ECE276B: Planning \& Learning in Robotics Lecture 9: Sampling-based Motion Planning

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Hansen Gao: h1cao@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Search-based vs Sampling-based Planning

- Search-based planning:
- Generates a graph by systematic discretization
- Searches the graph for a path, guaranteeing to find one if it exists (resolution complete)
- Can interleave the graph construction with the search, i.e., nodes added only when necessary
- Provides finite-time suboptimality bounds on the solution
- Computationally expensive in high dimensions

Search-based vs. Sampling-based Planning

- Sampling-based planning:
- Generates a sparse sample-based graph
- Searches the graph for a path, guaranteeing that the probability of finding one if it exists approaches 1 as the number of iterations $\rightarrow \infty$ (probabilistically complete)
- Can interleave the graph construction with the search, i.e., samples added only when necessary
- Provides asymptotic suboptimality bounds on the solution
- Well-suited for high-dimensional planning: faster and requires less memory than search-based planning in many domains

Motion Planning Problem

- Configuration space: C; Obstacle space: $C_{o b s}$; Free space: $C_{\text {free }}$
- Initial state: $\mathbf{x}_{s} \in C_{\text {free }}$; Goal state: $\mathbf{x}_{\tau} \in C_{\text {free }}$
- Path: a continuous function $\rho:[0,1] \rightarrow C$; Set of all paths: \mathcal{P}
- Feasible path: a continuous function $\rho:[0,1] \rightarrow C_{\text {free }}$ such that $\rho(0)=\mathbf{x}_{s}$ and $\rho(1)=\mathbf{x}_{\tau}$; Set of all feasible paths: $\mathcal{P}_{s, \tau}$
- Motion Planning Problem Given a path planning problem $\left(C_{\text {free }}, \mathbf{x}_{s}, \mathbf{x}_{\tau}\right)$ and a cost function $J: \mathcal{P} \rightarrow \mathbb{R}_{\geq 0}$, find a feasible path ρ^{*} such that:

$$
J\left(\rho^{*}\right)=\min _{\rho \in \mathcal{P}_{s, \tau}} J(\rho)
$$

Report failure if no such path exists.

Primitive Procedures for Sampling-based Motion Planning

- Sample: returns id samples from C
- SampleFree: returns id samples from $C_{\text {free }}$
- Nearest: given a graph $G=(V, E)$ with $V \subset C$ and a point $x \in C$, returns a vertex $\mathbf{v} \in V$ that is closest to \mathbf{x} :

$$
\operatorname{NeARESt}((V, E), \mathbf{x}):=\underset{\mathbf{v} \in V}{\arg \min }\|\mathbf{x}-\mathbf{v}\|
$$

- Near: given a graph $G=(V, E)$ with $V \subset C$, a point $\mathbf{x} \in C$, and $r>0$, returns the vertices in V that are within a distance r from \mathbf{x} :

$$
\operatorname{NEAR}((V, E), \mathbf{x}, r):=\{\mathbf{v} \in V \mid\|\mathbf{x}-\mathbf{v}\| \leq r\}
$$

- Steer: given points $\mathbf{x}, \mathbf{y} \in C$ and $\epsilon>0$, returns a point $\mathbf{z} \in C$ that minimizes $\|\mathbf{z}-\mathbf{y}\|$ while remaining within ϵ from \mathbf{x} :

$$
\operatorname{STEER}_{\epsilon}(\mathbf{x}, \mathbf{y}):=\underset{\mathbf{z}:\|\mathbf{z}-\mathbf{x}\| \leq \epsilon}{\arg \min }\|\mathbf{z}-\mathbf{y}\|
$$

- CollisionFree: given points $\mathbf{x}, \mathbf{y} \in C$, returns True if the line segment between \mathbf{x} and \mathbf{y} lies in $C_{\text {free }}$ and FALSE otherwise.

Probabilistic Roadmap (PRM)

Step 1. Construction Phase: Build a roadmap (graph) G which, hopefully, should be accessible from any point in $C_{\text {free }}$

- Nodes: randomly sampled valid configurations $\mathbf{x}_{i} \in C_{\text {free }}$
- Edges: added between samples that are easy to connect with a simple local controller (e.g., follow straight line)

Step 2. Query Phase: Given a start configuration \mathbf{x}_{s} and goal configuration \mathbf{x}_{τ}, connect them to the roadmap G, then search the augmented roadmap for a shortest path from \mathbf{x}_{s} to \mathbf{x}_{τ}

- Pros and Cons:

- Simple and highly effective in high dimensions
- Can result in suboptimal paths, no guarantees on suboptimality
- Difficulty with narrow passages
- Useful for multiple queries with different start and goal in the same environment

Step 1: Construction Phase

Step 1: Construction Phase

Algorithm 1 PRM (construction phase)

```
1: \(V \leftarrow \emptyset ; E \leftarrow \emptyset\)
2: for \(i=1, \ldots, n\) do
3: \(\quad \mathbf{x}_{\text {rand }} \leftarrow\) SAMPLEFREE ()
4: \(\quad V \leftarrow V \cup\left\{\mathbf{x}_{\text {rand }}\right\}\)
5: \(\quad\) for \(\mathrm{x} \in \operatorname{NEAR}\left((V, E), \mathrm{x}_{\text {rand }}, r\right)\) do
\(\triangleright\) May use \(k\) nearest vertices
```



```
7:
        if (not G.same_component \(\left(\mathbf{x}_{\text {rand }}, \mathbf{x}\right)\) ) and CollisionFree \(\left(\mathbf{x}_{\text {rand }}, \mathbf{x}\right)\) then
                        \(E \leftarrow E \cup\left\{\left(\mathbf{x}_{\text {rand }}, \mathbf{x}\right),\left(\mathbf{x}, \mathbf{x}_{\text {rand }}\right)\right\}\)
8: return \(G=(V, E)\)
```

- G.same_component $\left(\mathbf{x}_{\text {rand }}, \mathbf{x}\right)$
- ensures that \mathbf{x} and $\mathbf{x}_{\text {rand }}$ are in different components of G
- every connection decreases the number of connected components in G
- efficient implementation using union-find algorithms
- may be replaced by G.vertex_degree $(\mathbf{x})<K$ for some fixed K (e.g., $K=15)$ if it is important to generate multiple alternative paths

Asymptotically Optimal Probabilistic Roadmap

- S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," IJRR, 2010.
- To achieve an asymptotically optimal PRM, the connection radius r should decrease such that the average number of connections attempted from a roadmap vertex is proportional to $\log (n)$:

$$
r^{*}>2\left(1+\frac{1}{d}\right)^{1 / d}\left(\frac{\operatorname{Vol}\left(C_{\text {free }}\right)}{\operatorname{Vol}(\text { Unit d-ball })}\right)^{1 / d}\left(\frac{\log (n)}{n}\right)^{1 / d}
$$

Algorithm 2 RM*

```
1: V\leftarrow{\mp@subsup{\mathbf{x}}{s}{}}\cup{\operatorname{SampleFree()})\mp@subsup{}}{i=1}{n};E\leftarrow\emptyset
2: for v\inV do
3: for }\mathbf{x}\in\operatorname{Near}((V,E),\mathbf{v},\mp@subsup{r}{}{*})\{\mathbf{v}} d
4: if CollisionFree(v, x) then
5: }\quadE\leftarrowE\cup{(\mathbf{v},\mathbf{x}),(\mathbf{x},\mathbf{v})
6: return G = (V,E)
```


PRM vs RRT

- PRM: a graph constructed from random samples. It can be searched for a path whenever a start node \mathbf{x}_{s} and goal node \mathbf{x}_{τ} are specified. PRMs are well-suited for repeated planning between different pairs of \mathbf{x}_{s} and \mathbf{x}_{τ} (multiple queries)
- RRT: a tree constructed from random samples with root \mathbf{x}_{s}. The tree is grown until it contains a path to \mathbf{x}_{τ}. RRTs are well-suited for single-shot planning between a single pair of \mathbf{x}_{s} and \mathbf{x}_{τ} (single query)
- Rapidly Exploring Random Tree (RRT):
- One of the most popular planning techniques
- Introduced by Steven LaValle in 1998
- Many, many, many extensions and variants (articulated robots, kinematics, dynamics, differential constraints)
- There exist extensions of RRTs that try to reuse a previously constructed tree when replanning in response to map updates

Rapidly Exploring Random Tree (RRT)

- Sample a new configuration $\mathbf{x}_{\text {rand }}$, find the nearest neighbor $\mathbf{x}_{\text {nearest }}$ in G and connect them:

- (Optional) if $\mathbf{x}_{\text {nearest }}$ lies on an existing edge, then split the edge:

- If there is an obstacle, the edge travels up to the obstacle boundary, as far as allowed by a collision detection algorithm

Rapidly Exploring Random Tree (RRT)

- What about the goal? Occasionally (e.g., every 100 iterations) add the goal configuration \mathbf{x}_{τ} and see if it gets connected to the tree
- RRT can be implemented in the original workspace (need to do collision checking) or in configuration space
- Challenges with a C-Space implementation:
- What distance function do we use to find the nearest configuration?
- e.g., distance along the surface of a torus for a 2 link manipulator
- An edge represents a path in C-Space. How do we construct a collision-free path between two configurations?
- We do not have to connect the configurations all the way. Instead, use a small step size ϵ and a local steering function to get closer to the second configuration.

Rapidly Exploring Random Tree (RRT)

- No preprocessing: starting with an initial configuration \mathbf{x}_{s} build a graph (actually, tree) until the goal configuration \mathbf{x}_{τ} is part of it

Algorithm 3 RRT

```
1: \(V \leftarrow\left\{\mathbf{x}_{s}\right\} ; E \leftarrow \emptyset\)
2: for \(i=1 \ldots n\) do
3: \(\quad \mathbf{x}_{\text {rand }} \leftarrow\) SAMPLEFREE()
4: \(\quad \mathbf{x}_{\text {nearest }} \leftarrow \operatorname{NEAREST}\left((V, E), \mathbf{x}_{\text {rand }}\right)\)
5: \(\quad \mathbf{x}_{\text {new }} \leftarrow \operatorname{STEER}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {rand }}\right)\)
6: if CollisionFree \(\left(\mathbf{x}_{\text {nearest }}, \mathrm{x}_{\text {new }}\right)\) then
                \(V \leftarrow V \cup\left\{\mathbf{x}_{\text {new }}\right\} ; E \leftarrow E \cup\left\{\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)\right\}\)
8: return \(G=(V, E)\)
```


Rapidly Exploring Random Tree (RRT)

- RRT with $\epsilon=\infty$ (called Rapidly Exploring Dense Tree (RDT)):

45 iterations

2345 iterations

- RRT with $\epsilon<\infty$

Example: RRT Algorithm

- Start node \mathbf{x}_{s}
- Goal node \mathbf{x}_{τ}
- Gray obstacles

Example: RRT Algorithm

- Sample $\mathbf{x}_{r a n d}$ in the workspace
- Steer from \mathbf{x}_{s} towards $\mathbf{x}_{\text {rand }}$ by a fixed distance ϵ to get \mathbf{x}_{1}
- If the segment from \mathbf{x}_{s} to \mathbf{x}_{1} is collision-free, insert \mathbf{x}_{1} into the tree

Example: RRT Algorithm

- Sample $\mathbf{x}_{\text {rand }}$ in the workspace
- Find the closest node $\mathbf{x}_{\text {nearest }}$ to $\mathbf{x}_{\text {rand }}$
- Steer from $\mathbf{x}_{\text {nearest }}$ towards $\mathbf{x}_{\text {rand }}$ by a fixed distance ϵ to get \mathbf{x}_{2}
- If the segment from $\mathbf{x}_{\text {nearest }}$ to \mathbf{x}_{2} is collision-free, insert \mathbf{x}_{2} into the tree

Example: RRT Algorithm

- Sample $\mathbf{x}_{\text {rand }}$ in the workspace
- Find the closest node $\mathbf{x}_{\text {nearest }}$ to $\mathbf{x}_{\text {rand }}$
- Steer from $\mathbf{x}_{\text {nearest }}$ towards $\mathbf{x}_{\text {rand }}$ by a fixed distance ϵ to get \mathbf{x}_{3}
- If the segment from $\mathbf{x}_{\text {nearest }}$ to \mathbf{x}_{3} is collision-free, insert \mathbf{x}_{3} into the tree

Example: RRT Algorithm

- Sample $\mathbf{x}_{\text {rand }}$ in the workspace
- Find the closest node $\mathbf{x}_{\text {nearest }}$ to $\mathbf{x}_{\text {rand }}$
- Steer from $\mathbf{x}_{\text {nearest }}$ towards $\mathbf{x}_{\text {rand }}$ by a fixed distance ϵ to get \mathbf{x}_{3}
- If the segment from $\mathbf{x}_{\text {nearest }}$ to \mathbf{x}_{3} is collision-free, insert \mathbf{x}_{3} into the tree

Example: RRT Algorithm

- Continue until a node that is a distance ϵ from the goal is generated
- Either terminate the algorithm or search for additional feasible paths

Sampling in RRTs

- The vanilla RRT algorithm provides uniform coverage of space

- Alternatively, the growth may be biased by the largest Voronoi region

Sampling in RRTs

- Goal-biased sampling: with probability $\left(1-p_{g}\right), \mathbf{x}_{r a n d}$ is chosen as a uniform sample in $C_{\text {free }}$ and with probability $p_{g}, \mathbf{x}_{\text {rand }}=\mathbf{x}_{\tau}$

(a) $p_{g}=0$

(b) $p_{g}=0.1$
(c) $p_{g}=0.5$

Handling Robot Dynamics with Steer()

- Steer() extends the tree towards a given random sample $\mathbf{x}_{\text {rand }}$
- Consider a car-like robot with non-holonomic constraints (no sideways motion) in $S E(2)$. Obtaining a feasible path from $\mathbf{x}_{\text {rand }}=\left(0,0,90^{\circ}\right)$ to $\mathbf{x}_{\text {nearest }}=\left(1,0,90^{\circ}\right)$ is as challenging as the original planning problem
- Steer() resolves this by not requiring the motion to get all the way to $\mathbf{x}_{\text {rand }}$. Instead, apply the best control input for a fixed duration to obtain $\mathbf{x}_{\text {new }}$ and a dynamically feasible trajectory to it
- See: Y. Li, Z. Littlefield, K. Bekris, "Asymptotically optimal sampling-based kinodynamic planning," The International Journal of Robotics Research, 2016.

Example: 5 DOF Kinodynamic Planning for a Car

Bug Traps

- Growing two trees, one from start and one for goal, often has better performance in practice.

Bi-directional RRT

Algorithm 4 Bi-directional RRT

```
\(V_{a} \leftarrow\left\{\mathbf{x}_{s}\right\} ; E_{a} \leftarrow \emptyset ; V_{b} \leftarrow\left\{\mathbf{x}_{\tau}\right\} ; E_{b} \leftarrow \emptyset\)
    for \(i=1 \ldots n\) do
            \(\mathbf{x}_{\text {rand }} \leftarrow\) SAMPLEFREE ()
    \(\mathbf{x}_{\text {nearest }} \leftarrow \operatorname{NEAREST}\left(\left(V_{a}, E_{a}\right), \mathbf{x}_{\text {rand }}\right)\)
    \(\mathbf{x}_{\text {new }} \leftarrow \operatorname{STEER}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {rand }}\right)\)
    if \(\mathbf{x}_{\text {new }} \neq \mathbf{x}_{\text {nearest }}\) then
        \(V_{a} \leftarrow V_{a} \cup\left\{\mathbf{x}_{\text {new }}\right\} ; E_{a} \leftarrow\left\{\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right),\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {nearest }}\right)\right\}\)
        \(\mathbf{x}_{\text {nearest }}^{\prime} \leftarrow \operatorname{NEAREST}\left(\left(V_{b}, E_{b}\right), \mathbf{x}_{\text {new }}\right)\)
        \(\mathbf{x}_{\text {new }}^{\prime} \leftarrow \operatorname{StEER}\left(\mathbf{x}_{\text {nearest }}^{\prime}, \mathbf{x}_{\text {new }}\right)\)
        if \(\mathbf{x}_{\text {new }}^{\prime} \neq \mathbf{x}_{\text {nearest }}^{\prime}\) then
                \(V_{b} \leftarrow V_{b} \cup\left\{\mathbf{x}_{\text {new }}^{\prime}\right\} ; E_{b} \leftarrow\left\{\left(\mathbf{x}_{\text {nearest }}^{\prime}, \mathbf{x}_{\text {new }}^{\prime}\right),\left(\mathbf{x}_{\text {new }}^{\prime}, \mathbf{x}_{\text {nearest }}^{\prime}\right)\right\}\)
            if \(\mathbf{x}_{\text {new }}^{\prime}=\mathbf{x}_{\text {new }}\) then return SOLUTION
    if \(\left|V_{b}\right|<\left|V_{a}\right|\) then \(\operatorname{Swap}\left(\left(V_{a}, E_{a}\right),\left(V_{b}, E_{b}\right)\right)\)
14: return FAILURE
```


RRT-Connect (J. Kuffner and S. LaValle, ICRA, 2000)

- Bi-directional tree + attempts to connect the two trees at every iteration

Algorithm 5 RRT-Connect

1: $V_{a} \leftarrow\left\{\mathbf{x}_{s}\right\} ; E_{a} \leftarrow \emptyset ; V_{b} \leftarrow\left\{\mathbf{x}_{\tau}\right\} ; E_{b} \leftarrow \emptyset$
2: for $i=1 \ldots n$ do
3: $\quad \mathbf{x}_{\text {rand }} \leftarrow \operatorname{SAMPLEFREE}()$
4: if not $\operatorname{ExTEND}\left(\left(V_{a}, E_{a}\right), \mathbf{x}_{\text {rand }}\right)=$ Trapped then
6:
if $\operatorname{Connect}\left(\left(V_{b}, E_{b}\right), \mathrm{x}_{\text {nen }}\right)=$ Reached then $\triangleright \mathrm{x}_{\text {new }}$ was just added to $\left(V_{a}, E_{a}\right)$ return $\operatorname{Path}\left(\left(V_{a}, E_{a}\right),\left(V_{b}, E_{b}\right)\right)$
$\operatorname{SwAP}\left(\left(V_{a}, E_{a}\right),\left(V_{b}, E_{b}\right)\right)$
return Failure
function $\operatorname{ExtEnd}((V, E), \mathbf{x})$
$\mathbf{x}_{\text {nearest }} \leftarrow \operatorname{NEAREST}((V, E), \mathbf{x})$
$\mathbf{x}_{\text {new }} \leftarrow \operatorname{StEER}_{\epsilon}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}\right)$
if CollisionFree $\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)$ then $V \leftarrow\left\{\mathbf{x}_{\text {new }}\right\} ; E \leftarrow\left\{\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right),\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {nearest }}\right)\right\}$ if $\mathbf{x}_{\text {new }}=\mathbf{x}$ then return Reached else return Advanced
return Trapped
function $\operatorname{Connect}((V, E), \mathbf{x})$
17: repeat status $\leftarrow \operatorname{EXTEND}((V, E), \mathbf{x})$ until status \neq Advanced
18: return status

Example: Single RRT-Connect Iteration

Example: Single RRT-Connect Iteration

- One tree is grown to a random target

Example: Single RRT-Connect Iteration

- The new node becomes a target for the other tree

Example: Single RRT-Connect Iteration

- Determine the nearest node to the target

Example: Single RRT-Connect Iteration

- Try to add a new collision-free branch

Example: Single RRT-Connect Iteration

- If successful, keep extending the branch

Example: Single RRT-Connect Iteration

- If successful, keep extending the branch

Example: Single RRT-Connect Iteration

- If successful, keep extending the branch

Example: Single RRT-Connect Iteration

- If the branch reaches all the way to the target, a feasible path is found!

Example: Single RRT-Connect Iteration

- If the branch reaches all the way to the target, a feasible path is found!

Example: RRT-Connect

Example: RRT-Connect

Example: RRT-Connect

Why are RRTs so popular?

- The algorithm is very simple once the following subroutines are implemented:
- Random sample generator
- Nearest neighbor
- Collision checker
- Steer
- Pros:
- A sparse graph requires little memory and computation
- RRTs find feasible paths quickly in practice
- Can add heuristics on top, e.g., bias the sampling towards the goal (see Gammell et al., BIT*, IJRR, 2020.)
- Cons:
- Computed paths may be sub-optimal and require path smoothing as a post-processing step
- Finding a feasible path in highly constrained environments (e.g., maze) is challenging

Path Smoothing

- Start with the initial point (1)
- Make connections to subsequent points in the path (2), (3), (4), ...
- When a connection collides with obstacles, add the previous waypoint to the smoothed path
- Continue smoothing from this point on

Search-based vs Sampling-based Planning

- RRT:
- A sparse graph requires little memory and computation
- Computed paths may be sub-optimal and require path smoothing
- Weighted A^{*} :
- Systematic exploration may require a lot of memory and computation
- Returns a path with (sub-)optimality guarantees

RRT: Probabilistic Completeness but No Optimality

- RRT and RRT-Connect are probabilistically complete: the probability that a feasible path will be found if one exists, approaches 1 exponentially as the number of samples approaches infinity
- Assuming $C_{\text {free }}$ is connected, bounded, and open, for any $x \in \mathcal{C}_{\text {free }}$, $\lim _{N \rightarrow \infty} \mathbb{P}\left(\left\|\mathbf{x}-\mathbf{x}_{\text {nearest }}\right\|<\epsilon\right)=1$, where $\mathbf{x}_{\text {nearest }}$ is the closest node to \mathbf{x} in G
- RRT is not optimal: the probability that RRT converges to an optimal solution, as the number of samples approaches infinity, is zero under reasonable technical assumptions (S. Karaman, E. Frazzoli, RSS'10)
- Problem: once we build an RRT we never modify it
- RRT* (S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," IJRR, 2010)
- RRT + rewiring of the tree to ensure asymptotic optimality
- Contains two steps: extend (similar to RRT) and rewire (new)

RRT*: Extend Step

- Generate a new potential node $\mathbf{x}_{\text {new }}$ identically to RRT
- Instead of finding the closest node in the tree, find all nodes within a neighborhood \mathcal{N} of radius $\min \left\{r^{*}, \epsilon\right\}$ where

$$
r^{*}>2\left(1+\frac{1}{d}\right)^{1 / d}\left(\frac{V o l\left(C_{\text {free }}\right)}{V o l(\text { Unit d-ball })}\right)^{1 / d}\left(\frac{\log |V|}{|V|}\right)^{(1 / d)}
$$

- Let $\mathbf{x}_{\text {nearest }}=\underset{\mathbf{x}_{\text {near }} \in \mathcal{N}}{\arg \min } g\left(\mathbf{x}_{\text {near }}\right)+c\left(\mathbf{x}_{\text {near }}, \mathbf{x}_{\text {new }}\right)$ be the node in \mathcal{N} on the currently known shortest path from \mathbf{x}_{s} to $\mathbf{x}_{\text {new }}$
- $V \leftarrow V \cup\left\{\mathbf{x}_{n e w}\right\}$
- $E \leftarrow E \cup\left\{\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)\right\}$
- Set the label of $\mathbf{x}_{\text {new }}$ to:
$g\left(\mathbf{x}_{\text {new }}\right)=g\left(\mathbf{x}_{\text {nearest }}\right)+c\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)$

RRT*: Rewire Step

- Check all nodes $\mathbf{x}_{\text {near }} \in \mathcal{N}$ to see if re-routing through $\mathbf{x}_{\text {new }}$ reduces the path length (label correcting!):
- If $g\left(\mathbf{x}_{\text {new }}\right)+c\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {near }}\right)<g\left(\mathbf{x}_{\text {near }}\right)$, then remove the edge between $\mathbf{x}_{\text {near }}$ and its parent and add a new edge between $\mathbf{x}_{\text {near }}$ and $\mathbf{x}_{\text {new }}$

Algorithm 6 RRT*

```
1: \(V \leftarrow\left\{\mathbf{x}_{s}\right\} ; E \leftarrow \emptyset\)
for \(i=1 \ldots n\) do
    \(\mathbf{x}_{\text {rand }} \leftarrow\) SampleFree ()
    \(\mathbf{x}_{\text {nearest }} \leftarrow \operatorname{NEARESt}\left((V, E), \mathbf{x}_{\text {rand }}\right)\)
    \(\mathbf{x}_{\text {new }} \leftarrow \operatorname{STEER}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {rand }}\right)\)
    if \(\operatorname{CollisionFree}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)\) then
        \(X_{\text {near }} \leftarrow \operatorname{NEAR}\left((V, E), \mathbf{x}_{\text {new }}, \min \left\{r^{*}, \epsilon\right\}\right)\)
        \(V \leftarrow V \cup\left\{\mathbf{x}_{\text {new }}\right\}\)
        \(c_{\text {min }} \leftarrow \operatorname{Cost}\left(\mathbf{x}_{\text {nearest }}\right)+\operatorname{CosT}\left(\operatorname{Line}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)\right)\)
        for \(\mathbf{x}_{\text {near }} \in X_{\text {near }}\) do
                            \(\triangleright\) Extend along a minimum-cost path
            if CollisionFree \(\left(\mathbf{x}_{\text {near }}, \mathbf{x}_{\text {new }}\right)\) then
                if \(\operatorname{Cost}\left(\mathbf{x}_{\text {near }}\right)+\operatorname{Cost}\left(\operatorname{Line}\left(\mathbf{x}_{\text {near }}, \mathbf{x}_{\text {new }}\right)\right)<c_{\text {min }}\) then
                    \(\mathbf{x}_{\text {min }} \leftarrow \mathbf{x}_{\text {near }}\)
                \(c_{\text {min }} \leftarrow \operatorname{Cost}\left(\mathbf{x}_{\text {near }}\right)+\operatorname{Cost}\left(\operatorname{Line}\left(\mathbf{x}_{\text {near }}, \mathbf{x}_{\text {new }}\right)\right)\)
        \(E \leftarrow E \cup\left\{\left(\mathbf{x}_{\text {min }}, \mathbf{x}_{\text {new }}\right\}\right.\)
        for \(\mathbf{x}_{\text {near }} \in X_{\text {near }}\) do
            if CollisionFree \(\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {near }}\right)\) then
            if \(\operatorname{Cost}\left(\mathbf{x}_{\text {new }}\right)+\operatorname{Cost}\left(\operatorname{Line}\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {near }}\right)\right)<\operatorname{CosT}\left(\mathbf{x}_{\text {near }}\right)\) then
                \(\mathbf{x}_{\text {parent }} \leftarrow \operatorname{PARENT}\left(\mathbf{x}_{\text {near }}\right)\)
                \(E \leftarrow\left(E \backslash\left\{\left(\mathbf{x}_{\text {parent }}, \mathbf{x}_{\text {near }}\right)\right\}\right) \cup\left\{\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {near }}\right)\right\}\)
21: return \(G=(V, E)\)

\section*{RRT vs RRT*}

(a) RRT

(b) RRT*
- Same nodes in the tree, only the edge connections are different. Notice how the RRT* edges are almost straight lines (optimal paths).

\section*{RRT vs RRT*}

(a)

(b)
(b) \(R R T^{*}\)
- Same nodes in the tree, only the edge connections are different. Notice how the RRT* edges are almost straight lines (optimal paths).```

