ECE276B: Planning & Learning in Robotics Lecture 5: Deterministic Shortest Path

Nikolay Atanasov natanasov@ucsd.edu

Electrical and Computer Engineering

Outline

Deterministic Shortest Path

Label Correcting Algorithm

Deterministic Shortest Path (DSP) Problem

Consider a graph with vertex set \mathcal{V} , edge set $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$, and edge weights $\mathcal{C} := \{c_{ij} \in \mathbb{R} \cup \{\infty\} \mid (i,j) \in \mathcal{E}\}$ where c_{ij} denotes the arc length or cost from vertex i to vertex j.

Objective: find a shortest path from a start node s to an end node au

Deterministic Shortest Path (DSP) Problem

- ▶ **Path**: a sequence $i_{1:q} := (i_1, i_2, \dots, i_q)$ of nodes $i_k \in \mathcal{V}$
- **Path length**: sum of edge weights along the path: $J^{i_{1:q}} = \sum_{k=1}^{q-1} c_{i_k,i_{k+1}}$
- ▶ All paths from $s \in \mathcal{V}$ to $\tau \in \mathcal{V}$: $\mathcal{P}_{s,\tau} := \{i_{1:q} \mid i_k \in \mathcal{V}, i_1 = s, i_q = \tau\}$
- **Objective**: find a path that has the min length from node s to node τ :

$$\mathbf{dist}(s,\tau) = \min_{i_{1:q} \in \mathcal{P}_{s,\tau}} J^{i_{1:q}} \qquad \qquad i_{1:q}^* = \arg\min_{i_{1:q} \in \mathcal{P}_{s,\tau}} J^{i_{1:q}}$$

- ▶ **Assumption**: There are no negative cycles in the graph, i.e., $J^{i_{1:q}} \ge 0$, for all $i_{1:q} \in \mathcal{P}_{i,i}$ and all $i \in \mathcal{V}$
- Solving DSP problems:
 - The finite-state DSP problem is equivalent to a finite-horizon finite-state deterministic optimal control (DOC) problem
 - Apply dynamic programming or label correcting (variant of a "forward" DPA) to the equivalent DOC problem

Deterministic Optimal Control (DOC) Problem

- DOC Problem:
 - optimal control problem with no disturbances, $\mathbf{w}_t \equiv 0$
 - closed-loop control does not offer any advantage over open-loop control
- ▶ Given $\mathbf{x}_0 \in \mathcal{X}$, construct an optimal control sequence $\mathbf{u}_{0:T-1}$ such that:

$$\min_{\mathbf{u}_{0:T-1}} \mathbf{q}(\mathbf{x}_T) + \sum_{t=0}^{T-1} \ell(\mathbf{x}_t, \mathbf{u}_t)$$
s.t. $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t), \ t = 0, \dots, T-1$
 $\mathbf{x}_t \in \mathcal{X}, \ \mathbf{u}_t \in \mathcal{U}(\mathbf{x}_t),$

▶ The DOC problem can be solved via Dynamic Programming

Equivalence of DOC and DSP Problems (DOC to DSP)

- ► Construct a graph representation of the DOC problem
- ▶ **Start node**: $s := (0, \mathbf{x}_0)$ given state $\mathbf{x}_0 \in \mathcal{X}$ at time 0
- ▶ **Vertex set**: represent every state $\mathbf{x} \in \mathcal{X}$ at time t by node $i := (t, \mathbf{x})$:

$$\mathcal{V} := \{s\} \cup \left(igcup_{t=1}^T \{(t, \mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\}
ight) \cup \{ au\}$$

▶ **End node**: an artificial node τ with arc length $c_{i,\tau}$ from node $i = (t, \mathbf{x})$ to τ equal to the terminal cost $\mathfrak{q}(\mathbf{x})$ of the DOC problem

Equivalence of DOC and DSP Problems (DOC to DSP)

- The edge weight between two nodes $i=(t,\mathbf{x})$ and $j=(t',\mathbf{x}')$ is finite, $c_{ij}<\infty$, only if t'=t+1 and $\mathbf{x}'=f(\mathbf{x},\mathbf{u})$ for some $u\in\mathcal{U}(\mathbf{x})$.
- ▶ The edge weight between two nodes $i = (t, \mathbf{x})$ and $j = (t + 1, \mathbf{x}')$ is the smallest stage cost between \mathbf{x} and \mathbf{x}' :

Equivalence of DOC and DSP Problems (DSP to DOC)

- ▶ Consider a DSP problem with vertices V, edges \mathcal{E} , edge weights \mathcal{C} , start node $s \in V$ and terminal node $\tau \in V$
- **No negative cycles assumption**: an optimal path need not have more than $|\mathcal{V}|$ elements
- ▶ We can formulate the DSP problem as DOC with $T := |\mathcal{V}| 1$ stages:
 - ▶ State space $\mathcal{X} = \mathcal{V}$ and control space: $\mathcal{U} = \mathcal{V}$
 - Motion model: $x_{t+1} = f(x_t, u_t) := \begin{cases} x_t & \text{if } x_t = \tau \\ u_t & \text{otherwise} \end{cases}$
 - Stage cost and terminal cost:

$$\ell(x,u) := \begin{cases} 0 & \text{if } x = \tau \\ c_{x,u} & \text{otherwise} \end{cases} \qquad \mathfrak{q}(x) := \begin{cases} 0 & \text{if } x = \tau \\ \infty & \text{otherwise} \end{cases}$$

Dynamic Programming Applied to DSP

▶ Due to DOC equivalence, a DSP problem can be solved via dynamic programming

Algorithm 1 Deterministic Shortest Path via Dynamic Programming

```
1: Input: vertices \mathcal{V}, start s \in \mathcal{V}, goal \tau \in \mathcal{V}, and costs c_{ij} for i, j \in \mathcal{V}
2: T = |\mathcal{V}| - 1
3: V_T(\tau) = V_{T-1}(\tau) = \ldots = V_0(\tau) = 0
4: V_T(i) = \infty, \forall i \in \mathcal{V} \setminus \{\tau\}
5: V_{T-1}(i) = c_{i,\tau}, \forall i \in \mathcal{V} \setminus \{\tau\}
6: \pi_{T-1}(i) = \tau, \forall i \in \mathcal{V} \setminus \{\tau\}
7: for t = (T-2), \ldots, 0 do
8: Q_t(i,j) = c_{i,j} + V_{t+1}(j), \forall i \in \mathcal{V} \setminus \{\tau\}, j \in \mathcal{V}
9: V_t(i) = \min_{j \in \mathcal{V}} Q_t(i,j), \forall i \in \mathcal{V} \setminus \{\tau\}
10: \pi_t(i) = \arg\min_{j \in \mathcal{V}} Q_t(i,j), \forall i \in \mathcal{V} \setminus \{\tau\}
11: if V_t(i) = V_{t+1}(i), \forall i \in \mathcal{V} \setminus \{\tau\} then
12: break
```

- \triangleright $V_t(i)$ is the **optimal cost-to-go** from node i to node τ in at most T-t steps
- ▶ Upon termination, $V_0(s) = J_{1:q}^{i_{1:q}^*} = \mathbf{dist}(s, \tau)$
- ▶ The algorithm can be terminated early if $V_t(i) = V_{t+1}(i)$, $\forall i \in \mathcal{V} \setminus \{\tau\}$

Forward Dynamic Programming Applied to DSP

1: **Input**: vertices V, start $s \in V$, goal $\tau \in V$, and costs c_{ii} for $i, j \in V$

- ▶ The DSP problem is symmetric: a shortest path from s to τ is also a shortest path from τ to s, where all arc directions are flipped
- This view leads to a forward dynamic programming algorithm.
- $V_t^F(j)$ is the **optimal cost-to-arrive** to node j from node s in at most t steps

Algorithm 2 Deterministic Shortest Path via Forward Dynamic Programming

2: $T = |\mathcal{V}| - 1$ 3: $V_0^F(s) = V_1^F(s) = \dots V_T^F(s) = 0$ 4: $V_0^F(j) = \infty$, $\forall j \in \mathcal{V} \setminus \{s\}$ 5: $V_1^F(j) = c_{s,j}$, $\forall j \in \mathcal{V} \setminus \{s\}$ 6: for $t = 2, \dots, T$ do 7: $V_t^F(j) = \min_{i \in \mathcal{V}} \left(c_{i,j} + V_{t-1}^F(i)\right)$, $\forall j \in \mathcal{V} \setminus \{s\}$ 8: if $V_t^F(i) = V_{t-1}^F(i)$, $\forall i \in \mathcal{V} \setminus \{s\}$ then

break

Example: Forward DP Algorithm

$$ightharpoonup s=1$$
 and $au=5$

►
$$T = |\mathcal{V}| - 1 = 6$$

	1	2	3	4	5	6	7
V_0^F	0	∞	∞	∞	∞	∞	∞
V_1^F	0	5	3	∞	∞	5	∞
V_2^F	0	5	3	15	13	5	4
V_3^F	0	5	3	15	12	5	4
V_4^F	0	5	3	15	12	5	4

Since $V_t^F(i) = V_{t-1}^F(i)$, $\forall i \in \mathcal{V}$ at time t = 4, the algorithm can terminate early, i.e., without computing $V_5^F(i)$ and $V_6^F(i)$

Outline

Deterministic Shortest Path

Label Correcting Algorithm

Label Correcting Methods for the DSP Problem

- ▶ The (backward) DP algorithm applied to the DSP problem computes the shortest paths from *all* nodes to the goal τ
- ▶ The forward DP algorithm computes the shortest paths from the start *s* to *all* nodes
- lacktriangle Often many nodes are not part of the shortest path from s to au
- ► Label correcting (LC) algorithms for the DSP problem do not necessarily visit every node of the graph
- LC algorithms prioritize visited nodes i using the **cost-to-arrive** $V_t^F(i)$
- **Key ideas** in LC algorithms:
 - ▶ Label g_i : estimate of optimal cost-to-arrive from s to each visited $i \in V$
 - ▶ Label correction: each time g_i is reduced, the labels g_j of the **children** of i are corrected: $g_i = g_i + c_{ij}$
 - **POPEN List**: set of nodes that can potentially be part of the shortest path to au

Label Correcting Algorithm

Algorithm 3 Label Correcting Algorithm

```
1: OPEN \leftarrow \{s\}, g_s = 0, g_i = \infty \text{ for all } i \in \mathcal{V} \setminus \{s\}
    while OPEN is not empty do
3:
         Remove i from OPEN
         for j \in Children(i) do
4.
5:
              if (g_i + c_{ii}) < g_i and (g_i + c_{ii}) < g_{\tau} then
                                                                                  \triangleright Only when c_{ii} \ge 0 for all i, j \in \mathcal{V}
6:
                   g_i = g_i + c_{ii}
                   Parent(j) = i
7:
8:
                   if i \neq \tau then
                        OPEN = OPEN \cup \{j\}
9:
```

Theorem

Consider a finite-state deterministic shortest path problem. If there exists at least one finite cost path from s to τ , then the Label Correcting (LC) algorithm terminates with $g_{\tau} = \mathbf{dist}(s,\tau)$, the shortest path length from s to τ . Otherwise, the LC algorithm terminates with $g_{\tau} = \infty$.

Label Correcting Algorithm

Label Correcting Algorithm Proof

- 1. Claim: The LC algorithm terminates in a finite number of steps
 - \triangleright Each time a node j enters OPEN, its label is decreased and becomes equal to the length of some path from s to j.
 - The number of distinct paths from s to j whose length is smaller than any given number is finite (no negative cycles assumption)
 - ▶ There can only be a finite number of label reductions for each node *j*
 - Since the LC algorithm removes nodes from OPEN in line 3, the algorithm will eventually terminate
- 2. Claim: The LC algorithm terminates with $g_{\tau}=\infty$ if there is no finite cost path from s to τ
 - ▶ A node $i \in V$ is in OPEN only if there is a finite cost path from s to i
 - If there is no finite cost path from s to τ , then for any node i in OPEN $c_{i,\tau}=\infty$; otherwise there would be a finite cost path from s to τ
 - ▶ Since $c_{i,\tau} = \infty$ for every i in OPEN, line 5 ensures that g_{τ} is never updated and remains ∞

Label Correcting Algorithm Proof

- 3. **Claim**: Assume $c_{ij} \ge 0$ (special case). The LC algorithm terminates with $g_{\tau} = \operatorname{dist}(s, \tau)$ if there is at least one finite cost path from s to τ .
 - Let $i_{1:q}^* \in \mathcal{P}_{s,\tau}$ be a shortest path from s to τ with $i_1^* = s$, $i_q^* = \tau$, and length $J^{i_{1:q}^*} = \operatorname{dist}(s,\tau)$.
 - By the principle of optimality, $i_{1:m}^*$ is a shortest path from s to i_m^* with length $J^{i_{1:m}^*} = \mathbf{dist}(s, i_m^*)$ for any $m = 1, \ldots, q 1$.
 - ▶ Suppose that $g_{\tau} > J^{i_{1:q}^*} = \mathbf{dist}(s, \tau)$ (proof by contradiction).
 - Since g_{τ} only decreases in the algorithm and every cost is nonnegative, $g_{\tau} > J^{j_{1,m}^*} = \mathbf{dist}(s, i_m^*)$ for all $m = 2, \dots, q 1$.
 - ▶ Thus, i_{q-1}^* does not enter OPEN with $g_{i_{q-1}^*} = J^{i_{1:q-1}^*} = \operatorname{dist}(s, i_{q-1}^*)$ since if it did, then the next time i_{q-1}^* is removed from OPEN, g_{τ} would be updated to $J^{i_{1:q}^*} = \operatorname{dist}(s, i_{q-1}^*)$.
 - ightharpoonup Similarly, i_{q-2}^* does not enter OPEN with $g_{i_{q-2}^*} = J^{i_{1:q-2}^*} = \mathbf{dist}(s, i_{q-2}^*)$.
 - Continuing this way, i_2^* will not enter OPEN with $g_{i_2^*} = J^{i_{1,2}^*} = c_{s,i_2^*}$ but this happens at the first iteration of the algorithm, which is a contradiction.

Example: Deterministic Scheduling Problem

- Consider a deterministic scheduling problem where 4 operations A, B, C, D are used to produce a product
- ▶ Rules: Operation A must occur before B, and C before D
- Cost: there is a transition cost between each two operations:

Example: Deterministic Scheduling Problem

► The state transition diagram of the scheduling problem can be simplified in order to reduce the number of nodes

- ▶ This results in a DOC problem with T = 4 and $\mathcal{X} = \{I.C., A, C, AB, AC, CA, CD, ABC, ACD or CAD, CAB or ACB, CDA, DONE<math>\}$
- ▶ The DOC problem can be converted into a DSP problem

Example: Deterministic Scheduling Problem

We can map the DOC problem to a DSP problem and apply the LC algorithm

Iteration	Remove	OPEN	gs	g ₁	g ₂	<i>g</i> ₃	g ₄	<i>g</i> ₅	g 6	g ₇	g ₈	g 9	g ₁₀	g_{τ}
0	-	5	0	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞
1	S	1, 2	0	5	3	∞	∞	∞	∞	∞	∞	∞	∞	∞
2	2	1, 5, 6	0	5	3	∞	∞	7	9	∞	∞	∞	∞	∞
3	6	1, 5, 10	0	5	3	∞	∞	7	9	∞	∞	∞	12	∞
4	10	1, 5	0	5	3	∞	∞	7	9	∞	∞	∞	12	14
5	5	1, 8, 9	0	5	3	∞	∞	7	9	∞	11	9	12	14
6	9	1,8	0	5	3	∞	∞	7	9	∞	11	9	12	10
7	8	1	0	5	3	∞	∞	7	9	∞	11	9	12	10
8	1	3, 4	0	5	3	7	8	7	9	∞	11	9	12	10
9	4	3	0	5	3	7	8	7	9	∞	11	9	12	10
10	3	-	0	5	3	7	8	7	9	∞	11	9	12	10

▶ Keeping track of the parents when a child node is added to OPEN, we can determine a shortest path $(s, 2, 5, 9, \tau)$ with total cost 10, which corresponds to (C, CA, CAB, CABD) in the original problem

Label Correcting Algorithm Variations

- ► The freedom to select which node to remove from OPEN at each iteration gives rise to several different label correcting methods:
 - Breadth-first search (BFS) (Bellman-Ford Algorithm): "first-in, first-out" policy with OPEN implemented as a queue.
 - Depth-first search (DFS): "last-in, first-out" policy with OPEN implemented as a stack; often saves memory.
 - ▶ Best-first search (Dijkstra's Algorithm): the node with minimum label $i^* = \arg\min g_j$ is removed, which guarantees that a node will enter OPEN at most once. OPEN is implemented as a priority queue.
 - ▶ D'Esopo-Pape: removes nodes at the top of OPEN. If a node has been in OPEN before it is inserted at the top; otherwise at the bottom.
 - ▶ Small-label-first (SLF): removes nodes at the top of OPEN. If $g_i \le g_{TOP}$ node i is inserted at the top; otherwise at the bottom.
 - ▶ Large-label-last (LLL): the top node is compared with the average of OPEN and if it is larger, it is placed at the bottom of OPEN; otherwise it is removed.

A* Algorithm

▶ The **A*** algorithm is a modification to the LC algorithm for special case $c_{ij} \ge 0$ in which the requirement for admission to OPEN is strengthened:

from
$$g_i + c_{ij} < g_{ au}$$
 to $g_i + c_{ij} + h_j < g_{ au}$

where h_j is a non-negative lower bound on the optimal cost-to-go from node j to τ , known as a **heuristic function**

- ► The more stringent criterion can reduce the number of iterations required by the LC algorithm
- ▶ The heuristic is constructed using special knowledge about the problem. The more accurately h_j estimates the optimal cost-to-go from j to τ , the more efficient the A* algorithm becomes.