ECE276B: Planning & Learning in Robotics Lecture 1: Introduction

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Logistics

Course Topic Overview

Optimal Control Problem

What Is This Class About?

- **ECE276A**: sensing and estimation in robotics:
 - how to model robot motion and observations
 - how to estimate (the distribution of) a robot/environment state \mathbf{x}_t from the history of observations $\mathbf{z}_{0:t}$ and control inputs $\mathbf{u}_{0:t-1}$
- **ECE276B**: planning and decision making in robotics:
 - ightharpoonup how to select control inputs $\mathbf{u}_{0:t-1}$ to accomplish a task
- References (optional):
 - Dynamic Programming and Optimal Control: Bertsekas
 - ▶ Planning Algorithms: LaValle (http://planning.cs.uiuc.edu)
 - Reinforcement Learning: Sutton & Barto (http://incompleteideas.net/book/the-book.html)
 - Calculus of Variations and Optimal Control Theory: Liberzon (http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)

Website, Assignments, Grading

- Course website: https://natanaso.github.io/ece276b
- Includes links to:
 - Canvas: lecture recordings
 - ▶ Piazza: course announcement, Q&A, discussion check Piazza regularly
 - ► Gradescope: homework submission and grades
- ► Assignments:
 - ▶ 3 theoretical homeworks (16% of grade)
 - ▶ 3 programming assignments in **python** + project report:
 - Project 1: Dynamic Programming (18% of grade)
 - Project 2: Motion Planning (18% of grade)
 - Project 3: Optimal Control (18% of grade)
 - Final exam (30% of grade)
- Grading:
 - standard grade scale (93%+ = A) plus curve based on class performance (e.g., if the top students have grades in the 86% - 89% range, then this will correspond to letter grade A)
 - ▶ no late submissions: work submitted past the deadline receives 0 credit

Prerequisites

- Probability theory: random variable, probability density function, expectation, covariance, total probability, conditional probability, Bayes rule
- ▶ Linear algebra and systems: eigenvalues, symmetric positive definite matrices, linear equations, linear systems of ODEs, matrix exponential
- Optimization: unconstrained optimization, gradient descent
- ▶ Programming: extensive experience with at least one language (python/C++/Matlab), classes/objects, data structures (e.g., queue, list), data input/output processing, plotting
- ▶ It is up to you to judge if you are ready for this course!
 - Consult with your classmates who took ECE276A
 - ► Take a look at the material from last year: https://natanaso.github.io/ece276b2022
 - If the first assignment seems hard, the rest will be hard as well

Syllabus (Tentative)

Date	Lecture	Materials	Assignments
Apr 04	Introduction		
Apr 06	Markov Chains	Grinstead-Snell-Ch11	
Apr 11	Markov Decision Processes	Bertsekas 1.1-1.2	
Apr 13	Dynamic Programming	Bertsekas 1.3-1.4	HW1, PR1
Apr 18	Deterministic Shortest Path	Bertsekas 2.1-2.3	
Apr 20	Catch-up		
Apr 25	Configuration Space	LaValle 4.3, 6.2-6.3	
Apr 27	Search-based Planning	LaValle 2.1-2.3, JPS	
May 02	Catch-up		
May 04	Anytime Incremental Search	RTAA*, ARA*, AD*, Anytime Search	HW2, PR2
May 09	Sampling-based Planning	LaValle 5.5-5.6	
May 11	Stochastic Shortest Path	Bertsekas 7.1-7.3	
May 16	Bellman Equations I	Sutton-Barto 4.1-4.4	
May 18	Bellman Equations II	Sutton-Barto 4.5-4.8	
May 23	Model-free Prediction	Sutton-Barto 6.1-6.3	
May 25	Model-free Control	Sutton-Barto 6.4-6.7	HW3, PR3
Мау 30	Value Function Approximation	Sutton-Barto Ch.9	
Jun 01	Continuous-time Optimal Control	Bertsekas 3.1-3.2, Liberzon Ch. 2.4 and Ch. 4	
Jun 06	Pontryagin's Minimum Principle	Bertsekas 3.3-3.4, Liberzon Ch. 2.4 and Ch. 4	
Jun 08	Linear Quadratic Control	Bertsekas 4.1	
Jun 14	Final Exam, 8:00 am		

► Check website for updates: https://natanaso.github.io/ece276b

Outline

Logistics

Course Topic Overview

Optimal Control Problem

Markov Chain and Markov Decision Process

- Markov Chain: probabilistic model representing the evolution of a stochastic system
 - \triangleright The state \mathbf{x}_t can be discrete or continuous
 - The state transitions are random, determined by a transition matrix or a transition kernel
- Markov Decision Process: Markov chain whose transition probabilities are decided by control inputs u_t
- Motion planning, optimal control, and reinforcement learning problems are formalized using a Markov decision process

$$P = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \\ 0.0 & 0.3 & 0.7 \end{bmatrix}$$

$$P_{ij} = \mathbb{P}(x_{t+1} = j \mid x_t = i)$$

Motion Planning

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

A* Search

- ► Invented by Hart, Nilsson and Raphael of Stanford Research Institute in 1968 for the Shakey robot
- MDP with deterministic transitions, i.e., directed graph
- Minimize cumulative transition costs subject to a goal constraint
- Graph search using a specific node visitation rule
- Video: https://youtu.be/ qXdn6ynwpiI?t=3m55s

Search-based Motion Planning

- CMU's autonomous car used search-based motion planning in the DARPA Urban Challenge in 2007
- Video: https://www.youtube.com/watch?v=4hFh100i8KI
- ► Video: https://www.youtube.com/watch?v=qXZt-B7iUyw
- Paper: Likhachev and Ferguson, "Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles," IJRR, 2009, http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

Sampling-based Motion Planning

- ▶ RRT* algorithm on a high-fidelity car model 270 degree turn
- ▶ Video: https://www.youtube.com/watch?v=p3nZHnOWhrg
- ► Video: https://www.youtube.com/watch?v=LKL5qRBiJaM
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR, 2011, http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Sampling-based Motion Planning

- ▶ RRT algorithm on the PR2 planning with both arms (12 DOF)
- ▶ Video: https://www.youtube.com/watch?v=vW74bC-Ygb4
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR, 2011,

http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Optimal Control using Dynamic Programming

- ► Video: https://www.youtube.com/watch?v=tCQSSkBH2NI
- Tassa, Mansard and Todorov, "Control-limited Differential Dynamic Programming," ICRA, 2014, http://ieeexplore.ieee.org/document/6907001/

Model-free Reinforcement Learning

- ► A robot learns to flip pancakes
- Video: https://www.youtube.com/watch?v=W_gxLKSsSIE
- Kormushev, Calinon and Caldwell, "Robot Motor Skill Coordination with EM-based Reinforcement Learning," IROS, 2010, http://www.dx.doi.org/10.1109/IROS.2010.5649089

Applications of Optimal Control & Reinforcement Learning

(b) Marketing

(c) Computational Biology

(d) Games

(e) Character Animation

(f) Robotics

Outline

Logistics

Course Topic Overview

Optimal Control Problem

Model

- ▶ discrete **time** $t \in \{0, ..., T\}$ with finite or infinite **horizon** T
- ▶ state $x_t \in \mathcal{X}$ and state space \mathcal{X}
- **control** $\mathbf{u}_t \in \mathcal{U}$ and **control space** \mathcal{U}
- **motion noise w**_t: random vector with known probability density function (pdf), independent of \mathbf{w}_{τ} for $\tau \neq t$ conditioned on \mathbf{x}_{t} and \mathbf{u}_{t}
- **motion model**: a function f or equivalently a pdf p_f describing the change in the state \mathbf{x}_t when a control input \mathbf{u}_t is applied:

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t)$$
 or $\mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$

Markov assumption: \mathbf{x}_{t+1} depends only on \mathbf{u}_t and \mathbf{x}_t

Control Policy

- **control policy**: function $\pi_t: \mathcal{X} \mapsto \mathcal{U}$ that maps state \mathbf{x} at time t to control input \mathbf{u}
- ightharpoonup A policy defines fully at <u>any</u> time t and <u>any</u> state \mathbf{x} which control \mathbf{u} to apply
- A policy can be:
 - **>** stationary $(\pi_0 \equiv \pi_1 \equiv \cdots)$ or non-stationary $(\pi_0 \not\equiv \pi_1 \not\equiv \cdots)$
 - **deterministic** $(\mathbf{u}_t = \pi_t(\mathbf{x}_t))$ or stochastic $(\mathbf{u}_t \sim \pi_t(\cdot \mid \mathbf{x}_t))$
 - **open-loop** (\mathbf{u}_t is selected independent of \mathbf{x}_t) or **closed-loop** ($\mathbf{u}_t = \pi_t(\mathbf{x}_t)$ depends on \mathbf{x}_t)
- A control policy induces a transition from state \mathbf{x}_t at time t with control input $\mathbf{u}_t = \pi_t(\mathbf{x}_t)$ to state $\mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$ according to the motion model $p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$

Optimal Control Problem

- **stage cost** $\ell(x, u)$ measures the cost of applying control u in state x
- terminal cost q(x) measures the cost of terminating at state x
- **value function** $V_t^{\pi}(\mathbf{x})$ of policy π is the expected long-term cost of starting at state \mathbf{x} at time t and following transitions induced by $\pi_t, \pi_{t+1}, \dots, \pi_{T-1}$:

$$V_t^{\pi}(\mathbf{x}) := \mathbb{E}_{\mathbf{x}_{t+1:T}} \left[\underbrace{\mathfrak{q}(\mathbf{x}_T)}_{\text{terminal cost}} + \sum_{\tau=t}^{T-1} \underbrace{\ell(\mathbf{x}_\tau, \pi_\tau(\mathbf{x}_\tau))}_{\text{stage cost}} \ \middle| \ \mathbf{x}_t = \mathbf{x} \right]$$

- **optimal control problem**: given initial state \mathbf{x} at time t, determine a policy that minimizes the value function $V_t^{\pi}(\mathbf{x})$:
 - optimal value: $V_t^*(\mathbf{x}) = \min_{\pi} V_t^{\pi}(\mathbf{x})$
 - optimal policy: $\pi^*(\mathbf{x}) \in \arg\min_{\pi} V_t^{\pi}(\mathbf{x})$

Optimal Control Problem Types

- deterministic (no motion noise) vs stochastic (with motion noise)
- ▶ fully observable $(z_t = x_t)$ vs partially observable $(z_t \sim p_h(\cdot|x_t))$
 - Markov Decision Process (MDP) vs Partially Observable Markov Decision Process (POMDP)
- **stationary** vs **non–stationary** (time-dependent motion $p_{f,t}$ and cost ℓ_t)
- discrete vs continuous state space X
 - tabular approach vs function approximation
- ▶ discrete vs continuous control space U:
 - tabular approach vs optimization
- discrete vs continuous time t
- finite vs infinite horizon T
- reinforcement learning $(p_f, \ell, \mathfrak{q})$ are unknown):
 - ▶ Model-based RL: explicitly approximate the models \hat{p}_f , $\hat{\ell}$, \hat{q} from data and apply optimal control algorithms
 - ▶ Model-free RL: directly approximate V_t^* and π_t^* without approximating the motion or cost models

Naming Conventions

- ► The problem is called:
 - ▶ Motion planning (MP): when the motion model p_f is known and deterministic and the cost functions ℓ , q are known
 - ▶ Optimal control (OC): when the motion model p_f is known but may be stochastic and the cost functions ℓ , q are known
 - ▶ **Reinforcement learning** (RL): when the motion model p_f and cost functions ℓ , q are unknown but samples \mathbf{x}_t , $\ell(\mathbf{x}_t, \mathbf{u}_t)$, $q(\mathbf{x}_t)$ can be obtained from them
- Naming conventions differ:
 - **OC**: minimization, cost, state \mathbf{x} , control \mathbf{u} , policy μ
 - **RL**: maximization, reward, state **s**, action **a**, policy π
 - **ECE276B**: minimization, cost, state x, control u, policy π

Example: Inventory Control

- ► Consider keeping an item stocked in a warehouse:
 - ► If there is too little, we may run out (not preferred)
 - ▶ If there is too much, the storage cost will be high (not preferred)
- ► Model:
 - $ightharpoonup x_t \in \mathbb{R}$: available stock at the beginning of time period t
 - $u_t \in \mathbb{R}_{\geq 0}$: stock ordered and immediately delivered at the beginning of time period t (supply)
 - w_t : random demand during time period t with known pdf. Assume excess demand is back-logged, i.e., corresponds to negative stock x_t .
 - ► Motion model: $x_{t+1} = f(x_t, u_t, w_t) := x_t + u_t w_t$
 - **Cost function**: $\mathbb{E}\left[\mathfrak{q}(x_T) + \sum_{t=0}^{T-1} (r(x_t) + cu_t pw_t)\right]$ where
 - pwt: revenue
 - cut: cost of items
 - $ightharpoonup r(x_t)$: penalizes too much stock or negative stock
 - $ightharpoonup q(x_T)$: remaining items we cannot sell or demand that we cannot meet

Example: Rubik's Cube

- ► Invented in 1974 by Ernő Rubik
- Model:
 - ▶ State space size: $\sim 4.33 \times 10^{19}$
 - Control space size: 12
 - Cost: 1 for each time step
 - ► Deterministic, fully observable
- ► The cube can be solved in 20 or fewer moves.

Example: Cart-Pole Problem

- ▶ Move a cart left, right to keep a pole balanced
- Model:
 - ► State space: 4-D continuous $(x, \dot{x}, \theta, \dot{\theta})$
 - ightharpoonup Control space: $\{-N, N\}$
 - Cost:
 - 0 when in the goal region
 - ▶ 1 when outside the goal region
 - ▶ 100 when outside the feasible region
 - Deterministic, fully observable

Example: Chess

- Model:
 - ightharpoonup State space size: $\sim 10^{47}$
 - ► Control space size: from 0 to 218
 - ▶ Cost: 0 each step, $\{-1,0,1\}$ at the end of the game
 - Deterministic, opponent-dependent state transitions (can be modeled as a game)
- ▶ The game tree size (all possible policies) is 10^{123}

Example: Grid World Navigation

- Navigate to a goal without crashing into obstacles
- Model:
 - State space: 2-D robot position
 - ► Control space: $U = \{left, right, up, down\}$
 - ightharpoonup Cost: 1 until the goal is reached, ∞ if an obstacles is hit
 - Can be deterministic or stochastic; fully or partially observable

