ECE276B: Planning & Learning in Robotics Lecture 3: Markov Decision Processes

Nikolay Atanasov natanasov@ucsd.edu

Outline

Markov Decision Processes

Open-Loop vs Closed-Loop Control

Partially Observable Models

Markov Chain

Markov Chain

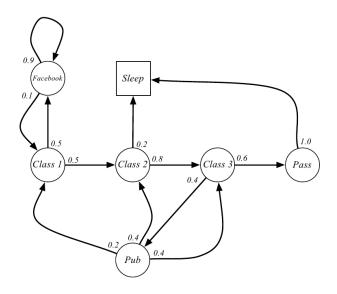
Stochastic process defined by a tuple (\mathcal{X}, p_0, p_f) :

- \triangleright \mathcal{X} is a discrete or continuous space
- $ightharpoonup p_0$ is a prior pdf defined on \mathcal{X}
- ▶ $p_f(\cdot \mid \mathbf{x})$ is a conditional pdf defined on \mathcal{X} for given $\mathbf{x} \in \mathcal{X}$ that specifies the stochastic process transitions
- ▶ When the state space is finite, $\mathcal{X} := \{1, ..., N\}$, the pdf p_f can be represented by an $N \times N$ transition matrix with elements:

$$P_{ij} := \mathbb{P}(x_{t+1} = j \mid x_t = i) = p_f(j \mid x_t = i)$$

3

Example: Student Markov Chain



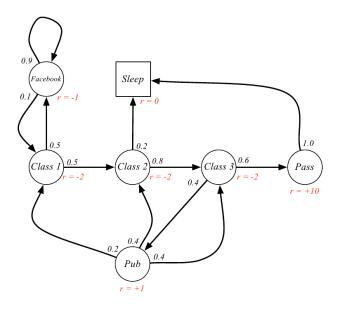
Markov Reward Process

Markov Reward Process

Markov chain with costs defined by a tuple $(\mathcal{X}, p_0, p_f, T, \ell, \mathfrak{q}, \gamma)$:

- $ightharpoonup \mathcal{X}$ is a discrete or continuous space
- $ightharpoonup p_0$ is a prior pdf defined on \mathcal{X}
- ▶ $p_f(\cdot \mid \mathbf{x})$ is a conditional pdf defined on \mathcal{X} for given $\mathbf{x} \in \mathcal{X}$ that specifies the stochastic process transitions
- T is a finite/infinite time horizon
- \blacktriangleright $\ell(\mathbf{x})$ is stage cost of state $\mathbf{x} \in \mathcal{X}$
- ightharpoonup q(x) is terminal cost of being in state x at time T
- $ightharpoonup \gamma \in [0,1]$ is a discount factor

Example: Student Markov Reward Process



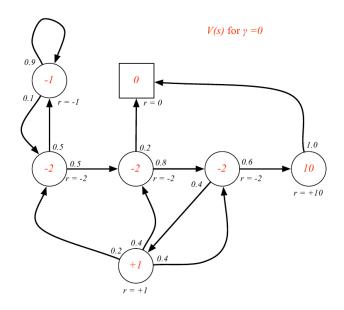
MRP Value Function

- ▶ Value function: the expected cumulative cost of an MRP starting from state $\mathbf{x} \in \mathcal{X}$ at time t
- **Finite-horizon MRP**: trajectories terminate at fixed $T < \infty$

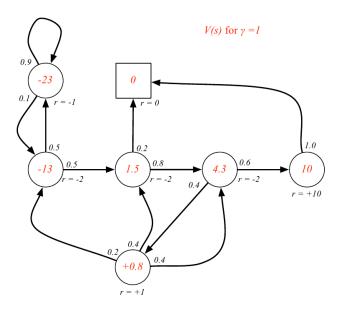
$$V_t(\mathbf{x}) := \mathbb{E}\left[\mathfrak{q}(\mathbf{x}_T) + \sum_{ au=t}^{T-1} \ell(\mathbf{x}_ au) \mid \mathbf{x}_t = \mathbf{x}
ight]$$

- Infinite-horizon MRP:
 - ▶ First-exit MRP: trajectories terminate at the first passage time $T = \min\{t \in \mathbb{N} | \mathbf{x}_t \in \mathcal{T}\}$ to a terminal state $\mathbf{x}_t \in \mathcal{T} \subseteq \mathcal{X}$
 - ▶ Discounted MRP: trajectories continue forever but stage costs are discounted by discount factor $\gamma \in [0,1)$:
 - $ightharpoonup \gamma$ close to 0 leads to myopic/greedy evaluation
 - $ightharpoonup \gamma$ close to 1 leads to nonmyopic/far-sighted evaluation
 - lacktriangle Mathematically convenient since discounting avoids infinite costs as $T o\infty$
 - ► Average-cost MRP: trajectories continue forever and the value function is the expected average stage cost

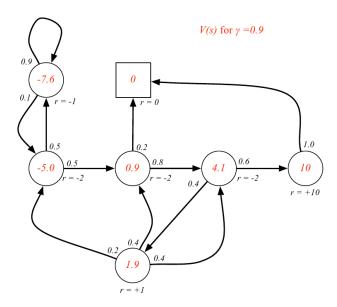
Example: Student MRP Value Function



Example: Student MRP Value Function



Example: Student MRP Value Function



Markov Decision Process

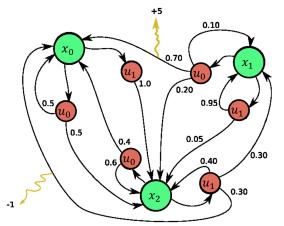
Markov Decision Process

Markov Reward Process with controlled transitions defined by a tuple $(\mathcal{X}, \mathcal{U}, p_0, p_f, T, \ell, \mathfrak{q}, \gamma)$

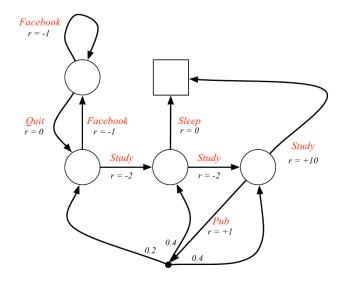
- $ightharpoonup \mathcal{X}$ is a discrete or continuous state space
- $ightharpoonup \mathcal{U}$ is a discrete or continuous control space
- $ightharpoonup p_0$ is a prior pdf defined on ${\mathcal X}$
- ▶ $p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$ is a conditional pdf defined on \mathcal{X} for given $\mathbf{x}_t \in \mathcal{X}$ and $\mathbf{u}_t \in \mathcal{U}$ (matrices P^u with elements $P^u_{ij} := p_f(j \mid x_t = i, u_t = u)$ in the finite-dimensional case)
- T is a finite or infinite time horizon
- $ightharpoonup \ell(\mathbf{x}, \mathbf{u})$ is stage cost of applying control $\mathbf{u} \in \mathcal{U}$ in state $\mathbf{x} \in \mathcal{X}$
- ightharpoonup q(x) is terminal cost of being in state x at time T
- $ightharpoonup \gamma \in [0,1]$ is a discount factor

Example: Markov Decision Process

A control \mathbf{u}_t applied in state \mathbf{x}_t determines the next state \mathbf{x}_{t+1} and the stage cost $\ell(\mathbf{x}_t, \mathbf{u}_t)$



Example: Student Markov Decision Process



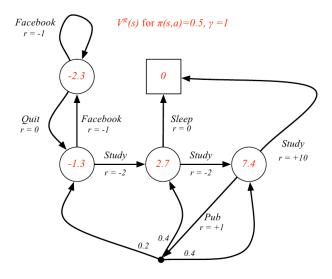
MDP Control Policy and Value Function

- ▶ Control policy: a function π that maps a time step $t \in \mathbb{N}$ and a state $\mathbf{x} \in \mathcal{X}$ to a feasible control input $\mathbf{u} \in \mathcal{U}$
- ▶ Value function: expected cumulative cost of a policy π applied to an MDP with initial state $\mathbf{x} \in \mathcal{X}$ at time t:
- **Finite-horizon MDP**: trajectories terminate at fixed $T < \infty$:

$$V^\pi_t(\mathsf{x}) := \mathbb{E}\left[\mathfrak{q}(\mathsf{x}_{\mathcal{T}}) + \sum_{ au=t}^{\mathcal{T}-1} \ell(\mathsf{x}_{ au}, \pi_{ au}(\mathsf{x}_{ au})) \mid \mathsf{x}_t = \mathsf{x}
ight]$$

- ▶ Infinite-horizon MDP: as $T \to \infty$, optimal policies become stationary, i.e., $\pi := \pi_0 \equiv \pi_1 \equiv \cdots$
 - ▶ First-exit MDP: trajectories terminate at the first passage time $T = \min\{t \in \mathbb{N} | \mathbf{x}_t \in \mathcal{T}\}$ to a terminal state $\mathbf{x}_t \in \mathcal{T} \subseteq \mathcal{X}$
 - **Discounted MDP**: trajectories continue forever but stage costs are discounted by a factor $\gamma \in [0,1)$
 - Average-cost MDP: trajectories continue forever and the value function is the expected average stage cost

Example: Value Function of Student MDP



Alternative Cost Formulations

Noise-dependent costs: stage costs ℓ' depend on motion noise \mathbf{w}_t :

$$V_0^\pi(\mathbf{x}) := \mathbb{E}_{\mathbf{w}_{0:T},\mathbf{x}_{1:T}} \left[\mathfrak{q}(\mathbf{x}_T) + \sum_{t=0}^{T-1} \ell'(\mathbf{x}_t,\pi_t(\mathbf{x}_t),\mathbf{w}_t) \mid \mathbf{x}_0 = \mathbf{x}
ight]$$

Using the pdf $p_w(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$ of \mathbf{w}_t , this is equivalent to our formulation:

$$\ell(\mathbf{x}_t, \mathbf{u}_t) := \mathbb{E}_{\mathbf{w}_t \mid \mathbf{x}_t, \mathbf{u}_t} \left[\ell'(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \right] = \int \ell(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \rho_w(\mathbf{w}_t \mid \mathbf{x}_t, \mathbf{u}_t) d\mathbf{w}_t$$

The expectation can be computed if p_w is known or approximated.

▶ **Joint cost-state pdf**: allow random costs ℓ' with joint pdf $p(\mathbf{x}', \ell' \mid \mathbf{x}, \mathbf{u})$. This is equivalent to our formulation as follows:

$$p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) := \int p(\mathbf{x}', \ell' \mid \mathbf{x}, \mathbf{u}) d\ell'$$

$$\ell(\mathbf{x}, \mathbf{u}) := \mathbb{E}\left[\ell' \mid \mathbf{x}, \mathbf{u}\right] = \int \int \ell' p(\mathbf{x}', \ell' \mid, \mathbf{x}, \mathbf{u}) d\mathbf{x}' d\ell'$$

Alternative Motion-Model Formulations

- ► Time-lag motion model: $\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{x}_{t-1}, \mathbf{u}_t, \mathbf{u}_{t-1}, \mathbf{w}_t)$
- ► Can be converted to the standard form via state augmentation
- ▶ Let $\mathbf{y}_t := \mathbf{x}_{t-1}$ and $\mathbf{s}_t := \mathbf{u}_{t-1}$ and define the augmented dynamics:

$$ilde{\mathbf{x}}_{t+1} := egin{bmatrix} \mathbf{x}_{t+1} \\ \mathbf{y}_{t+1} \\ \mathbf{s}_{t+1} \end{bmatrix} = egin{bmatrix} f_t(\mathbf{x}_t, \mathbf{y}_t, \mathbf{u}_t, \mathbf{s}_t, \mathbf{w}_t) \\ \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} =: ilde{f}_t(ilde{\mathbf{x}}_t, \mathbf{u}_t, \mathbf{w}_t)$$

► This procedure works for an arbitrary number of time lags but the dimension of the state space grows and increases the computational burden exponentially ("curse of dimensionality")

Alternative Motion-Model Formulations

- ▶ System dynamics: $\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t)$
- **▶ Correlated Disturbance**: **w**_t correlated across time (colored noise):

$$\mathbf{y}_{t+1} = A_t \mathbf{y}_t + \mathbf{\xi}_t$$

 $\mathbf{w}_t = C_t \mathbf{y}_{t+1}$

where A_t , C_t are known and ξ_t are independent random variables

▶ Augmented state: $\tilde{\mathbf{x}}_t := (\mathbf{x}_t, \mathbf{y}_t)$ with dynamics:

$$\tilde{\mathbf{x}}_{t+1} = \begin{bmatrix} \mathbf{x}_{t+1} \\ \mathbf{y}_{t+1} \end{bmatrix} = \begin{bmatrix} f_t(\mathbf{x}_t, \mathbf{u}_t, C_t(A_t\mathbf{y}_t + \boldsymbol{\xi}_t)) \\ A_t\mathbf{y}_t + \boldsymbol{\xi}_t \end{bmatrix} =: \tilde{f}_t(\tilde{\mathbf{x}}_t, \mathbf{u}_t, \boldsymbol{\xi}_t)$$

State estimator: \mathbf{y}_t must be observed at time t, which can be done using a state estimator

MDP Notation and Terminology (Summary)

$t \in \{0, \dots, T\}$ $\mathbf{x} \in \mathcal{X}$ $\mathbf{u} \in \mathcal{U}$	discrete time discrete/continuous state discrete/continuous control
$p_0(\mathbf{x})$ $p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u})$	prior probability density function defined on ${\mathcal X}$ transition/motion model
$\ell(\mathbf{x}, \mathbf{u})$ $\mathfrak{q}(\mathbf{x})$	stage cost of choosing control \mathbf{u} in state \mathbf{x} terminal cost at state \mathbf{x}
$egin{aligned} \pi_t(\mathbf{x}) \ V_t^\pi(\mathbf{x}) \end{aligned}$	control policy: function from state ${\bf x}$ at time t to control ${\bf u}$ value function: expected cumulative cost of starting at state ${\bf x}$ at time t and acting according to π
$\pi_t^*(\mathbf{x}) \ V_t^*(\mathbf{x})$	optimal control policy optimal value function

MDP Finite-horizon Optimal Control (Summary)

Finite-horizon Optimal Control

The finite-horizon optimal control problem in an MDP $(\mathcal{X}, \mathcal{U}, p_0, p_f, T, \ell, \mathfrak{q}, \gamma)$ with initial state \mathbf{x} at time t is:

$$\begin{aligned} & \min_{\pi_{t:T-1}} \ V_t^{\pi}(\mathbf{x}) := \mathbb{E}_{\mathbf{x}_{t+1:T}} \left[\gamma^{T-t} \mathfrak{q}(\mathbf{x}_T) + \sum_{\tau=t}^{T-1} \gamma^{\tau-t} \ell(\mathbf{x}_{\tau}, \pi_{\tau}(\mathbf{x}_{\tau})) \ \middle| \ \mathbf{x}_t = \mathbf{x} \right] \\ & \text{s.t.} \ \ \mathbf{x}_{\tau+1} \sim p_f(\cdot \mid \mathbf{x}_{\tau}, \pi_{\tau}(\mathbf{x}_{\tau})), \qquad \tau = t, \dots, T-1 \\ & \mathbf{x}_{\tau} \in \mathcal{X}, \ \ \pi_{\tau}(\mathbf{x}_{\tau}) \in \mathcal{U} \end{aligned}$$

Outline

Markov Decision Processes

Open-Loop vs Closed-Loop Control

Partially Observable Models

Open-Loop vs Closed-Loop Control

- ▶ Open-loop policy: control inputs $\mathbf{u}_{0:T-1}$ are determined at once at time 0 as a function of \mathbf{x}_0 and do not change online depending on \mathbf{x}_t
- ▶ Closed-loop policy: control inputs are determined "just-in-time" as a function π_t of the current state \mathbf{x}_t
- ightharpoonup Open-loop control is a special case of closed-loop control that disregards the state \mathbf{x}_t and, hence, never gives better performance
- ▶ In the absence of motion noise and in a special linear quadratic Gaussian (LQG) case, open-loop and closed-loop control have the same performance
- Open-loop control is computationally much cheaper than closed-loop control. Consider a discrete-space example with $|\mathcal{X}|=10$ states, $|\mathcal{U}|=10$ control inputs, planning horizon T=4, and given x_0 :
 - ▶ There are $|\mathcal{U}|^T = 10^4$ open-loop strategies
 - ▶ There are $|\mathcal{U}|(|\mathcal{U}|^{|\mathcal{X}|})^{T-1} = |\mathcal{U}|^{|\mathcal{X}|(T-1)+1} = 10^{31}$ closed-loop strategies
- ▶ Open-loop feedback control (OLFC) recomputes a new open-loop sequence $\mathbf{u}_{t:T-1}$ online, whenever a new state \mathbf{x}_t is available. OLFC is guaranteed to perform better than open-loop control and is computationally more efficient than closed-loop control.

Example: Chess Strategy Optimization

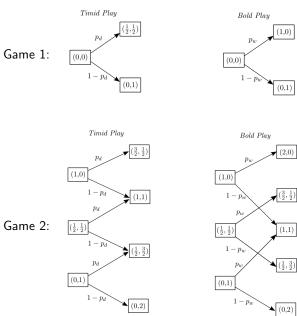
- ▶ **Objective**: come up with a strategy that maximizes the chances of winning a 2 game chess match
- Possible outcomes:
 - Win/Lose: 1 point for the winner, 0 for the loser
 - Draw: 0.5 points for each player
 - If the score is equal after 2 games, the players continue playing until one wins (sudden death)
- Playing styles:
 - **Timid**: draw with probability p_d and lose with probability $(1 p_d)$
 - **Bold**: win with probability p_w and lose with probability $(1 p_w)$
 - **Assumption**: $p_d > p_w$

Chess Match Model

- **State** x_t : 2-D vector with our and the opponent's score after the t-th game
- ▶ **Control** $u_t \in \mathcal{U} = \{ \text{timid, bold} \}$
- **Noise** w_t : score of the next game
- ightharpoonup Since timid play does not make sense during the sudden death stage, the planning horizon is T=2
- ▶ We can construct a **time-dependent motion model** P^u_{ijt} for $t \in \{0,1\}$ (shown on the next slide)
- ▶ **Cost**: minimize loss probability: $-P_{win} = \mathbb{E}_{\mathbf{x}_{1:2}} \left[\mathfrak{q}(\mathbf{x}_2) + \sum_{t=0}^{1} \ell(\mathbf{x}_t, u_t) \right]$, where

$$\ell(\mathbf{x},u) = 0 \quad \text{and} \quad \mathfrak{q}(\mathbf{x}) = \begin{cases} -1 & \text{if } \mathbf{x} = \left(\frac{3}{2},\frac{1}{2}\right) \text{ or } (2,0) \\ -p_w & \text{if } \mathbf{x} = (1,1) \\ 0 & \text{if } \mathbf{x} = \left(\frac{1}{2},\frac{3}{2}\right) \text{ or } (0,2) \end{cases}$$

Chess Transition Probabilities



Open-Loop Chess Strategy

- ► There are 4 possible open-loop policies:
 - 1. timid-timid: $P_{win} = p_d^2 p_w$
 - 2. bold-bold: $P_{win} = p_w^2 + p_w(1 p_w)p_w + (1 p_w)p_wp_w = p_w^2(3 2p_w)$
 - 3. bold-timid: $P_{win} = p_w p_d + p_w (1 p_d) p_w$
 - 4. timid-bold: $P_{win} = p_d p_w + (1 p_d) p_w^2$
- ▶ Since $p_d^2 p_w \le p_d p_w \le p_d p_w + (1 p_d) p_w^2$, timid-timid is not optimal
- The best achievable winning probability is:

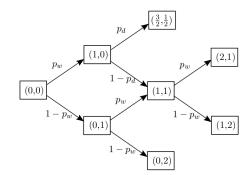
$$P_{win}^* = \max\{\overbrace{p_w^2(3 - 2p_w)}^{\text{bold-bold}}, \overbrace{p_d p_w + (1 - p_d)p_w^2}^{3. \text{ or } 4.}\}$$

$$= p_w^2 + p_w(1 - p_w) \max\{2p_w, p_d\}$$

- ▶ If $p_w \le 0.5$, then $P_{win}^* \le 0.5$
 - For $p_w = 0.45$ and $p_d = 0.9$, $P_{win}^* = 0.43$
 - For $p_w = 0.5$ and $p_d = 1.0$, $P_{win}^* = 0.5$
- If $p_d > 2p_w$, bold-timid and timid-bold are optimal open-loop policies; otherwise bold-bold is optimal

Closed-Loop Chess Strategy

- ► There are 16 closed-loop policies
- Consider one option: play timid if and only if ahead (it will turn out that this is optimal)



- The probability of winning is: $P_{win} = p_d p_w + p_w ((1 p_d) p_w + p_w (1 p_w)) = p_w^2 (2 p_w) + p_w (1 p_w) p_d$
- ▶ In the closed-loop case, we can achieve P_{win} larger than 0.5 even when p_w is less than 0.5:
 - For $p_w = 0.45$ and $p_d = 0.9$, $P_{win} = 0.5$
 - For $p_w = 0.5$ and $p_d = 1.0$, $P_{win} = 0.625$

Outline

Markov Decision Processes

Open-Loop vs Closed-Loop Contro

Partially Observable Models

Hidden Markov Model

Hidden Markov Model

Markov Chain with partially observable states defined by tuple $(\mathcal{X}, \mathcal{Z}, p_0, p_f, p_h)$

- \triangleright \mathcal{X} is a discrete or continuous state space
- $ightharpoonup \mathcal{Z}$ is a discrete or continuous observation space
- $ightharpoonup p_0$ is a prior pdf defined on \mathcal{X}
- ▶ $p_f(\cdot \mid \mathbf{x}_t)$ is a conditional pdf defined on \mathcal{X} for given $\mathbf{x}_t \in \mathcal{X}$ (summarized by matrix P with $P_{ij} = p_f(j \mid x_t = i)$ in finite-dim case)
- ▶ $p_h(\cdot \mid \mathbf{x}_t)$ is a conditional pdf defined on \mathcal{Z} for given $\mathbf{x}_t \in \mathcal{X}$ (summarized by matrix O with $O_{ij} := p_h(j \mid x_t = i)$ in finite-dim case)

Partially Observable Markov Decision Process

Partially Observable Markov Decision Process

Markov Decision Process with partially observable states defined by tuple $(\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_0, p_f, p_h, T, \ell, \mathfrak{q}, \gamma)$

- $ightharpoonup \mathcal{X}$ is a discrete or continuous state space
- $ightharpoonup \mathcal{U}$ is a discrete or continuous control space
- $ightharpoonup \mathcal{Z}$ is a discrete or continuous observation space
- $ightharpoonup p_0$ is a prior pdf defined on $\mathcal X$
- ▶ $p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$ is a conditional pdf defined on \mathcal{X} for given $\mathbf{x}_t \in \mathcal{X}$ and $\mathbf{u}_t \in \mathcal{U}$ (summarized by matrices P^u with elements $P^u_{ij} = p_f(j \mid x_t = i, u_t = u)$ in finite-dim case)
- ▶ $p_h(\cdot \mid \mathbf{x}_t)$ is a conditional pdf defined on \mathcal{Z} for given $\mathbf{x}_t \in \mathcal{X}$ (summarized by matrix O with $O_{ij} := p_h(j \mid x_t = i)$ in finite-dim case)
- T is a finite/infinite time horizon
- $ightharpoonup \ell(\mathbf{x}, \mathbf{u})$ is stage cost of applying control $\mathbf{u} \in \mathcal{U}$ in state $\mathbf{x} \in \mathcal{X}$
- ightharpoonup q(x) is terminal cost of being in state x at time T
- $ightharpoonup \gamma \in [0,1]$ is a discount factor

Comparison of Markov Models

	observed	partially observed
uncontrolled	Markov Chain/MRP	HMM
controlled	MDP	POMDP

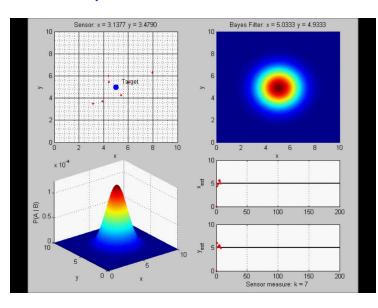
- ► Markov Chain + Partial Observability = HMM
- ▶ Markov Chain + Control = MDP
- Markov Chain + Partial Observability + Control = HMM + Control = MDP + Partial Observability = POMDP

Bayes Filter

- A probabilistic inference technique for summarizing information $\mathbf{i}_t := (\mathbf{z}_{0:t}, \mathbf{u}_{0:t-1})$ about a partially observable state \mathbf{x}_t
- ▶ The Bayes filter keeps track of: $\frac{p_{t|t}(\mathbf{x}_t) := p(\mathbf{x}_t \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1})}{p_{t+1|t}(\mathbf{x}_{t+1}) := p(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t})}$
- Derived using total probability, conditional probability, and Bayes rule based on the motion and observation models of the system
- ▶ Motion model: $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \sim p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$
- ▶ Observation model: $\mathbf{z}_t = h(\mathbf{x}_t, \mathbf{v}_t) \sim p_h(\cdot \mid \mathbf{x}_t)$
- Bayes filter: consists of predict and update steps:

$$p_{t+1|t+1}(\mathbf{x}_{t+1}) = \underbrace{\frac{1}{p(\mathbf{z}_{t+1}|\mathbf{z}_{0:t},\mathbf{u}_{0:t})} p_h(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1})}_{\text{Update}} \underbrace{\int p_f(\mathbf{x}_{t+1} \mid \mathbf{x}_t,\mathbf{u}_t) p_{t|t}(\mathbf{x}_t) d\mathbf{x}_t}_{\text{Predict: } p_{t+1|t}(\mathbf{x}_{t+1})}$$

Bayes Filter Example



Equivalence of POMDPs and MDPs

- A POMDP $(\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_0, p_f, p_h, T, \ell, \mathfrak{q}, \gamma)$ is equivalent to an MDP $(\mathcal{P}(\mathcal{X}), \mathcal{U}, p_0, p_{\psi}, T, \bar{\ell}, \bar{\mathfrak{q}}, \gamma)$ such that:
 - **State space**: $\mathcal{P}(\mathcal{X})$ is the **continuous** space of pdfs over \mathcal{X}
 - ▶ If \mathcal{X} is continuous, then $\mathcal{P}(\mathcal{X}) := \{p : \mathcal{X} \to \mathbb{R}_{\geq 0} \mid \int p(\mathbf{x}) d\mathbf{x} = 1\}$
 - If $|\mathcal{X}| = N$, then $\mathcal{P}(\mathcal{X}) := \{ \mathbf{p} \in [0,1]^N \mid \mathbf{1}^\top \mathbf{p} = 1 \}$
 - ▶ Initial state: $p_0 \in \mathcal{P}(\mathcal{X})$
 - ▶ Motion model: the Bayes filter $p_{t+1|t+1} = \psi(p_{t|t}, \mathbf{u}_t, \mathbf{z}_{t+1})$ acts as a motion model for $p_{t|t}$ with motion noise given by the observations \mathbf{z}_{t+1} with density:

$$\eta(\mathbf{z} \mid p_{t|t}, \mathbf{u}_t) := \int \int p_h(\mathbf{z} \mid \mathbf{x}_{t+1}) p_f(\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{u}_t) p_{t|t}(\mathbf{x}_t) d\mathbf{x}_t d\mathbf{x}_{t+1}$$

▶ **Cost**: the equivalent MDP stage and terminal cost functions are the expected values of the POMDP stage and terminal costs:

$$ar{\ell}(p,\mathbf{u}) := \int \ell(\mathbf{x},\mathbf{u})p(\mathbf{x})d\mathbf{x}$$
 $ar{\mathfrak{q}}(p) := \int \mathfrak{q}(\mathbf{x})p(\mathbf{x})d\mathbf{x}$

POMDP Finite-horizon Optimal Control

 \blacktriangleright POMDP $(\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_0, p_f, p_h, T, \ell, \mathfrak{q}, \gamma)$:

$$\min_{\boldsymbol{\pi}_{0:T-1}} \mathbb{E} \left[\gamma^{T} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=0}^{T-1} \gamma^{t} \ell(\mathbf{x}_{t}, \mathbf{u}_{t}) \right] \\
\text{s.t.} \quad \mathbf{x}_{t+1} \sim p_{f}(\cdot \mid \mathbf{x}_{t}, \mathbf{u}_{t}), \qquad t = 0, \dots, T-1 \\
\mathbf{z}_{t+1} \sim p_{h}(\cdot \mid \mathbf{x}_{t}), \qquad t = 0, \dots, T-1 \\
\mathbf{u}_{t} \sim \pi_{t}(\cdot \mid \mathbf{i}_{t}), \qquad t = 0, \dots, T-1 \\
\mathbf{x}_{0} \sim p_{0}(\cdot)$$

▶ Equivalent MDP $(\mathcal{P}(\mathcal{X}), \mathcal{U}, p_0, p_{\psi}, T, \bar{\ell}, \bar{\mathfrak{q}}, \gamma)$ with state $p_{t|t}$:

$$\min_{\substack{\pi_{0:T-1}}} V_0^{\pi}(p_0) = \mathbb{E} \left[\gamma^T \overline{\mathfrak{q}}(p_{T|T}) + \sum_{t=0}^{T-1} \gamma^t \overline{\ell}(p_{t|t}, \mathbf{u}_t) \right] \\
\text{s.t.} \quad p_{t+1|t+1} = \psi(p_{t|t}, \mathbf{u}_t, \mathbf{z}_{t+1}), \quad t = 0, \dots, T-1 \\
\mathbf{z}_{t+1} \sim \eta(\cdot \mid p_{t|t}, \mathbf{u}_t), \qquad t = 0, \dots, T-1 \\
u_t \sim \pi_t(\cdot \mid p_{t|t}), \qquad t = 0, \dots, T-1$$

 Due to the equivalence between POMDPs and MDPs, we will focus exclusively on MDPs