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Continuous-time Motion Model

I time: t ∈ [0,T ]

I state: x(t) ∈ X ⊆ Rn, ∀t ∈ [0,T ]

I control: u(t) ∈ U ⊆ Rm, ∀t ∈ [0,T ]

I motion model: a stochastic differential equation (SDE):

ẋ(t) = f (x(t),u(t)) + C (x(t),u(t))ω(t)

defined by functions f : X × U → Rn and C : X × U → Rn×d

I white noise: ω(t) ∈ Rd , ∀t ∈ [0,T ]
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Gaussian Process

I A Gaussian Process with mean function µ(t) and covariance function
k(t, t ′) is an Rd -valued continuous-time stochastic process {g(t)}t such that
every finite set g(t1), . . . , g(tn) of random variables has a joint Gaussian
distribution:g(t1)

...
g(tn)

 ∼ N

µ(t1)

...
µ(tn)

 ,
k(t1, t1) . . . k(t1, tn)

...
. . .

...
k(tn, t1) · · · k(tn, tn)




I Short-hand notation: g(t) ∼ GP(µ(t), k(t, t ′))

I Intuition: a GP is a Gaussian distribution for a function g(t)
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Brownian Motion

I Robert Brown made microscopic observations in 1827 that small particles in
plant pollen, when immersed in liquid, exhibit highly irregular motion

I Brownian Motion is an Rd -valued continuous-time stochastic process
{β(t)}t≥0 with the following properties:
I β(t) has stationary independent increments, i.e., for 0 ≤ t0 < t1 < . . . < tn,
β(t0),β(t1)− β(t0), . . . ,β(tn)− β(tn−1) are independent

I β(t)− β(s) ∼ N (0, (t − s)Q) for 0 ≤ s ≤ t and diffusion matrix Q

I β(t) is almost surely continuous (but nowhere differentiable)

I Standard Brownian Motion: β(0) = 0 and Q = I

I Brownian motion is a Gaussian process β(t) ∼ GP(0,min {t, t ′}Q)
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White Noise

I White Noise is an Rd -valued continuous-time stochastic process {ω(t)}t≥0

with the following properties:
I ω(t1) and ω(t2) are independent if t1 6= t2

I ω(t) is a Gaussian process GP(0, δ(t − t′)Q) with spectral density Q, where δ
is the Dirac delta function.

I The sample paths of ω(t) are discontinuous almost everywhere

I White noise is unbounded: it takes arbitrarily large positive and negative
values at any finite interval

I White noise can be considered the derivative of Brownian motion:

dβ(t) = ω(t)dt, where β(t) ∼ GP(0,min {t, t ′}Q)

I White noise is used to model motion noise in continuous-time systems of
ordinary differential equations
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Brownian Motion and White Noise

(a) Brownian Motion (b) White Noise
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Continuous-time Stochastic Optimal Control

I Problem statement:

min
π

V π(τ, x0) := E

{
q(x(T ))︸ ︷︷ ︸

terminal cost

+

∫ T

τ

`(x(t), π(t, x(t)))︸ ︷︷ ︸
stage cost

dt

∣∣∣∣ x(τ) = x0

}

s.t. ẋ(t) = f (x(t), π(t, x(t))) + C (x(t), π(t, x(t)))ω(t).

x(t) ∈ X , π(t, x(t)) ∈ PC 0([0,T ],U)

I Admissible policies: set PC 0([0,T ],U) of piecewise continuous functions
from [0,T ] to U

I Problem variations:
I x(τ) can be given or free for optimization

I x(T ) can be in a given target set T or free for optimization

I T can be given (finite-horizon) or free for optimization (first-exit)

I State and control constraints can be imposed via X and U
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Assumptions

I Motion model f (x,u) is continuously differentiable wrt to x and continuous
wrt u

I Existence and uniqueness: for any admissible policy π and initial state
x(τ) ∈ X , τ ∈ [0,T ], the noise-free system, ẋ(t) = f (x(t), π(t, x(t))), has a
unique state trajectory x(t), t ∈ [τ,T ].

I Stage cost `(x,u) is continuously differentiable wrt x and continuous wrt u

I Terminal cost q(x) is continuously differentiable wrt x
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Example: Existence and Uniqueness

I Example: Existence in not guaranteed in general

ẋ(t) = x(t)2, x(0) = 1

A solution does not exist forT ≥ 1 : x(t) =
1

1− t

I Example: Uniqueness in not guaranteed in general

ẋ(t) = x(t)
1
3 , x(0) = 0

Infinite number of solutions :

x(t) = 0, ∀t

x(t) =

{
0 for 0 ≤ t ≤ τ(

2
3 (t − τ)

)3/2
for t > τ
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Special case: Calculus of Variations

I Let C 1([a, b],Rm) be the set of continuously differentiable functions from
[a, b] to Rm

I Calculus of Variations: find a curve y(x) for x ∈ [a, b] from y0 to yf that
minimizes a cumulative cost function:

min
y∈C 1([a,b],Rm)

q(y(b)) +

∫ b

a

`(y(x), ẏ(x))dx

s.t. y(a) = y0, y(b) = yf

I The cost may be curve length or travel time for a particle accelerated by
gravity (Brachistochrone Problem)

I Special case of continuous-time deterministic optimal control:
I fully-actuated system: ẋ = u
I notation: t ← x , x(t)← y(x), u(t) = ẋ(t)← ẏ(x)
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Sufficient Condition for Optimality
I Optimal value function:

V ∗(t, x) ≤ V π(t, x), ∀π ∈ PC 0([0,T ],U), x ∈ X

Sufficient Optimality Condition: HJB PDE

Suppose that V (t, x) is continuously differentiable in t and x and solves the
Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE):

V (T , x) = q(x), ∀x ∈ X

−∂V (t, x)

∂t
= min

u∈U

[
`(x,u) +∇xV (t, x)>f (x,u) +

1

2
tr
(
Σ(x,u)

[
∇2

xV (t, x)
])]

for all t ∈ [0,T ] and x ∈ X and where Σ(x,u) := C (x,u)C>(x,u).

Then, under the assumptions on Slide 9, V (t, x) is the unique solution of the HJB
PDE and is equal to the optimal value function V ∗(t, x) of the continuous-time
stochastic optimal control problem.

The policy π∗(t, x) that attains the minimum in the HJB PDE for all t and x is an
optimal policy.
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Existence and Uniqueness of HJB PDE Solutions

I The HJB PDE is the continuous-time analog of the Bellman Equation

I The HJB PDE has at most one classical solution – a function which satisfies
the PDE everywhere

I When the optimal value function is not smooth, the HJB PDE does not have
a classical solution. It has a unique viscosity solution which is the optimal
value function.

I Approximation of the HJB PDE based on MDP discretization is guaranteed
to converge to the unique viscosity solution

I Most continuous function approximation schemes (which scale better) are
unable to represent non-smooth value functions

I All examples of non-smooth value functions seem to be deterministic, i.e.,
noise smooths the optimal value function
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HJB PDE Derivation

I A discrete-time approximation of the continuous-time optimal control
problem can be used to derive the HJB PDE from the DP algorithm

I Motion model: ẋ = f (x,u) + C (x,u)ω with x(0) = x0

I Euler Discretization of the SDE with time step τ :
I Discretize [0,T ] into N pieces of width τ := T

N

I Define xk := x(kτ) and uk := u(kτ) for k = 0, . . . ,N

I Discretized motion model:

xk+1 = xk + τ f (xk , uk) + C(xk , uk)εk , εk ∼ N (0, τ I )

= xk + dk , dk ∼ N (τ f (xk , uk), τΣ(xk , uk))

where Σ(x, u) = C(x, u)C>(x, u) as before

I Gaussian motion model: pf (x′ | x, u) = φ(x′; x + τ f (x, u), τΣ(x, u)), where φ
is the Gaussian probability density function

I Discretized stage cost: τ`(x, u)
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HJB PDE Derivation

I Consider the Bellman Equation of the discrete-time problem and take the
limit as τ → 0 to obtain a “continuous-time Bellman Equation”

I Bellman Equation: finite-horizon problem with t := kτ

V (t, x) = min
u∈U

{
τ`(x,u) + Ex′∼pf (·|x,u) [V (t + τ, x′)]

}
I Note that x′ = x + d where d ∼ N (τ f (x,u), τΣ(x,u))

I Taylor-series expansion of V (t + τ, x′) around (t, x):

V (t + τ, x + d) =V (t, x) + τ
∂V

∂t
(t, x) + o(τ 2)

+ [∇xV (t, x)]> d +
1

2
d>
[
∇2

xV (t, x)
]

d + o(d3)
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HJB PDE Derivation

I Note that E
[
d>Md

]
= µ>Mµ+ tr(ΣM) for d ∼ N (µ,Σ) so that:

Ex′∼pf (·|x,u) [V (t + τ, x′)] = V (t, x) + τ
∂V

∂t
(t, x) + o(τ 2)

+ τ [∇xV (t, x)]> f (x,u) +
τ

2
tr
(
Σ(x,u)

[
∇2

xV (t, x)
])

I Substituting in the Bellman Equation and simplifying, we get:

0 = min
u∈U

{
`(x,u) +

∂V

∂t
(t, x) + [∇xV (t, x)]> f (x,u) +

1

2
tr
(
Σ(x,u)

[
∇2

xV (t, x)
])

+
o(τ 2)

τ

}
I Taking the limit as τ → 0 (assuming it can be exchanged with minu∈U ) leads

to the HJB PDE:

−∂V
∂t

(t, x) = min
u∈U

{
`(x,u) + [∇xV (t, x)]> f (x,u) +

1

2
tr
(
Σ(x,u)

[
∇2

xV (t, x)
])}
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Example 1: Guessing a Solution for the HJB PDE

I System: ẋ(t) = u(t), |u(t)| ≤ 1, 0 ≤ t ≤ 1

I Cost: `(x , u) = 0 and q(x) = 1
2x

2 for all x ∈ X and u ∈ U

I Since we only care about the square of the terminal state, we can construct a
candidate optimal policy that drives the state towards 0 as quickly as possible
and maintains it there:

π(t, x) = −sgn(x) :=


−1 if x > 0

0 if x = 0

1 if x < 0

I The value in not smooth: V π(t, x) = 1
2 (max {0, |x | − (1− t)})2

I We will verify that this function satisfies the HJB and is therefore indeed the
optimal value function
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Example 1: Partial Derivative wrt x

I Value function and its partial derivative wrt x for fixed t:

V π(t, x) =
1

2
(max {0, |x | − (1− t)})2 ∂V π(t, x)

∂x
= sgn(x) max{0, |x | − (1− t)}
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Example 1: Partial Derivative wrt t

I Value function and its partial derivative wrt t for fixed x :

V π(t, x) =
1

2
(max {0, |x | − (1− t)})2 ∂V π(t, x)

∂t
= max{0, |x | − (1− t)}
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Example 1: Guessing a Solution for the HJB PDE

I Boundary condition: V π(1, x) = 1
2x

2 = q(x)

I The minimum in the HJB PDE is obtained by u = −sgn(x):

min
|u|≤1

(
∂V π(t, x)

∂t
+
∂V π(t, x)

∂x
u

)
= min
|u|≤1

((1 + sgn(x)u) (max{0, |x | − (1− t)})) = 0

I Conclusion: V π(t, x) = V ∗(t, x) and π∗(t, x) = −sgn(x) is an optimal policy
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Example 2: HJB PDE without a Classical Solution

I System: ẋ(t) = x(t)u(t), |u(t)| ≤ 1, 0 ≤ t ≤ 1

I Cost: `(x , u) = 0 and q(x) = x for all x ∈ X and u ∈ U

I Optimal policy: π(t, x) =


−1 if x > 0

0 if x = 0

1 if x < 0

I Optimal value function:

V π(t, x) =


et−1x x > 0

0 x = 0

e1−tx x < 0

I The value function is not differentiable wrt x at x = 0 and hence does not
satisfy the HJB PDE in the classical sense
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Inf-Horizon Continuous-time Stochastic Optimal Control

I V π(x) := E

∫ ∞
0

e−
t
γ︸︷︷︸

discount

`(x(t), π(t, x(t)))dt

 with γ ∈ [0,∞)

HJB PDEs for the Optimal Value Function

Hamiltonian: H(x,u,p) = `(x,u) + p>f (x,u) +
1

2
tr
(
C (x,u)C>(x,u)[∇xp]

)

Finite Horizon: −∂V
∗

∂t
(t, x) = min

u∈U
H(x,u,∇xV

∗(t, x)), V ∗(T , x) = q(x)

First Exit: 0 = min
u∈U

H(x,u,∇xV
∗(x)), V ∗(x) = q(x), ∀x ∈ T

Discounted:
1

γ
V ∗(x) = min

u∈U
H(x,u,∇xV

∗(x))
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Tractable Problems
I Control-affine motion model: ẋ = a(x) + B(x)u + C (x)ω

I Stage cost quadratic in u: `(x,u) = q(x) + 1
2 u>R(x)u, R(x) � 0

I The Hamiltonian can be minimized analytically wrt u (suppressing the
dependence on x for clarity):

H(x,u,p) = q +
1

2
u>Ru + p> (a + Bu) +

1

2
tr(CC>px)

∇uH(x,u,p) = Ru + B>p ∇2
uH(x,u,p) = R � 0

I Optimal policy for t ∈ [0,T ] and x ∈ X :

π∗(t, x) = arg min
u

H(x,u,Vx(t, x)) = −R−1(x)B>(x)Vx(t, x)

I The HJB PDE becomes a second-order quadratic PDE, no longer involving
the min operator:

V (T , x) = q(x),

−Vt(t, x) = q + a>Vx(t, x) +
1

2
tr(CC>Vxx(t, x))− 1

2
Vx(t, x)>BR−1B>Vx(t, x)
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Example: Pendulum

I Pendulum dynamics (Newton’s second law for
rotational systems):

mL2θ̈ = u −mgL sin θ + noise

I Noise: σω(t) with ω(t) ∼ GP(0, δ(t − t ′))

I State-space form with x = (x1, x2) = (θ, θ̇):

ẋ =

[
x2

k sin(x1)

]
+

[
0
1

]
(u + σω)

I Stage cost: `(x, u) = q(x) + r
2u

2

I Optimal value and policy for a discounted problem formulation:

π∗(x) = −1

r
V ∗x2

(x)

1

γ
V ∗(x) = q(x) + x2V

∗
x1

(x) + k sin(x1)V ∗x2
(x) +

σ2

2
V ∗x2x2

(x)− 1

2r
(V ∗x2

(x))2
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Example: Pendulum

I Parameters: k = σ = r = 1, γ = 0.3, q(θ, θ̇) = 1− exp(−2θ2)

I Discretize the state space, approximate derivatives via finite differences, and
iterate:

V (i+1)(x) = V (i)(x) + α
(
γmin

u
H(x, u,∇xV

(i)(·))− V (i)(x)
)
, α = 0.01
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Continuous-time Deterministic Optimal Control

I Problem statement:

min
π

V π(0, x0) := q(x(T )) +

∫ T

0

`(x(t), π(t, x(t)))dt

s.t. ẋ(t) = f (x(t),u(t)), x(0) = x0,

x(t) ∈ X ,
π(t, x(t)) ∈ PC 0([0,T ],U)

I Admissible policies: PC 0([0,T ],U) is the set of piecewise continuous
functions from [0,T ] to U

I Optimal value function: V ∗(t, x) = minπ V
π(t, x)
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Relationship to Mechanics

I Costate p(t) is the gradient (sensitivity) of the optimal value function
V ∗(t, x(t)) with respect to the state x(t).

I Hamiltonian: captures the total energy of the system:

H(x,u,p) = `(x,u) + p>f (x,u)

I Hamilton’s principle of least action: trajectories of mechanical systems

minimize the action integral
∫ T

0
`(x(t), ẋ(t))dt, where the Lagrangian

`(x, ẋ) := K (ẋ)− U(x) is the difference between kinetic and potential energy

I If the stage cost is the Lagrangian of a mechanical system, the Hamiltonian is
the (negative) total energy (kinetic plus potential)
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Lagrangian Mechanics

I Consider a point mass m with position x and velocity ẋ

I Kinetic energy K (ẋ) := 1
2m‖ẋ‖

2
2 and momentum p := mẋ

I Potential energy U(x) and conservative force F = −∂U(x)
∂x

I Newtonian equations of motion: F = mẍ

I Note that −∂U(x)
∂x = F = mẍ = d

dt p = d
dt

(
∂K(ẋ)
∂ẋ

)
I Note that ∂U(x)

∂ẋ = 0 and ∂K(ẋ)
∂x = 0

I Lagrangian: `(x, ẋ) := K (ẋ)− U(x)

I Euler-Lagrange equation: d
dt

(
∂`(x,ẋ)
∂ẋ

)
− ∂`(x,ẋ)

∂x = 0
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Conservation of Energy

I Total energy E (x, ẋ) = K (ẋ) + U(x) = 2K (ẋ)− `(x, ẋ) = p>ẋ− `(x, ẋ)

I Note that:

d

dt

(
p>ẋ

)
=

d

dt

(
∂`(x, ẋ)

∂ẋ

>
ẋ

)
=

(
d

dt

∂`(x, ẋ)

∂ẋ

)>
ẋ +

∂`(x, ẋ)

∂ẋ

>
ẍ

d

dt
`(x, ẋ) =

∂`(x, ẋ)

∂x

>
ẋ +

∂`(x, ẋ)

∂ẋ

>
ẍ +

∂

∂t
`(x, ẋ)

I Conservation of energy using the Euler-Lagrange equation:

d

dt
E (x, ẋ) =

d

dt

(
∂`(x, ẋ)

∂ẋ

>
ẋ

)
− d

dt
`(x, ẋ) = − ∂

∂t
`(x, ẋ) = 0

I In our formulation, the costate is the negative momentum and the
Hamiltonian is the negative total energy

30



I Optimal open-loop trajectories (local minima) can be computed by solving
a boundary-value ODE with initial state x(0) = x0 and terminal costate
p(T ) = ∇xq(x(T ))

Theorem: Pontryagin’s Minimum Principle (PMP)

I Let u∗(t) : [0,T ]→ U be an optimal control trajectory

I Let x∗(t) : [0,T ]→ X be the associated state trajectory from x0

I Then, there exists a costate trajectory p∗(t) : [0,T ]→ X satisfying:

1. Canonical equations with boundary conditions:

ẋ∗(t) = ∇pH(x∗(t), u∗(t), p∗(t)), x∗(0) = x0

ṗ∗(t) = −∇xH(x∗(t), u∗(t), p∗(t)), p∗(T ) = ∇xq(x∗(T ))

2. Minimum principle with constant (holonomic) constraint:

u∗(t) ∈ arg min
u∈U

H(x∗(t), u, p∗(t)), ∀t ∈ [0,T ]

H(x∗(t), u∗(t), p∗(t)) = constant, ∀t ∈ [0,T ]

I Proof: Liberzon, Calculus of Variations & Optimal Control, Ch. 4.2
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HJB PDE vs PMP

I The HJB PDE provides a lot of information – the optimal value function and
an optimal policy for all time and all states!

I Often, we only care about the optimal trajectory for a specific initial
condition x0. Exploiting that we need less information, we can arrive at
simpler conditions for optimality – the PMP

I The HJB PDE is a sufficient condition for optimality: it is possible that the
optimal solution does not satisfy it but a solution that satisfies it is
guaranteed to be optimal

I The PMP is a necessary condition for optimality: it is possible that
non-optimal trajectories satisfy it so further analysis is necessary to determine
if a candidate PMP policy is optimal

I The PMP requires solving an ODE with split boundary conditions (not easy
but easier than the nonlinear HJB PDE!)

I The PMP does not apply to infinite horizon problems, so one has to use
the HJB PDE in that case
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Proof of PMP (Step 0: Preliminaries)

Lemma: ∇-min Exchange

Let F (t, x,u) be continuously differentiable in t ∈ R, x ∈ Rn, u ∈ Rm and let
U ⊆ Rm be a convex set. Assume π∗(t, x) = arg min

u∈U
F (t, x,u) exists and is

continuously differentiable. Then, for all t and x:

∂

∂t

(
min
u∈U

F (t, x,u)

)
=

∂

∂t
F (t, x,u)

∣∣∣∣
u=π∗(t,x)

∇x

(
min
u∈U

F (t, x,u)

)
= ∇xF (t, x,u)

∣∣
u=π∗(t,x)

I Proof: Let G (t, x) := minu∈U F (t, x,u) = F (t, x, π∗(t, x)). Then:

∂

∂t
G (t, x) =

∂

∂t
F (t, x,u)

∣∣∣∣
u=π∗(t,x)

+
∂

∂u
F (t, x,u)

∣∣∣∣
u=π∗(t,x)︸ ︷︷ ︸

=0 by 1st order optimality condition

∂π∗(t, x)

∂t

A similar derivation can be used for the partial derivative wrt x.
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Proof of PMP (Step 1: HJB PDE gives V ∗(t, x))

I Extra Assumptions: V ∗(t, x) and π∗(t, x) are continuously differentiable in
t and x and U is convex. These assumptions can be avoided in a more
general proof.

I With a continuously differentiable value function, the HJB PDE is also a
necessary condition for optimality:

V ∗(T , x) = q(x), ∀x ∈ X

0 = min
u∈U

(
`(x,u) +

∂

∂t
V ∗(t, x) +∇xV

∗(t, x)>f (x,u)

)
︸ ︷︷ ︸

:=F (t,x,u)

, ∀t ∈ [0,T ], x ∈ X

with a corresponding optimal policy π∗(t, x).
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Proof of PMP (Step 2: ∇-min Exchange Lemma)

I Apply the ∇-min Exchange Lemma to the HJB PDE:

0 =
∂

∂t

(
min
u∈U

F (t, x,u)

)
=

∂2

∂t2
V ∗(t, x) +

[
∂

∂t
∇xV

∗(t, x)

]>
f (x, π∗(t, x))

0 = ∇x

(
min
u∈U

F (t, x,u)

)
= ∇x`(x,u∗) +∇x

∂

∂t
V ∗(t, x) + [∇2

xV
∗(t, x)]f (x,u∗) + [∇xf (x,u∗)]>∇xV

∗(t, x)

where u∗ := π∗(t, x)

I Evaluate these along the trajectory x∗(t) resulting from π∗(t, x∗(t)):

ẋ∗(t) = f (x∗(t),u∗(t)) = ∇pH(x∗(t),u∗(t),p), x∗(0) = x0
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Proof of PMP (Step 3: Evaluate along x∗(t), u∗(t))

I Evaluate the results of Step 2 along x∗(t):

0 =
∂2V ∗(t, x)

∂t2

∣∣∣∣
x=x∗(t)

+

[
∂

∂t
∇xV

∗(t, x)

∣∣∣∣
x=x∗(t)

]>
ẋ∗(t)

=
d

dt

 ∂

∂t
V ∗(t, x)

∣∣∣∣
x=x∗(t)︸ ︷︷ ︸

:=r(t)

 =
d

dt
r(t)⇒ r(t) = const. ∀t

0 = ∇x`(x,u∗)|x=x∗(t) +
d

dt

∇xV
∗(t, x)|x=x∗(t)︸ ︷︷ ︸

=:p∗(t)


+ [∇xf (x,u∗)|x=x∗(t)]

>[∇xV
∗(t, x)|x=x∗(t)]

= ∇x`(x,u∗)|x=x∗(t) + ṗ∗(t) + [∇xf (x,u∗)|x=x∗(t)]
>p∗(t)

= ṗ∗(t) +∇xH(x∗(t),u∗(t),p∗(t))
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Proof of PMP (Step 4: Done)
I The boundary condition V ∗(T , x) = q(x) implies that ∇xV

∗(T , x) = ∇xq(x)
for all x ∈ X and thus p∗(T ) = ∇xq(x∗(T ))

I From the HJB PDE we have:

− ∂

∂t
V ∗(t, x) = min

u∈U
H(x,u,∇xV

∗(t, ·))

which along the optimal trajectory x∗(t), u∗(t) becomes:

−r(t) = H(x∗(t),u∗(t),p∗(t)) = const

I Finally, note that

u∗(t) = arg min
u∈U

F (t, x∗(t),u)

= arg min
u∈U

{
`(x∗(t),u) + [∇xV

∗(t, x)|x=x∗(t)]
>f (x∗(t),u)

}
= arg min

u∈U

{
`(x∗(t),u) + p∗(t)>f (x∗(t),u)

}
= arg min

u∈U
H(x∗(t),u,p∗(t))
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Example: Resource Allocation for a Martian Base

I A fleet of reconfigurable general purpose robots is sent to Mars at t = 0

I The robots can 1) replicate or 2) make human habitats

I The number of robots at time t is x(t), while the number of habitats is z(t)
and they evolve according to:

ẋ(t) = u(t)x(t), x(0) = x > 0

ż(t) = (1− u(t))x(t), z(0) = 0

0 ≤ u(t) ≤ 1

where u(t) denotes the percentage of the x(t) robots used for replication

I Goal: Maximize the size of the Martian base by a terminal time T , i.e.:

max z(T ) =

∫ T

0

(1− u(t))x(t)dt

with f (x , u) = ux , `(x , u) = −(1− u)x and q(x) = 0
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Example: Resource Allocation for a Martian Base

I Hamiltonian: H(x , u, p) = −(1− u)x + pux

I Apply the PMP:

ẋ∗(t) = ∇pH(x∗, u∗, p∗) = x∗(t)u∗(t), x∗(0) = x ,

ṗ∗(t) = −∇xH(x∗, u∗, p∗) = (1− u∗(t))− p∗(t)u∗(t), p∗(T ) = 0,

u∗(t) = arg min
0≤u≤1

H(x∗(t), u, p∗(t)) = arg min
0≤u≤1

(x∗(t)(p∗(t) + 1)u)

I Since x∗(t) > 0 for t ∈ [0,T ]:

u∗(t) =

{
0 if p∗(t) > −1

1 if p∗(t) ≤ −1
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Example: Resource Allocation for a Martian Base

I Work backwards from t = T to determine p∗(t):
I Since p∗(T ) = 0 for t close to T , we have u∗(t) = 0 and the costate

dynamics become ṗ∗(t) = 1

I At time t = T − 1, p∗(t) = −1 and the control input switches to u∗(t) = 1

I For t ≤ T − 1:

ṗ∗(t) = −p∗(t), p(T − 1) = −1

⇒ p∗(t) = e−[(T−1)−t]p(T − 1) ≤ −1 for t < T − 1

I Optimal control:

u∗(t) =

{
1 if 0 ≤ t ≤ T − 1

0 if T − 1 ≤ t ≤ T
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Example: Resource Allocation for a Martian Base
I Optimal trajectories for the Martian resource allocation problem:

I Conclusions:
I All robots replicate themselves from t = 0 to t = T − 1 and then all robots

build habitats
I If T < 1 , then the robots should only build habitats
I If the Hamiltonian is linear in u, its min can only be attained on the boundary

of U , known as bang-bang control
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PMP with Fixed Terminal State

I Suppose that in addition to x(0) = x0, a final state x(T ) = xτ is given.

I The terminal cost q(x(T )) is not useful since V ∗(T , x) =∞ if x(T ) 6= xτ .
The terminal boundary condition for the costate p(T ) = ∇xq(x(T )) does not
hold but as compensation we have a different boundary condition x(T ) = xτ .

I We still have 2n ODEs with 2n boundary conditions:

ẋ(t) = f (x(t),u(t)), x(0) = x0, x(T ) = xτ

ṗ(t) = −∇xH(x(t),u(t),p(t))

I If only some terminal state are fixed xj(T ) = xτ,j for j ∈ I , then:

ẋ(t) = f (x(t),u(t)), x(0) = x0, xj(T ) = xτ,j , ∀j ∈ I

ṗ(t) = −∇xH(x(t),u(t),p(t)), pj(T ) =
∂

∂xj
q(x(T )), ∀j /∈ I
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PMP with Fixed Terminal Set

I Terminal set: a k dim surface in Rn requiring:

x(T ) ∈ T = {x ∈ Rn | hj(x) = 0, j = 1, . . . , n − k}

I The costate boundary condition requires that p(T ) is orthogonal to the

tangent space D = {d ∈ Rn | ∇xhj(x(T ))>d = 0, j = 1, . . . , n − k}:

ẋ(t) = f (x(t),u(t)), x(0) = x0, hj(x(T )) = 0, j = 1, . . . , n − k

ṗ(t) = −∇xH(x(t),u(t),p(t)), p(T ) ∈ span{∇xhj(x(T )),∀j}
or d>p(T ) = 0, ∀d ∈ D
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PMP with Free Initial State

I Suppose that x0 is free and subject to optimization with additional cost term
`0(x0)

I The total cost becomes `0(x0) + V (0, x0) and the necessary condition for an
optimal initial state x0 is:

∇x`0(x)|x=x0 +∇xV (0, x)|x=x0︸ ︷︷ ︸
=p(0)

= 0 ⇒ p(0) = −∇x`0(x0)

I We lose the initial state boundary condition but gain an adjoint state
boundary condition:

ẋ(t) = f (x(t),u(t))

ṗ(t) = −∇xH(x(t),u(t),p(t)), p(0) = −∇x`0(x0), p(T ) = ∇xq(x(T ))

I Similarly, we can deal with some parts of the initial state being free and some
not
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PMP with Free Terminal Time

I Suppose that the initial and/or terminal state are given but the terminal time
T is free and subject to optimization (first-exit formulation)

I We can compute the total cost of optimal trajectories for various terminal
times T and look for the best choice, i.e.:

∂

∂t
V ∗(t, x)

∣∣∣∣
t=T ,x=x(T )

= 0

I Recall that on the optimal trajectory:

H(x∗(t),u∗(t),p∗(t)) = − ∂

∂t
V ∗(t, x)

∣∣∣∣
x=x∗(t)

= const. ∀t

I Hence, in the free terminal time case, we gain an extra degree of freedom
with free T but lose one degree of freedom by the constraint:

H(x∗(t),u∗(t),p∗(t)) = 0, ∀t ∈ [0,T ]
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PMP with Time-varying System and Cost
I Suppose that the system and stage cost vary with time:

ẋ = f (x(t),u(t), t) `(x(t),u(t), t)

I Convert the problem to a time-invariant one by making t part of the state,
i.e., let y(t) = t with dynamics:

ẏ(t) = 1, y(0) = 0

I Augmented state z(t) := (x(t), y(t)) and system:

ż(t) =f̄ (z(t),u(t)) :=

[
f (x(t),u(t), y(t))

1

]
¯̀(z,u) :=`(x,u, y) q̄(z) := q(x)

I The Hamiltonian need not to be constant along the optimal trajectory:

H(x,u,p, t) = `(x,u, t) + p>f (x,u, t)

ẋ∗(t) = f (x∗(t),u∗(t), t), x∗(0) = x0

ṗ∗(t) = −∇xH(x∗(t),u∗(t),p∗(t), t), p∗(T ) = ∇xq(x∗(T ))

u∗(t) ∈ arg min
u∈U

H(x∗(t),u,p∗(t), t)

H(x∗(t),u∗(t),p∗(t), t) 6= const
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Singular Problems

I The minimum condition u(t) ∈ arg min
u∈U

H(x∗(t),u,p∗(t), t) may be

insufficient to determine u∗(t) for all t when x∗(t) and p∗(t) are such that
H(x∗(t),u,p∗(t), t) is independent of u over a nontrivial interval of time

I Optimal trajectories consist of portions where u∗(t) can be determined from
the minimum condition (regular arcs) and where u∗(t) cannot be
determined from the minimum condition since the Hamiltonian is
independent of u (singular arcs)
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Example: Fixed Terminal State

I System: ẋ(t) = u(t), x(0) = 0, x(1) = 1, u(t) ∈ R

I Cost: min 1
2

∫ 1

0
(x(t)2 + u(t)2)dt

I Want x(t) and u(t) to be small but need to meet x(1) = 1

I Approach: use PMP to find a locally optimal open-loop policy
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Example: Fixed Terminal State

I Pontryagin’s Minimum Principle
I Hamiltonian: H(x , u, p) = 1

2
(x2 + u2) + pu

I Minimum principle: u(t) = arg min
u∈R

{
1
2
(x(t)2 + u2) + p(t)u

}
= −p(t)

I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t) = −p(t), x(0) = 0, x(1) = 1

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −x(t)

I Candidate trajectory: ẍ(t) = x(t) ⇒ x(t) = aet + be−t = et−e−t

e−e−1

I x(0) = 0 ⇒ a + b = 0
I x(1) = 1 ⇒ ae + be−1 = 1

I Open-loop control: u(t) = ẋ(t) = et+e−t

e−e−1
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Example: Free Initial State

I System: ẋ(t) = u(t), x(0) = free, x(1) = 1, u(t) ∈ R

I Cost: min 1
2

∫ 1

0
(x(t)2 + u(t)2)dt

I Picking x(0) = 1 will allow u(t) = 0 but we will accumulate cost due to x(t).
On the other hand, picking x(0) = 0 will accumulate cost due to u(t) having
to drive the state to x(1) = 1.

I Approach: use PMP to find a locally optimal open-loop policy
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Example: Free Initial State
I Pontryagin’s Minimum Principle

I Hamiltonian: H(x , u, p) = 1
2
(x2 + u2) + pu

I Minimum principle: u(t) = arg min
u∈R

{
1
2
(x(t)2 + u2) + p(t)u

}
= −p(t)

I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t) = −p(t), x(1) = 1

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −x(t), p(0) = 0

I Candidate trajectory:

ẍ(t) = x(t) ⇒ x(t) = aet + be−t =
et + e−t

e + e−1

p(t) = −ẋ(t) = −aet + be−t =
−et + e−t

e + e−1

I x(1) = 1 ⇒ ae + be−1 = 1

I p(0) = 0 ⇒ −a + b = 0

I x(0) ≈ 0.65

I Open-loop control: u(t) = ẋ(t) = et−e−t

e+e−1
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Example: Free Terminal Time

I System: ẋ(t) = u(t), x(0) = 0, x(T ) = 1, u(t) ∈ R

I Cost: min
∫ T

0
1 + 1

2 (x(t)2 + u(t)2)dt

I Free terminal time: T = free

I Note: if we do not include 1 in the stage-cost (e.g., use the same cost as in
the previous example), we would get T ∗ =∞ (see next slide for details)

I Approach: use PMP to find a locally optimal open-loop policy
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Example: Free Terminal Time
I Pontryagin’s Minimum Principle

I Hamiltonian: H(x(t), u(t), p(t)) = 1 + 1
2
(x(t)2 + u(t)2) + p(t)u(t)

I Minimum principle: u(t) = arg min
u∈R

{
1
2
(x(t)2 + u2) + p(t)u

}
= −p(t)

I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t) = −p(t), x(0) = 0, x(T ) = 1

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −x(t)

I Candidate trajectory: ẍ(t) = x(t) ⇒ x(t) = aet + be−t = et−e−t

eT−e−T

I x(0) = 0 ⇒ a + b = 0
I x(T ) = 1 ⇒ aeT + be−T = 1

I Free terminal time:

0 = H(x(t), u(t), p(t)) = 1 +
1

2
(x(t)2 − p(t)2)

= 1 +
1

2

(
(et − e−t)2 − (et + e−t)2

(eT − e−T )2

)
= 1− 2

(eT − e−T )2

⇒ T ≈ 0.66
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Example: Time-varying Singular Problem

I System: ẋ(t) = u(t), x(0) = free, x(1) = free, u(t) ∈ [−1, 1]

I Time-varying cost: min 1
2

∫ 1

0
(x(t)− z(t))2dt for z(t) = 1− t2

I Example feasible state trajectory that tracks the desired z(t) until the slope
of z(t) becomes less than −1 and the input u(t) saturates:

I Approach: use PMP to find a locally optimal open-loop policy
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Example: Time-varying Singular Problem

I Pontryagin’s Minimum Principle
I Hamiltonian: H(x , u, p, t) = 1

2
(x − z(t))2 + pu

I Minimum principle:

u(t) = arg min
|u|≤1

H(x(t), u, p(t), t) =


−1 if p(t) > 0

undetermined if p(t) = 0

1 if p(t) < 0
I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t),

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −(x(t)− z(t)), p(0) = 0, p(1) = 0

I Singular arc: when p(t) = 0 for a non-trivial time interval, the control
cannot be determined from PMP

I In this example, the singular arc can be determined from the costate ODE.
For p(t) = 0:

0 ≡ ṗ(t) = −x(t) + z(t) ⇒ u(t) = ẋ(t) = ż(t) = −2t

55



Example: Time-varying Singular Problem

I Since p(0) = 0, the state trajectory follows a singular arc until ts ≤ 1
2 (since

u(t) = −2t ∈ [−1, 1]) when it switches to a regular arc with u(t) = −1
(since z(t) is decreasing and we are trying to track it)

I For 0 ≤ t ≤ ts ≤ 1
2 : x(t) = z(t) p(t) = 0

I For ts < t ≤ 1:

ẋ(t) = −1 ⇒ x(t) = z(ts)−
∫ t

ts

ds = 1− t2
s − t + ts

ṗ(t) = −(x(t)− z(t)) = t2
s − ts − t2 + t, p(ts) = p(1) = 0

⇒ p(s) = p(ts) +

∫ s

ts

(t2
s − ts − t2 + t)dt, s ∈ [ts , 1]

⇒ 0 = p(1) = t2
s − ts −

1

3
+

1

2
− t3

s + t2
s +

t3
s

3
− t2

s

2

⇒ 0 = (ts − 1)2(1− 4ts)

⇒ ts =
1

4
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Outline

Continuous-Time Optimal Control

Continuous-Time PMP

Continuous-Time LQR
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Globally Optimal Closed-Loop Control

I Finite-horizon continuous-time deterministic optimal control:

min
π

V π(0, x0) := q(x(T )) +

∫ T

0

`(x(t), π(t, x(t)))dt

s.t. ẋ(t) = f (x(t),u(t)), x(0) = x0

x(t) ∈ X , π(t, x(t)) ∈ PC 0([0,T ],U)

I Hamiltonian: H(x,u,p) := `(x,u) + p>f (x,u)

HJB PDE: Sufficient Condition for Optimality

If V (t, x) satisfies the HJB PDE:

V (T , x) = q(x), ∀x ∈ X

− ∂

∂t
V (t, x) = min

u∈U
H(x,u,∇xV (t, x)), ∀x ∈ X , t ∈ [0,T ]

then it is the optimal value function and the policy π(t, x) that attains the
minimum is an optimal policy.
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Locally Optimal Open-Loop Control
I Finite-horizon continuous-time deterministic optimal control:

min
π

V π(0, x0) := q(x(T )) +

∫ T

0

`(x(t), π(t, x(t)))dt

s.t. ẋ(t) = f (x(t),u(t)), x(0) = x0

x(t) ∈ X , π(t, x(t)) ∈ PC 0([0,T ],U)

I Hamiltonian: H(x,u,p) := `(x,u) + p>f (x,u)

PMP ODE: Necessary Condition for Optimality

If (x∗(t),u∗(t)) for t ∈ [0,T ] is a trajectory from an optimal policy π∗(t, x), then
it satisfies:

ẋ∗(t) = f (x∗(t),u∗(t)), x∗(0) = x0

ṗ∗(t) = −∇x`(x∗(t),u∗(t))− [∇xf (x∗(t),u∗(t))]>p∗(t), p∗(T ) = ∇xq(x∗(T ))

u∗(t) = arg min
u∈U

H(x∗(t),u,p∗(t)), ∀t ∈ [0,T ]

H(x∗(t),u∗(t),p∗(t)) = constant, ∀t ∈ [0,T ]
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Tractable Problems

I Control-affine dynamics and quadratic-in-control cost:

ẋ = a(x) + B(x)u `(x,u) = q(x) +
1

2
u>R(x)u R(x) � 0

I Hamiltonian:

H(x,u,p) = q(x) +
1

2
u>R(x)u + p>(a(x) + B(x)u)

∇uH(x,u,p) = R(x)u + B(x)>p ∇2
uH(x,u,p) = R(x)

I HJB PDE: obtains the globally optimal value function and policy:

π∗(t, x) = arg min
u

H(x,u,Vx(t, x)) = −R(x)−1B(x)>Vx(t, x),

V (T , x) = q(x),

−Vt(t, x) = q(x) + a(x)>Vx(t, x)− 1

2
Vx(t, x)>B(x)R(x)−1B(x)>Vx(t, x).
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Tractable Problems

I Control-affine dynamics and quadratic-in-control cost:

ẋ = a(x) + B(x)u `(x,u) = q(x) +
1

2
u>R(x)u R(x) � 0

I Hamiltonian:

H(x,u,p) = q(x) +
1

2
u>R(x)u + p>(a(x) + B(x)u)

∇uH(x,u,p) = R(x)u + B(x)>p ∇2
uH(x,u,p) = R(x)

I PMP: both necessary and sufficient for a local minimum:

u = arg min
u

H(x,u,p) = −R(x)−1B(x)>p,

ẋ = a(x)− B(x)R−1(x)B>(x)p, x(0) = x0

ṗ = − (ax(x) +∇xB(x)u)> p− qx(x)− 1

2
∇x[u>R(x)u], p(T ) = qx(x(T ))
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Example: Pendulum

ẋ =

[
x2

k sin(x1)

]
+

[
0
1

]
u, x(0) = x0

ax(x) =

[
0 1

k cos(x1) 0

]
I Cost:

`(x, u) = 1− e−2x2
1 +

r

2
u2 and q(x) = 0

I PMP locally optimal trajectories:

u(t) = −r−1p2(t), t ∈ [0,T ]

ẋ1 = x2, x1(0) = 0

ẋ2 = k sin(x1)− r−1p2, x2(0) = 0

ṗ1 = −4e−2x2
1 x1 − p2, p1(T ) = 0

ṗ2 = −k cos(x1)p1, p2(T ) = 0

I Optimal value from HJB:

I Optimal policy from HJB:
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Linear Quadratic Regulator

I Key assumptions that allowed minimizing the Hamiltonian analytically:
I The system dynamics are linear in the control u
I The stage-cost is quadratic in the control u

I Linear Quadratic Regulator (LQR): deterministic time-invariant linear
system needs to minimize a quadratic cost over a finite horizon:

min
π

V π(0, x0) :=
1

2
x(T )>Qx(T )︸ ︷︷ ︸

q(x(T ))

+

∫ T

0

1

2
x(t)>Qx(t) +

1

2
u(t)>Ru(t)︸ ︷︷ ︸

`(x(t),u(t))

dt

s.t. ẋ = Ax + Bu, x(0) = x0,

x(t) ∈ Rn, u(t) = π(t, x(t)) ∈ Rm

where Q = Q> � 0, Q = Q> � 0, and R = R> � 0
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Linear ODE System

I Linear time-invariant ODE System:

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0

I Transition matrix for LTI ODE system: Φ(t, s) = eA(t−s)

I Φ(t, t) = I
I Φ−1(t, s) = Φ(s, t)
I Φ(t, s) = Φ(t, t0)Φ(t0, s)
I Φ(t1 + t2, s) = Φ(t1, s)Φ(t2, s) = Φ(t2, s)Φ(t1, s)
I d

dt
Φ(t, s) = AΦ(t, s)

I Solution to LTI ODE system:

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s)Bu(s)ds
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LQR via the PMP

I Hamiltonian: H(x,u,p) = 1
2 x>Qx + 1

2 u>Ru + p>Ax + p>Bu

I Canonical equations with boundary conditions:

ẋ = ∇pH(x,u,p) = Ax + Bu, x(0) = x0

ṗ = −∇xH(x,u,p) = −Qx− A>p, p(T ) = Qx(T )

I PMP:

∇uH(x,u,p) = Ru + B>p = 0 ⇒ u(t) = −R−1B>p(t)

∇2
uH(x,u,p) = R � 0 ⇒ u(t) is a minimum

I Hamiltonian matrix: the canonical equations can be simplified to a linear
time-invariant (LTI) system with two-point boundary conditions:[

ẋ
ṗ

]
=

[
A −BR−1B>

−Q −A>
] [

x
p

]
,

x(0) = x0

p(T ) = Qx(T )
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LQR via the PMP

I Claim: There exists a matrix M(t) = M(t)T � 0 such that p(t) = M(t)x(t)
for all t ∈ [0,T ]

I Solve the LTI system described by the Hamiltonian matrix backwards in time:

[
x(t)
p(t)

]
= e

 A −BR−1B>

−Q −A>

(t−T )︸ ︷︷ ︸
Φ(t,T )

[
x(T )
Qx(T )

]
x(t) = (Φ11(t,T ) + Φ12(t,T )Q)x(T )

p(t) = (Φ21(t,T ) + Φ22(t,T )Q)x(T )

I Since D(t,T ) := Φ11(t,T ) + Φ12(t,T )Q is invertible for t ∈ [0,T ]:

p(t) = (Φ21(t,T ) + Φ22(t,T )Q)D−1(t,T )︸ ︷︷ ︸
=:M(t)

x(t), ∀t ∈ [0,T ]
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LQR via the PMP

I From x(0) = D(0,T )x(T ), we obtain an open-loop control policy:

u(t) = −R−1B>(Φ21(t,T ) + Φ22(t,T )Q)D(0,T )−1x0

I From p(t) = M(t)x(t), however, we can also obtain a closed-loop control
policy:

u(t) = −R−1B>M(t)x(t)

I We can obtain a better description of M(t) by differentiating
p(t) = M(t)x(t) and using the canonical equations:

ṗ(t) = Ṁ(t)x(t) + M(t)ẋ(t)

−Qx(t)− A>p(t) = Ṁ(t)x(t) + M(t)Ax(t)−M(t)BR−1B>p(t)

−Ṁ(t)x(t) = Qx(t) + A>M(t)x(t) + M(t)Ax(t)−M(t)BR−1B>M(t)x(t)

which needs to hold for all x(t) and t ∈ [0,T ] and satisfy the boundary
condition p(T ) = M(T )x(T ) = Qx(T )
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LQR via the PMP (Summary)

I A unique candidate satisfies the necessary conditions of the PMP for
optimality:

u(t) = −R−1B>p(t)

= −R−1B>(Φ21(t,T ) + Φ22(t,T )Q)D(0,T )−1x0 (open-loop)

= −R−1B>M(t)x(t) (closed-loop)

I The candidate policy is linear in the state and the matrix M(t) satisfies a
quadratic Riccati differential equation (RDE):

−Ṁ(t) = Q + A>M(t) + M(t)A−M(t)BR−1B>M(t), M(T ) = Q

I The HJB PDE is needed to decide whether u(t) is globally optimal

68



LQR via the HJB PDE
I Hamiltonian: H(x,u,p) = 1

2 x>Qx + 1
2 u>Ru + p>Ax + p>Bu

I HJB PDE for t ∈ [0,T ] and x ∈ X :

π∗(t, x) = arg min
u∈U

H(x,u,Vx(t, x)) = −R−1B>Vx(t, x),

−Vt(t, x) =
1

2
x>Qx + x>A>Vx(t, x)− 1

2
Vx(t, x)>BR−1B>Vx(t, x),

V (T , x) =
1

2
x>Qx

I Guess a solution to the HJB PDE based on the intuition from the PMP:

π(t, x) = −R−1B>M(t)x

V (t, x) =
1

2
x>M(t)x

Vt(t, x) =
1

2
x>Ṁ(t)x

Vx(t, x) = M(t)x
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LQR via the HJB PDE

I Substituting the candidate V (t, x) into the HJB PDE leads to the same RDE
as before and we know that M(t) satisfies it!

1

2
x>M(T )x =

1

2
x>Qx

−1

2
x>Ṁ(t)x =

1

2
x>Qx + x>A>M(t)x− 1

2
x>M(t)BR−1B>M(t)x

I Conclusion: since M(t) satisfies the RDE, V (t, x) = 1
2 x>M(t)x is the

unique solution to the HJB PDE and is the optimal value function for the
LQR problem with associated optimal policy π(t, x) = −R−1B>M(t)x
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Continuous-Time Finite-Horizon LQG
I Linear Quadratic Gaussian (LQG) regulation problem:

min
π

V π(0, x0) =
1

2
E

{
e−

T
γ x(T )>Qx(T ) +

∫ T

0

e−
t
γ
[
x>(t) u>(t)

] [Q P>

P R

] [
x(t)
u(t)

]
dt

}
s.t. ẋ = Ax + Bu + Cω, x(0) = x0,

x(t) ∈ Rn, u(t) = π(t, x(t)) ∈ Rm

I Discount factor: γ ∈ [0,∞]

I Optimal value: V ∗(t, x) = 1
2 x>M(t)x + m(t)

I Optimal policy: π∗(t, x) = −R−1(P + B>M(t))x

I Riccati Equation:

−Ṁ(t) = Q + A>M(t) + M(t)A− (P + B>M(t))>R−1(P + B>M(t))− 1

γ
M(t), M(T ) = Q

−ṁ =
1

2
tr(CC>M(t))− 1

γ
m(t), m(T ) = 0

I M(t) is independent of the noise amplitude C , which implies that the optimal
policy π∗(t, x) is the same for the stochastic LQG and deterministic
LQR problems!
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Continuous-Time Infinite-Horizon LQG
I Linear Quadratic Gaussian (LQG) regulation problem:

min
π

V π(x0) :=
1

2
E
{∫ ∞

0

e−
t
γ
[
x>(t) u>(t)

] [Q P>

P R

] [
x(t)
u(t)

]
dt

}
s.t. ẋ = Ax + Bu + Cω, x(0) = x0

x(t) ∈ Rn, u(t) = π(x(t)) ∈ Rm

I Discount factor: γ ∈ [0,∞)

I Optimal value: V ∗(x) = 1
2 x>Mx + m

I Optimal policy: π∗(x) = −R−1(P + B>M)x

I Riccati Equation (‘care’ in Matlab):

1

γ
M = Q + A>M + MA− (P + B>M)TR−1(P + B>M)

m =
γ

2
tr(CC>M)

I M is independent of the noise amplitude C , which implies that the optimal
policy π∗(x) is the same for LQG and LQR!
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Relation between Continuous- and Discrete-Time LQR
I The continuous-time system:

ẋ = Ax + Bu

`(x,u) =
1

2
x>Qx +

1

2
u>Ru

can be discretized with time step τ :

xt+1 = (I + τA)xt + τBut

τ`(x,u) =
τ

2
x>Qx +

τ

2
u>Ru

I In the limit as τ → 0, the discrete-time Riccati equation reduces to the
continuous one:

M = τQ + (I + τA)>M(I + τA)

− (I + τA)>MτB(τR + τB>MτB)−1τB>M(I + τA)

M = τQ + M + τA>M + τMA− τMB(R + τB>MB)−1B>M + o(τ 2)

0 = Q + A>M + MA−MB(R + τB>MB)−1B>M +
1

τ
o(τ 2)
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