function:

0 ≤ hj ≤ dist(j , τ)

I The more stringent criterion can reduce the number of iterations
required by the LC algorithm.

I The more accurately hj estimates dist(j , τ), the more efficient the A*
algorithm becomes!
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Heuristic Function

I A heuristic function hi is constructed using special knowledge about the
problem
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Heuristic Function

I A heuristic must be admissible for the A* algorithm to work correctly

I A heuristic may be consistent to make the A* algorithm more efficient

I Admissible: hi ≤ dist(i , τ) for all i ∈ V

I Consistent: hτ = 0 and hi ≤ cij + hj for all i 6= τ and j ∈ Children(i)
I h satisfies the triangle inequality, which implies it is also admissible

I If h(1) and h(2) are consistent, then h := max{h(1), h(2)} is consistent

I If h(1) and h(2) are consistent, then h := h(1) + h(2) is ε-consistent (ε = 2)

I ε-Consistent: hτ = 0 and hi ≤ εcij + hj for all i 6= τ , j ∈ Children(i),
and ε ≥ 1

I A heuristic function h(2) dominates h(1) if both are admissible and
h
(2)
i ≥ h

(1)
i for every node i ∈ V

I Extreme cases: hi ≡ 0 and hi = dist(i , τ)
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Examples of Heuristic Functions
I Grid-based planning: let xi ∈ Rd be the position of node i

I Euclidean distance: hi := ‖xτ − xi‖2
I Manhattan distance: hi := ‖xτ − xi‖1 :=

∑
k |xτ,k − xi,k |

I Diagonal distance: hi := ‖xτ − xi‖∞ := maxk |xτ,k − xi,k |
I Octile distance: combines maxk |xτ,k − xi,k | and mink |xτ,k − xi,k |

I Robot arm planning:
I End-effector distance: run 2-D Dijkstra for the end effector and use it as a

heuristic in the n-dimensional search
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A* Algorithm with an ε-consistent Heuristic

Algorithm 2 Weighted A* Algorithm

1: OPEN ← {s}, CLOSED ← {}, ε ≥ 1
2: gs = 0, gi =∞ for all i ∈ V \ {s}
3: while τ /∈ CLOSED do . τ not expanded yet
4: Remove i with smallest fi := gi + εhi from OPEN . means gi + εhi < gτ
5: Insert i into CLOSED
6: for j ∈ Children(i) and j /∈ CLOSED do
7: if gj > (gi + cij) then
8: gj ← (gi + cij)
9: Parent(j)← i


expand state i :
◦ try to decrease gj using path from s to i

10: if j ∈ OPEN then
11: Update priority of j
12: else
13: OPEN ← OPEN ∪{j}

I There are 3 kinds of states:
I CLOSED: set of states that have already been expanded
I OPEN: set of candidates for expansion (frontier)
I Unexplored: the rest of the states
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Example: A* Search

I OPEN = {s}
I CLOSED = {}
I Next to expand: s
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Example: A* Search
I OPEN = {s}
I CLOSED = {}
I Next to expand: s
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Example: A* Search

I OPEN = {2}
I CLOSED = {s}
I Next to expand: 2
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Example: A* Search

I OPEN = {1, 4}
I CLOSED = {s, 2}
I Next to expand: 1
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Example: A* Search

I OPEN = {4, τ}
I CLOSED = {s, 2, 1}
I Next to expand: 4
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Example: A* Search

I OPEN = {3, τ}
I CLOSED = {s, 2, 1, 4}
I Next to expand: τ
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Example: A* Search

I OPEN = {3}
I CLOSED = {s, 2, 1, 4, τ}
I Done
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Theoretical Properties of A*

Theorem: Termination

A* terminates in a finite number of iterations if V is finite or if cij ≥ δ > 0
for i , j ∈ V and the degree of each node i ∈ V is finite.

Lemma: Consistency Implies Correct Labels

If cij ≥ 0 for i , j ∈ V and A* uses a consistent heuristic, then:

I gi equals the least-cost from s to i for every expanded state i ∈CLOSED
I gi is an upper bound on the least-cost from s to i for every i /∈ CLOSED
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Proof of Lemma

I Proceed by induction:

1. Assume all previously expanded states (in CLOSED) have correct g -values.

2. Let the next state to expand be i with fi := gi + hi ≤ fj for all j ∈ OPEN

3. Suppose that gi is incorrect, i.e., gi > dist(s, i)

4. Then, there must exist at least one state j on an optimal path from s to i
such that j ∈ OPEN but j /∈ CLOSED so that fj ≥ fi

5. Let j be the shallowest OPEN node on the optimal path from s to i , i.e.,
∃k ∈ CLOSED such that gj = gk + ckj = dist(s, j)

6. However, this leads to a contradiction:

fi = gi + hi > dist(s, i) + hi = gj + dist(j , i) + hi
h is
≥

consistent
gj + hj = fj
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Theoretical Properties of A*

Theorem: Optimality

I If A* uses a consistent heuristic, then it is guaranteed to return an
optimal path to τ (and, in fact, to every expanded node)

I If A* uses an admissible but inconsistent heuristic, then it is guaranteed
to return an optimal path as long as closed states are re-opened

I If A* uses an ε-consistent heuristic, then it is guaranteed to return an
ε-suboptimal path with cost dist(s, τ) ≤ gτ ≤ ε dist(s, τ) for ε ≥ 1

Theorem: Efficiency

A* performs the minimal number of state expansions to guarantee optimality

23



Effect of the Heuristic
I fi is an estimate of the cost of a least cost path from s to τ via i

I Dijkstra: expands states in the order of fi = gi

I A*: expands states in the order of fi = gi + hi
I all nodes with fi < dist(s, τ) are expanded
I some nodes with fi = dist(s, τ) are expanded
I no nodes with fi > dist(s, τ) are expanded

I Weighted A*: expands states in the order of fi = gi + εhi with ε > 1,
i.e., biased towards states closer to the goal
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Effect of the Heuristic: Dijkstra
I Dijkstra: expands states in the order of fi = gi
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Effect of the Heuristic: A*
I A*: expands states in the order of fi = gi + hi

I The closer hi is to dist(i , τ), the fewer expansions needed (fast search)

I The closer hi is to 0, the more expansions needed (slow search)

I For large problems, the number of nodes that need to be stored, O(|V|),
causes A* to run out of memory!
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Effect of the Heuristic: Weighted A*

I Weighted A*: expands states in the order of fi = gi + εhi with ε > 1,
i.e., biased towards states closer to the goal

I Weighted A* is ε-suboptimal (gτ ≤ ε dist(s, τ)) but trades optimality
for speed. It is orders of magnitude faster than A* in many domains.

I The key to finding solutions fast is to have a heuristic function with
shallow local minima!

I Is weighted A* guaranteed to expand no more states than A*?
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Implementation Details

I Graph: a hashmap data structure (stores key-value pairs) that maps
node i to its properties: label gi , heuristic hi , parent, etc.
I e.g., std::unordered map in C++ or dictionary in Python

I Depth-first search: last-in, first-out (LIFO): OPEN is a stack
I e.g., std::stack in C++ or collections.deque in Python

I Breath-first search: first-in, first-out (FIFO): OPEN is a queue
I e.g., std::queue in C++ or collections.deque in Python

I Dijkstra and A* search: OPEN is a priority queue based on fi
I e.g., boost::heap::d ary heap in C++ or pqdict in Python
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Time Complexity
I Graph: number of nodes |V|, number of edges |E|, maximum node

degree ∆ (number of outgoing edges)

I Dynamic Programming: O(|V|3):
I |V| × |V| entries in the table
I Each entry requires ∆ comparisons and in the worst case ∆ = O(|V|)

I Dijkstra and A*: O(makequeue + pop × |V|+ update × |E|)
I Array and make heap, e.g., std::priority queue in C++:

O(|V|) + O(|V|)|V|+ O(1)|E| = O(|V|2)

I Binary heap, e.g., boost::heap::d ary heap in C++:
O(|V|) + O(log |V|)|V|+ O(log |V|)|E| = O((|E|+ |V|) log |V|)

I Fibonacci heap, e.g., boost::heap::fibonacci heap in C++:
O(|V|) + O(log |V|)|V|+ O(1)|E| = O(|E|+ |V| log |V|)

Sparse graph: |E| = O(|V|) Dense graph: |E| = O(|V|2)

Array O(|V|2) O(|V|2)

Binary heap O(|V| log |V|) O(|V|2 log |V|)
Fibonacci heap O(|V| log |V|) O(|V|2)
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Memory Complexity

I A* does provably minimum number of expansions, O(|V|), to find the
optimal solution but this might require an infeasible amount of memory

I The memory requirements of weighted A* are often but not always
better

I Depth-first search (without coloring expanded states): explore one
possible path at a time and keep only the best path discovered so far in
memory:
I Complete and optimal (assuming a finite graph)
I Memory: O(∆m), where ∆ - max branching factor, m - max pathlength
I Time: O(∆m), since it will repeatedly re-expand states

I Example: 4-connected 40 by 40 grid with s at the center of the grid
I A* expands up to 800 states
I Depth-first search may expand over 420 > 1012 states
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IDA*

I What if the goal is only a few steps away in a huge state space?

I Iterative Deepening A*
1. Set fmax = 1 (or some other small value)
2. Run DFS that expands only states with f ≤ fmax

3. If DFS returns a path to the goal, Done!
4. Otherwise fmax = fmax + 1 (or larger increment) and go to step 2

I Properties of IDA*
I Complete and optimal in any graph with positive costs
I Memory: O(∆m∗), where ∆ - max. branching factor, m∗ - length of

optimal path
I Time: O(k∆m∗

), where k is the number of times depth-first search is
called
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Jump Point Search

I In a large open space, there are many equal
length shortest paths.

I A* adds a node’s immediate neighbors to the
OPEN priority queue, only to pop them soon
after.

I What if we could look ahead and skip nodes that
are not valuable, e.g., lead to symmetric paths?

I Assumption: undirected uniform-cost grid, i.e., the same move costs
the same amount in every node i

I 2-D case:
I each node has ≤ 8 neighbors
I straight moves cost 1
I diagonal moves cost

√
2
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Straight Moves

Consider horizontal/vertical movement from node i . We
can ignore the node we are coming from (parent p(i))
since we already visited it

We can assume the two nodes diagonally behind us have
been reached via p(i) since those are shorter paths than
going through i

We can assume that the nodes above and below have
also been reached via diagonal moves from p(i), which
cost

√
2 rather than going through i for a cost of 2

The nodes diagonally in front of us can be reached via
the neighbors above and below
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Forced Neighbors for Straight Moves

This leaves only a single natural neighbor to consider
and that is the main idea – as long as the way is clear we
can jump ahead to the right without adding any nodes
to OPEN.

If the way is blocked as we jump to the right, we can
safely disregard the entire jump because the paths above
and below will be handled via other nodes.

But what happens if one of these neighbors that we as-
sume will cover other paths is blocked? We are forced to
consider the node that would have otherwise been con-
sidered by the blocked path. Such a neighbor is called a
forced neighbor. When we reach a node with a forced
neighbor, we stop jumping right and add the node to the
OPEN list for further examination.
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Diagonal Moves
Consider diagonal movement from node i . As before,
we can ignore the parent p(i) since we already visited
it. We can also ignore the left and below neighbors
since they can be reached optimally from p(i) via a
straight move.

The nodes up and to the left and down and to the right
can also be reached more optimally via the neighbors
to the left and below.

This leaves three natural neighbors: two above and
to the right, and one diagonally in the original direction
of travel.

Two of the natural neighbors require straight moves
and since we already know how to jump straight we
can look there first for forced neighbors. If neither finds
any, we move one more step diagonally and repeat. 35



Forced Neighbors for Diagonal Moves

Simiar to forced neighbors during straight movement,
when an obstacle is present to our left or below, then
the neighbors diagonally up-and-left and down-and-
right cannot be reached in any other way but through i .
These are forced neighbors for diagonal moves. When
we reach a node with a forced neighbor, we stop jump-
ing diagonally and add the node to OPEN for further
examination.

The straight-line jumps initiated from the two natural
neighbors might also reach a forced neighbor. In that
case, we also need to add the current node i to the
OPEN set and continue with the next A* iteration.
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Formal Definitions
I Let i be the current node under evaluation and p(i) be its parent

I Natural neighbor: a node j ∈ Neib(i) is a natural neighbor if
I (Straight Move): cp(i),i + ci,j < cp(i),k + ck,j for all k ∈ Neib(i),

including k = j in which case cj,j = 0. In other words, j is a natural
neighbor of i if the shortest path from p(i) to j has to go through i .

I (Diagonal Move): cp(i),i + ci,j ≤ cp(i),k + ck,j for all k ∈ Neib(i),
including k = j in which case cj,j = 0. In other words, j is a natural
neighbor of i if a shortest path from p(i) to j has to go through i .

I Forced neighbor: a node j ∈ Neib(i) is a forced neighbor if both:
1. j is not a natural neighbor of i
2. cp(i),k + ck,j > cp(i),i + ci,j for all k ∈ Neib(i)

I Jump point: node j with coordinates xj is a jump point from node i in
direction d , if xj minimizes λ ∈ N such that xj = xi + λd and one of the
following holds:

1. Node j is the goal node τ
2. Node j has at least one forced neighbor
3. ‖d‖1 = 2 (diagonal move) and ∃k ∈ V which lies λi ∈ N steps in a

straight direction di ∈ {d1, d2}, i.e., xk = xj + λidi , and k is a jump point
from j by condition 1 or 2 above.
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Putting It All Together

I We apply the A* algorithm as usual, except that when we are expanding
a node i from the OPEN list we:

1. Look at its parent p(i) to determine the direction of travel.
2. Jump as far ahead as possible (straight first, then diagonally), skipping

intermediate nodes using the simplifying rules until we encounter a jump
point j

3. We treat j as if it were an immediate child of i : try to decrease its g -value
and then insert it into OPEN

I Main takeaway: accessing the contents of many points on a grid in a
few iterations of A* is more efficient than maintaining a priority queue
over many iterations of A*
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2-D Jump Point Search

Algorithm 3 2-D Jump Point Search

1: function getSuccessors(i , τ)
2: Successors(i) ← ∅ . Keep all neighbors of the start node s
3: Neighbors(i) ← prune(i ,Neighbors(i)) . Keep only natural and forced neighbors
4: for all j ∈ Neighbors(i) do
5: j ← jump(i ,direction(i ,j),τ)
6: add j to Successors(i)

7: return Successors(i)

8:
9: function jump(i , d , τ)

10: j ← step(i , d)
11: if j is an obstacle or outside the grid then
12: return null
13: if j = τ or ∃k ∈ Neighbors(j) such that k is forced then
14: return j

15: if ‖d‖1 = 2 (diagonal) then
16: for k ∈ {1, 2} do
17: if jump(j , dk , τ) is not null then
18: return j

19: return jump(j , d , τ) 39



Example: 2-D JPS
Starting from the green node in OPEN we jump
horizontally, then vertically, then diagonally until
a jump finds a node (blue) with a forced neighbor
(purple). We add the yellow node to OPEN.

We expand the yellow node. Checking diagonally
leads to the edge of the map so no new jump points
are added. The jump point (blue) is added to the
OPEN list.

We expand the yellow node from OPEN. Since we
were moving diagonally, we first explore the hori-
zontal (leads to map edge) and vertical (blocked)
directions and then jump diagonally.

We encounter a node with a forced neighbor (the
goal) and add it to OPEN. Expanding this last
node reaches the goal.
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2-D JPS Pruning Rules and Optimality

Theorem: Optimality of JPS (Harabor and Grastien, AAAI 2011)

Jump point search in a 2-D undirected uniform-cost grid returns the cost of
an optimal path from s to τ if a feasible path exists and ∞ otherwise.

I D. Harabor and A. Grastien, “Online Graph Pruning for Pathfinding on
Grid Maps,” AAAI, 2011
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3-D JPS Pruning Rules
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