ECE276B: Planning & Learning in Robotics Lecture 10: Infinite-Horizon Optimal Control

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Finite-Horizon Stochastic Optimal Control

Recall the finite-horizon stochastic optimal control problem:

$$\min_{\substack{\pi_{\tau:\tau-1} \\ \tau_{\tau} \in \mathcal{X}, \\ \mathbf{x}_{t} \in \mathcal{X}, \\ \mathbf{x}_{t} \in \mathcal{X}, \\ \pi_{t}(\mathbf{x}_{t}) := \mathbb{E}_{\mathbf{x}_{\tau+1:\tau}} \left[\gamma^{T-\tau} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell(\mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})) \middle| \mathbf{x}_{\tau} \right]$$
s.t. $\mathbf{x}_{t+1} \sim p_{f}(\cdot \mid \mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})), \quad t = \tau, \dots, T-1$
 $\mathbf{x}_{t} \in \mathcal{X}, \quad \pi_{t}(\mathbf{x}_{t}) \in \mathcal{U}$

$\textbf{x} \in \mathcal{X}$	state
$\mathbf{u}\in\mathcal{U}$	control
$p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u})$	motion model
$\mathbf{x}' = f(\mathbf{x}, \mathbf{u}, \mathbf{w})$	motion model
$\ell(x, u)$	stage cost
$q(\mathbf{x})$	terminal cost
$T \in \mathbb{N}$	planning horizon
$\gamma \in [0,1]$	discount factor
$\pi_t(\mathbf{x})$	policy function at time t
$V_t^{\pi}(\mathbf{x})$	value function at state x , time <i>t</i> , under policy $\pi_{t:T-1}$

Finite-Horizon Deterministic Optimal Control

Finite-horizon deterministic optimal control (DOC) problem:

$$\min_{\mathbf{u}_{\tau:\tau-1}} V_{\tau}^{\mathbf{u}_{\tau:\tau-1}}(\mathbf{x}_{\tau}) := \gamma^{T-\tau} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell_{t}(\mathbf{x}_{t}, \mathbf{u}_{t})$$
s.t. $\mathbf{x}_{t+1} = f(\mathbf{x}_{t}, \mathbf{u}_{t}), \quad t = \tau, \dots, T-1$
 $\mathbf{x}_{t} \in \mathcal{X}, \quad \mathbf{u}_{t} \in \mathcal{U}$

▶ An open-loop control sequence $\mathbf{u}^*_{\tau:\tau-1}$ is optimal for the DOC problem

The DOC problem is equivalent to the deterministic shortest path (DSP) problem, which led to the forward Dynamic Programming and Label Correcting algorithms

Infinite-Horizon Stochastic Optimal Control

- In this lecture, we consider what happens with the stochastic optimal control problem as the planning horizon T goes to infinity
- We will consider two formulations of the infinite-horizon stochastic optimal control problem
 - ▶ Discounted Problem: obtained by letting $T \to \infty$ in the finite-horizon stochastic optimal control problem with $\gamma < 1$
 - First-Exit Problem: obtained by considering stochastic transitions in the shortest path problem and terminating when the goal region is reached
- Just like the DOC and DSP problems, the Discounted Problem and the First-Exit Problem are equivalent, i.e., one can be converted into the other

Discounted Problem

- \blacktriangleright Let $\mathcal{T} \rightarrow \infty$ in the finite-horizon stochastic optimal control problem
- ▶ The terminal cost q is no longer necessary since the problem never terminates
- Assume the motion model p_f and the stage cost ℓ are time-invariant
- The discount factor γ must be < 1 to ensure that the infinite sum of stage costs is finite</p>
- As T → ∞, the time-invariant motion model and stage costs lead to time-invariant optimal value function V*(x) = min_π V^π(x) and associated optimal policy π*(x) ∈ arg min_π V^π(x)
- Discounted Problem:

$$V^*(\mathbf{x}) = \min_{\pi} V^{\pi}(\mathbf{x}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) \mid \mathbf{x}_0 = \mathbf{x}\right]$$

s.t. $\mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \pi(\mathbf{x}_t)),$
 $\mathbf{x}_t \in \mathcal{X}, \ \pi(\mathbf{x}_t) \in \mathcal{U}$

First-Exit Problem

- ► Consider a stochastic shortest path problem with state space \mathcal{X} and transitions defined by $p_f(\mathbf{x}'|\mathbf{x}, \mathbf{u})$ with control $\mathbf{u} \in \mathcal{U}$
- Let $\mathcal{T} \subseteq \mathcal{X}$ be a set of **terminal states** with terminal cost $\mathfrak{q}(\mathbf{x})$ for $\mathbf{x} \in \mathcal{T}$
- First-Exit Time: terminate at T := min {t ≥ 0 | x_t ∈ T}, the first passage time from an initial state x₀ to a terminal state x_t ∈ T
- ▶ Note that *T* is a **random variable** unlike in the finite-horizon problem
- First-Exit Problem:

$$V^*(\mathbf{x}) = \min_{\pi} V^{\pi}(\mathbf{x}) := \mathbb{E} \left[\mathfrak{q}(\mathbf{x}_T) + \sum_{t=0}^{T-1} \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) \mid \mathbf{x}_0 = \mathbf{x} \right]$$

s.t. $\mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \pi(\mathbf{x}_t)),$
 $\mathbf{x}_t \in \mathcal{X}, \ \pi(\mathbf{x}_t) \in \mathcal{U}$

- Given a Discounted Problem, we can define an equivalent First-Exit problem
- **b** Discounted Problem: \mathcal{X} , \mathcal{U} , $p_f(\mathbf{x}'|\mathbf{x}, \mathbf{u})$, $\ell(\mathbf{x}, \mathbf{u})$
- First-Exit Problem:
 - State space: $\tilde{\mathcal{X}} = \mathcal{X} \cup \{\tau\}$ and $\mathcal{T} = \{\tau\}$ where τ is a virtual terminal state
 - Control space: $\tilde{\mathcal{U}} = \mathcal{U}$
 - Motion model:

$$\begin{split} \tilde{p}_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) &= \gamma p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) & \text{for } \mathbf{x}' \neq \tau \\ \tilde{p}_f(\tau \mid \mathbf{x}, \mathbf{u}) &= 1 - \gamma, \\ \tilde{p}_f(\mathbf{x}' \mid \tau, \mathbf{u}) &= 0, & \text{for } \mathbf{x}' \neq \tau \\ \tilde{p}_f(\tau \mid \tau, \mathbf{u}) &= 1, \end{split}$$

- Stage cost: $\tilde{\ell}(\mathbf{x}, \mathbf{u}) = \begin{cases} \ell(\mathbf{x}, \mathbf{u}) & \mathbf{x} \neq \tau \\ 0 & \mathbf{x} = \tau \end{cases}$
- Terminal cost: $\tilde{q}(\mathbf{x}) = \mathbf{0}$
- There is a one-to-one mapping between a policy π̃ of this first-exit problem and a policy π of the discounted problem:

$$ilde{\pi}(\mathbf{x}) = egin{cases} \pi(\mathbf{x}) & \mathbf{x}
eq au \ ext{some } \mathbf{u} \in \mathcal{U}, & \mathbf{x} = au \end{cases}$$

Next, we show that for all $\mathbf{x} \in \mathcal{X}$:

$$ilde{V}^{ ilde{\pi}}(\mathbf{x}) = \mathbb{E}\left[\sum_{t=0}^{T-1} ilde{\ell}(ilde{\mathbf{x}}_t, ilde{\pi}_t(ilde{\mathbf{x}}_t)) \ \Big| \ ilde{\mathbf{x}}_0 = \mathbf{x}
ight] = V^{\pi}(\mathbf{x}) = \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^t \ell(\mathbf{x}_t, \pi_t(\mathbf{x}_t)) \ \Big| \ \mathbf{x}_0 = \mathbf{x}
ight]$$

where the expectations are over $\tilde{\mathbf{x}}_{1:T}$ and $\mathbf{x}_{1:T}$ and subject to transitions induced by $\tilde{\pi}$ and π , respectively

Conclusion: since Ṽ^π(x) = V^π(x) for all x ∈ X and π̃ maps to π, by solving the auxiliary First-Exit Problem, we can obtain an optimal policy and the optimal value for the Discounted Problem

$$\begin{split} \mathbb{E}_{\tilde{\mathbf{x}}_{1:\mathcal{T}}}[\tilde{\ell}(\tilde{\mathbf{x}}_{t},\tilde{\pi}_{t}(\tilde{\mathbf{x}}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}] &= \sum_{\bar{\mathbf{x}}_{1:\mathcal{T}}\in\tilde{\mathcal{X}}^{\mathcal{T}}} \tilde{\ell}(\bar{\mathbf{x}}_{t},\tilde{\pi}_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\tilde{\mathbf{x}}_{1:\mathcal{T}} = \bar{\mathbf{x}}_{1:\mathcal{T}} \mid \mathbf{x}_{0} = \mathbf{x}) \\ &= \sum_{\bar{\mathbf{x}}_{t}\in\tilde{\mathcal{X}}} \tilde{\ell}(\bar{\mathbf{x}}_{t},\tilde{\pi}_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\tilde{\mathbf{x}}_{t} = \bar{\mathbf{x}}_{t} \mid \mathbf{x}_{0} = \mathbf{x}) \\ \frac{\tilde{\ell}(\tau,\mathbf{u})=0}{\tilde{\mathcal{X}}=\mathcal{X}\cup\{\tau\}} \sum_{\bar{\mathbf{x}}_{t}\in\mathcal{X}} \tilde{\ell}(\bar{\mathbf{x}}_{t},\tilde{\pi}_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\tilde{\mathbf{x}}_{t} = \bar{\mathbf{x}}_{t},\tilde{\mathbf{x}}_{t} \neq \tau \mid \mathbf{x}_{0} = \mathbf{x}) \\ &= \sum_{\bar{\mathbf{x}}_{t}\in\mathcal{X}} \tilde{\ell}(\bar{\mathbf{x}}_{t},\tilde{\pi}_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\tilde{\mathbf{x}}_{t} = \bar{\mathbf{x}}_{t} \mid \mathbf{x}_{0} = \mathbf{x}, \tilde{\mathbf{x}}_{t} \neq \tau) \mathbb{P}(\tilde{\mathbf{x}}_{t} \neq \tau \mid \mathbf{x}_{0} = \mathbf{x}) \\ &\stackrel{(?)}{=} \sum_{\bar{\mathbf{x}}_{t}\in\mathcal{X}} \tilde{\ell}(\bar{\mathbf{x}}_{t},\tilde{\pi}_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\mathbf{x}_{t} = \bar{\mathbf{x}}_{t} \mid \mathbf{x}_{0} = \mathbf{x}) \gamma^{t} \\ &= \sum_{\bar{\mathbf{x}}_{t}\in\mathcal{X}} \ell(\bar{\mathbf{x}}_{t},\pi_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\mathbf{x}_{t} = \bar{\mathbf{x}}_{t} \mid \mathbf{x}_{0} = \mathbf{x}) \gamma^{t} \\ &= \mathbb{E}_{\mathbf{x}_{1:\mathcal{T}}} \left[\gamma^{t}\ell(\mathbf{x}_{t},\pi_{t}(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x} \right] \end{split}$$

(?) Show that for transitions $\tilde{p}_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u})$ under $\tilde{\pi}$, $\mathbb{P}(\tilde{\mathbf{x}}_t \neq 0 \mid \mathbf{x}_0 = \mathbf{x}) = \gamma^t$ For any $\mathbf{x} \in \mathcal{X}$ and $\mathbf{u} \in \tilde{\mathcal{U}}$:

$$\mathbb{P}(\tilde{\mathsf{x}}_{t+1} \neq \tau \mid \tilde{\mathsf{x}}_t = \mathsf{x}) = 1 - \tilde{\rho}_f(\tau \mid \mathsf{x}, \mathsf{u}) = \gamma$$

Similarly, for any $\mathbf{x} \in \mathcal{X}$

$$\begin{split} \mathbb{P}(\tilde{\mathbf{x}}_{t+2} \neq \tau \mid \tilde{\mathbf{x}}_t = \mathbf{x}) &= \sum_{\mathbf{x}' \in \mathcal{X}} \mathbb{P}(\tilde{\mathbf{x}}_{t+2} \neq \tau \mid \tilde{\mathbf{x}}_{t+1} = \mathbf{x}', \tilde{\mathbf{x}}_t = \mathbf{x}) \mathbb{P}(\tilde{\mathbf{x}}_{t+1} = \mathbf{x}' \mid \tilde{\mathbf{x}}_t = \mathbf{x}) \\ &= \sum_{\mathbf{x}' \in \mathcal{X}} \mathbb{P}(\tilde{\mathbf{x}}_{t+2} \neq \tau \mid \tilde{\mathbf{x}}_{t+1} = \mathbf{x}') \mathbb{P}(\tilde{\mathbf{x}}_{t+1} = \mathbf{x}' \mid \tilde{\mathbf{x}}_t = \mathbf{x}) \\ &= \gamma \sum_{\mathbf{x}' \in \mathcal{X}} \tilde{p}_f(\mathbf{x}' \mid \mathbf{x}, \tilde{\pi}(\mathbf{x})) = \gamma^2 \end{split}$$

▶ Similarly, we can show that for any m > 0: $\mathbb{P}(\mathbf{\tilde{x}}_{t+m} \neq \tau \mid \mathbf{x}_t = \mathbf{x}) = \gamma^m$

(?) Show that $\mathbb{P}(\tilde{\mathbf{x}}_t = \bar{\mathbf{x}}_t \mid \mathbf{x}_0 = \mathbf{x}, \tilde{\mathbf{x}}_t \neq \tau) = \mathbb{P}(\mathbf{x}_t = \bar{\mathbf{x}}_t \mid \mathbf{x}_0 = \mathbf{x})$ For any $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ and $\mathbf{u} = \tilde{\pi}_t(\mathbf{x}) = \pi_t(\mathbf{x})$, we have

$$\begin{split} \mathbb{P}(\tilde{\mathbf{x}}_{t+1} = \mathbf{x}' \mid \tilde{\mathbf{x}}_{t+1} \neq \tau, \tilde{\mathbf{x}}_t = \mathbf{x}, \tilde{\mathbf{u}}_t = \mathbf{u}) = \frac{\mathbb{P}(\tilde{\mathbf{x}}_{t+1} = \mathbf{x}', \tilde{\mathbf{x}}_{t+1} \neq \tau \mid \tilde{\mathbf{x}}_t = \mathbf{x}, \tilde{\mathbf{u}}_t = \mathbf{u})}{\mathbb{P}(\tilde{\mathbf{x}}_{t+1} \neq \tau \mid \tilde{\mathbf{x}}_t = \mathbf{x}, \tilde{\mathbf{u}}_t = \mathbf{u})} \\ = \frac{\tilde{p}_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u})}{\gamma} = p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) = \mathbb{P}(\mathbf{x}_{t+1} = \mathbf{x}' \mid \mathbf{x}_t = \mathbf{x}, \mathbf{u}_t = \mathbf{u}) \end{split}$$

Similarly, it can be shown that for $\bar{\mathbf{x}}_t \in \mathcal{X}$:

$$\mathbb{P}(\tilde{\mathbf{x}}_t = \bar{\mathbf{x}}_t \mid \mathbf{x}_0 = \mathbf{x}, \tilde{\mathbf{x}}_t \neq \mathbf{0}) = \mathbb{P}(\mathbf{x}_t = \bar{\mathbf{x}}_t \mid \mathbf{x}_0 = \mathbf{x})$$

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Bellman Equation

Recall the Dynamic Programming algorithm for finite horizon T:

$$V_{T}(\mathbf{x}) = \mathfrak{q}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \\ V_{t}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[V_{t+1}(\mathbf{x}') \right], \quad \forall \mathbf{x} \in \mathcal{X}, t = T - 1, \dots, \tau$$

▶ Bellman Equation: as $T \to \infty$, the sequence ..., $V_{t+1}(\mathbf{x}), V_t(\mathbf{x}), ...$ converges to a fixed point $V(\mathbf{x})$ of the dynamic programming recursion:

$$V(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\}, \quad \forall \mathbf{x} \in \mathcal{X}$$

- Assuming convergence, $V(\mathbf{x})$ is equal to the optimal value $V^*(\mathbf{x})$
- Both $V^*(\mathbf{x})$ and the associated opitmal policy $\pi^*(\mathbf{x})$ are stationary
- ► The Bellman Equation needs to be solved for all x ∈ X simultaneously, which can be done analytically only for very few problems (e.g., the Linear Quadratic Regulator (LQR) problem)

Bellman Equation

• The optimal value function $V^*(\mathbf{x})$ satisfies:

$$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim P_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \right\}, \quad \forall \mathbf{x} \in \mathcal{X}$$

• The value function $V^{\pi}(\mathbf{x})$ of policy π satisfies:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V^{\pi}(\mathbf{x}') \right], \quad \forall \mathbf{x} \in \mathcal{X}$$

The latter can be obtained from:

$$V^{\pi}(\mathbf{x}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$$
$$= \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$$
$$= \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}}(\cdot | \mathbf{x}, \pi(\mathbf{x})) \left[V^{\pi}(\mathbf{x}')\right]$$

Action-Value (Q) Function

- Value Function V^π(x): the expected long-term cost of following policy π starting from state x
- Q Function Q^π(x, u): the expected long-term cost of taking action u in state x and following policy π afterwards:

$$Q^{\pi}(\mathbf{x}, \mathbf{u}) := \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$$
$$= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})} \frac{[V^{\pi}(\mathbf{x}')]}{[Q^{\pi}(\mathbf{x}', \pi(\mathbf{x}'))]}$$
$$= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})} \underbrace{[Q^{\pi}(\mathbf{x}', \pi(\mathbf{x}'))]}_{V^{\pi}(\mathbf{x}')}$$

• Optimal Q Function: $Q^*(\mathbf{x}, \mathbf{u}) := \min_{\pi} Q^{\pi}(\mathbf{x}, \mathbf{u})$

$$\begin{aligned} Q^*(\mathbf{x}, \mathbf{u}) &= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \\ &= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[\min_{\mathbf{u}' \in \mathcal{U}(\mathbf{x}')} Q^*(\mathbf{x}', \mathbf{u}') \right] \\ \pi^*(\mathbf{x}) \in \arg\min_{\mathbf{u} \in \mathcal{U}} Q^*(\mathbf{x}, \mathbf{u}) \end{aligned}$$

Bellman Equations Summary

Value Function:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V^{\pi}(\mathbf{x}') \right], \quad \forall \mathbf{x} \in \mathcal{X}$$

Optimal Value Function:

$$V^{*}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V^{*}(\mathbf{x}') \right] \right\}, \quad \forall \mathbf{x} \in \mathcal{X}$$

Q Function:

$$Q^{\pi}(\mathbf{x}, \mathbf{u}) = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[Q^{\pi}(\mathbf{x}', \pi(\mathbf{x}')) \right], \quad \forall \mathbf{x} \in \mathcal{X}, \mathbf{u} \in \mathcal{U}$$

Optimal Q Function:

$$Q^*(\mathbf{x},\mathbf{u}) = \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[\min_{\mathbf{u}' \in \mathcal{U}(\mathbf{x}')} Q^*(\mathbf{x}',\mathbf{u}')
ight], \quad orall \mathbf{x} \in \mathcal{X}, \mathbf{u} \in \mathcal{U}$$

Bellman Operators

Hamiltonian:

$$H[\mathbf{x}, \mathbf{u}, V] = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right]$$

Policy Evaluation Operator:

$$\mathcal{B}_{\pi}[V](\mathbf{x}) := \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V(\mathbf{x}') \right] = H[\mathbf{x}, \pi(\mathbf{x}), V(\cdot)]$$

Value Operator:

$$\mathcal{B}_{*}[V](\mathbf{x}) := \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\} = \min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V(\cdot)]$$

Policy Q-Evaluation Operator:

$$\mathcal{B}_{\pi}[Q](\mathbf{x},\mathbf{u}) := \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_{f}(\cdot | \mathbf{x},\mathbf{u})} \left[Q(\mathbf{x}',\pi(\mathbf{x}')) \right] = H[\mathbf{x},\mathbf{u},Q(\cdot,\pi(\cdot))]$$

Q-Value Operator:

$$\mathcal{B}_*[Q](\mathbf{x},\mathbf{u}) := \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x},\mathbf{u})} \left[\min_{\mathbf{u}' \in \mathcal{U}} Q(\mathbf{x}',\mathbf{u}') \right] = H[\mathbf{x},\mathbf{u},\min_{\mathbf{u}' \in \mathcal{U}} Q(\cdot,\mathbf{u}')]$$

Finite-Horizon Problem

• Trajectories terminate at fixed $T < \infty$

$$\min_{\pi} V_{\tau}^{\pi}(\mathbf{x}) = \mathbb{E}\left[\gamma^{T-\tau} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell(\mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})) \middle| \mathbf{x}_{\tau} = \mathbf{x}\right]$$

The optimal value V^{*}_t(x) can be found with a single backward pass through time, initialized from V^{*}_T(x) = q(x) and following the recursion:

Bellman Equations (Finite-Horizon Problem)

Hamiltonian: $H[\mathbf{x}, \mathbf{u}, V(\cdot)] = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} [V(\mathbf{x}')]$ Policy Evaluation: $V_{t}^{\pi}(\mathbf{x}) = Q_{t}^{\pi}(\mathbf{x}, \pi_{t}(\mathbf{x})) = H[\mathbf{x}, \pi_{t}(\mathbf{x}), V_{t+1}^{\pi}(\cdot)]$ Bellman Equation: $V_{t}^{*}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} Q_{t}^{*}(\mathbf{x}, \mathbf{u}) = \min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V_{t+1}^{*}(\cdot)]$ Optimal Policy: $\pi_{t}^{*}(\mathbf{x}) = \arg\min_{\mathbf{u} \in \mathcal{U}} Q_{t}^{*}(\mathbf{x}, \mathbf{u}) = \arg\min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V_{t+1}^{*}(\cdot)]$

Discounted Problem

• Trajectories continue forever but costs are discounted via $\gamma \in [0, 1)$:

$$\min_{\pi} V^{\pi}(\mathbf{x}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \middle| \mathbf{x}_{0} = \mathbf{x}\right]$$

Bellman Equations (Discounted Problem)

Hamiltonian:	$H[\mathbf{x}, \mathbf{u}, V(\cdot)] = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim P_f(\cdot \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right]$
Policy Evaluation:	$V^{\pi}(\mathbf{x}) = Q^{\pi}(\mathbf{x},\pi(\mathbf{x})) = H[\mathbf{x},\pi(\mathbf{x}),V^{\pi}(\cdot)]$
Bellman Equation:	$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} Q^*(\mathbf{x}, \mathbf{u}) = \min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$
Optimal Policy:	$\pi^*(\mathbf{x}) = \argmin_{\mathbf{u} \in \mathcal{U}} Q^*(\mathbf{x}, \mathbf{u}) = \argmin_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$

First-Exit Problem

Trajectories terminate at T := inf {t ≥ 1 | x_t ∈ T}, the first passage time from initial state x₀ to a terminal state x_t ∈ T ⊆ X:

$$\min_{\pi} V^{\pi}(\mathbf{x}) = \mathbb{E}\left[\mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=0}^{T-1} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \middle| \mathbf{x}_{0} = \mathbf{x} \right]$$

▶ At terminal states, $V^*(\mathbf{x}) = V^{\pi}(\mathbf{x}) = \mathfrak{q}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{T}$

At other states, the following are satisfied:

Bellman Equations (First-Exit Problem)

Hamiltonian:	$H[\mathbf{x},\mathbf{u},V(\cdot)] = \ell(\mathbf{x},\mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot \mid \mathbf{x},\mathbf{u})} \left[V(\mathbf{x}') ight]$
Policy Evaluation:	$V^{\pi}(\mathbf{x}) = Q^{\pi}(\mathbf{x},\pi(\mathbf{x})) = H[\mathbf{x},\pi(\mathbf{x}),V^{\pi}(\cdot)]$
Bellman Equation:	$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} Q^*(\mathbf{x}, \mathbf{u}) = \min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$
Optimal Policy:	$\pi^*(\mathbf{x}) = \arg\min_{\mathbf{u}\in\mathcal{U}} Q^*(\mathbf{x},\mathbf{u}) = \arg\min_{\mathbf{u}\in\mathcal{U}} H[\mathbf{x},\mathbf{u},V^*(\cdot)]$

Bellman Equation Algorithms

To determine the value function of policy π in either the Discounted or First-Exit Problem, we need to solve a **Policy Evaluation equation**:

- Policy Evaluation: $V^{\pi}(\mathbf{x}) = H[\mathbf{x}, \pi(\mathbf{x}), V^{\pi}(\cdot)]$
- Policy Q-Evaluation: $Q^{\pi}(\mathbf{x}, \mathbf{u}) = H[\mathbf{x}, \mathbf{u}, Q^{\pi}(\cdot, \pi(\cdot))]$
- The Policy Evaluation equations can be solved by:
 - Iterative Policy Evaluation
 - Linear System Solution (only for finite state space X)

To the determine the optimal value function in either the Discounted or First-Exit Problem, we need to solve a **Bellman equation**:

- Bellman Equation: $V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$
- Q-Bellman Equation: $Q^*(\mathbf{x}, \mathbf{u}) = H[\mathbf{x}, \mathbf{u}, \min_{\mathbf{u}' \in \mathcal{U}} Q^*(\cdot, \mathbf{u}')]$

The Bellman equations can be solved by:

- Value Iteration
- Policy Iteration
- Linear Programming (only for finite state space X)

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Policy Evaluation

Policy Evaluation Theorem (Discounted Problem)

The value function $V^{\pi}(\mathbf{x})$ of policy π is the unique solution of:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V^{\pi}(\mathbf{x}') \right], \qquad \forall \mathbf{x} \in \mathcal{X}.$$

If $\gamma \in [0, 1)$, for any initial condition $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^{\pi}(\mathbf{x})$:

$$V_{k+1}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V_k(\mathbf{x}') \right], \qquad \forall \mathbf{x} \in \mathcal{X}.$$

- The PE algorithm requires infinite iterations for $V_k(\mathbf{x})$ to converge to $V^{\pi}(\mathbf{x})$
- In practice, the PE algorithm is terminated when |V_{k+1}(**x**) − V_k(**x**)| < ε for all **x** ∈ ℋ and some threshold ε

Policy Evaluation

▶ Proper policy for first-exit problem: a policy π for which there exists an integer *m* such that $\mathbb{P}(\mathbf{x}_m \in \mathcal{T} \mid \mathbf{x}_0 = \mathbf{x}) > 0$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$

Policy Evaluation Theorem (First-Exit Problem)

The value function $V^{\pi}(\mathbf{x})$ of policy π is the unique solution of:

$$\begin{split} V^{\pi}(\mathbf{x}) &= \mathfrak{q}(\mathbf{x}), & \forall \mathbf{x} \in \mathcal{T}, \\ V^{\pi}(\mathbf{x}) &= \ell(\mathbf{x}, \pi(\mathbf{x})) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V^{\pi}(\mathbf{x}') \right], & \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}. \end{split}$$

If π is a proper policy, for any initial condition $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^{\pi}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$:

$$V_{k+1}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V_k(\mathbf{x}') \right], \qquad \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}.$$

Policy Evaluation (Discounted Finite-State Problem) \blacktriangleright Let $\mathcal{X} = \{1, ..., n\}$

- ► Let $\mathbf{v}_i := V^{\pi}(i)$, $\ell_i := \ell(i, \pi(i))$, $P_{ij} := p_f(j \mid i, \pi(i))$ for i, j = 1, ..., n
- Policy evaluation:

$$\mathbf{v} = \boldsymbol{\ell} + \gamma P \mathbf{v} \qquad \Rightarrow \qquad (I - \gamma P) \mathbf{v} = \boldsymbol{\ell}$$

Existence of solution: The matrix P has eigenvalues with modulus ≤ 1 . All eigenvalues of γP have modulus < 1, so $(\gamma P)^T \rightarrow 0$ as $T \rightarrow \infty$ and $(I - \gamma P)^{-1}$ exists.

▶ The Policy Evaluation Theorem is an iterative solution to the linear system:

$$\mathbf{v}_{1} = \boldsymbol{\ell} + \gamma P \mathbf{v}_{0}$$

$$\mathbf{v}_{2} = \boldsymbol{\ell} + \gamma P \mathbf{v}_{1} = \boldsymbol{\ell} + \gamma P \boldsymbol{\ell} + (\gamma P)^{2} \mathbf{v}_{0}$$

$$\vdots$$

$$\mathbf{v}_{k} = (I + \gamma P + (\gamma P)^{2} + \ldots + (\gamma P)^{k-1})\boldsymbol{\ell} + (\gamma P)^{k} \mathbf{v}_{0}$$

$$\vdots$$

$$\mathbf{v}_{\infty} \rightarrow (I - \gamma P)^{-1} \boldsymbol{\ell}$$

Policy Evaluation (First-Exit Finite-State Problem)

- ▶ Let $X = N \cup T$ and $P_{ij} := p_f(j \mid i, \pi(i))$ for $i, j \in N \cup T$
- ▶ Let $\mathbf{q}_i := \mathbf{q}(i)$ for $i \in \mathcal{T}$ and $\mathbf{v}_i := V^{\pi}(i)$, $\boldsymbol{\ell}_i := \ell(i, \pi(i))$ for $i \in \mathcal{N}$
- Policy evaluation:

$$\mathbf{v} = \boldsymbol{\ell} + P_{\mathcal{N}\mathcal{N}}\mathbf{v} + P_{\mathcal{N}\mathcal{T}}\mathbf{q} \qquad \Rightarrow \qquad (I - P_{\mathcal{N}\mathcal{N}})\mathbf{v} = \boldsymbol{\ell} + P_{\mathcal{N}\mathcal{T}}\mathbf{q}$$

- Existence of solution: A unique solution for **v** exists as long as π is a proper policy. By the Chapman-Kolmogorov equation, $[P^k]_{ij} = \mathbb{P}(\mathbf{x}_k = j \mid \mathbf{x}_0 = i)$ and since π is proper, $[P^k]_{ij} \to 0$ as $k \to \infty$ for all $i, j \in \mathcal{X} \setminus \mathcal{T}$. Since $P^k_{\mathcal{N}\mathcal{N}}$ vanishes as $k \to \infty$, all eigenvalues of $P_{\mathcal{N}\mathcal{N}}$ must have modulus less than 1 and $(I P_{\mathcal{N}\mathcal{N}})^{-1}$ exists.
- The Policy Evaluation Theorem is an iterative solution to the linear system:

$$\begin{split} \mathbf{v}_{1} &= \boldsymbol{\ell} + P_{\mathcal{NT}} \mathbf{q} + P_{\mathcal{NN}} \mathbf{v}_{0} \\ \mathbf{v}_{2} &= \boldsymbol{\ell} + P_{\mathcal{NT}} \mathbf{q} + P_{\mathcal{NN}} \mathbf{v}_{1} = \boldsymbol{\ell} + P_{\mathcal{NT}} \mathbf{q} + P_{\mathcal{NN}} \left(\boldsymbol{\ell} + P_{\mathcal{NT}} \mathbf{q} \right) + P_{\mathcal{NN}}^{2} \mathbf{v}_{0} \\ \mathbf{v}_{\infty} &\to (I - P_{\mathcal{NN}})^{-1} \left(\boldsymbol{\ell} + P_{\mathcal{NT}} \mathbf{q} \right) \end{split}$$

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Value Iteration

Value Iteration Theorem (Discounted Problem)

The optimal value function $V^*(\mathbf{x})$ is the unique solution of:

$$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X}.$$

If $\gamma \in [0, 1)$, for any initial condition $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^*(\mathbf{x})$:

$$V_{k+1}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V_k(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X}.$$

- ► The VI algorithm is an infinite-horizon equivalent of the DP algorithm (V₀(x) in VI corresponds to V_{T→∞}(x) in DP)
- ▶ VI requires infinite iterations for $V_k(\mathbf{x})$ to converge to $V^*(\mathbf{x})$
- In practice, the VI algorithm is terminated when |V_{k+1}(**x**) − V_k(**x**)| < ε for all **x** ∈ X and some threshold ε

Gauss-Seidel Value Iteration

A regular VI implementation stores the values from a previous iteration and updates them for all states simultaneously:

$$egin{aligned} &\hat{V}(\mathbf{x}) \leftarrow \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim \mathcal{P}_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}')
ight]
ight\}, \qquad orall \mathbf{x} \in \mathcal{X} \\ &V(\mathbf{x}) \leftarrow \hat{V}(\mathbf{x}), \qquad orall \mathbf{x} \in \mathcal{X} \end{aligned}$$

Gauss-Seidel Value Iteration updates the values in place:

$$V(\mathbf{x}) \leftarrow \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X}$$

 Gauss-Seidel VI converges and often leads to faster convergence and requires less memory than VI

Value Iteration

Value Iteration Theorem (First-Exit Problem)

The optimal value function $V^*(\mathbf{x})$ is the unique solution of:

$$\begin{split} V^*(\mathbf{x}) &= \mathfrak{q}(\mathbf{x}), & \forall \mathbf{x} \in \mathcal{T}, \\ V^*(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim \mathcal{P}_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \right\}, & \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}. \end{split}$$

If a proper policy exists, for any initial condition $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^*(\mathbf{x})$:

$$V_{k}(\mathbf{x}) = \mathfrak{q}(\mathbf{x}), \qquad \forall \mathbf{x} \in \mathcal{T}, \forall k,$$

$$V_{k+1}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[V_{k}(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}.$$

Contraction in Discounted Problems

Contraction Mapping

Let $\mathcal{F}(\mathcal{X})$ denote the linear space of bounded functions $V : \mathcal{X} \mapsto \mathbb{R}$ with norm $\|V\|_{\infty} := \sup_{\mathbf{x} \in \mathcal{X}} |V(\mathbf{x})|$. A function $\mathcal{B} : \mathcal{F}(\mathcal{X}) \mapsto \mathcal{F}(\mathcal{X})$ is called a *contraction mapping* if there exists a scalar $\alpha < 1$ such that:

$$\|\mathcal{B}[V] - \mathcal{B}[V']\|_{\infty} \le \alpha \|V - V'\|_{\infty} \qquad \forall V, V' \in \mathcal{F}(\mathcal{X})$$

Contraction Mapping Theorem

If $\mathcal{B} : \mathcal{F}(\mathcal{X}) \mapsto \mathcal{F}(\mathcal{X})$ is a contraction mapping, then there exists a unique function $V^* \in \mathcal{F}(\mathcal{X})$ such that $\mathcal{B}[V^*] = V^*$.

Contraction in Discounted Problems

Properties of $\mathcal{B}_*[V]$

The operator $\mathcal{B}_{*}[V](\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} [V(\mathbf{x}')] \right\}$ satisfies: 1. Monotonicity: $V(\mathbf{x}) \leq V'(\mathbf{x}) \Rightarrow \mathcal{B}_{*}[V](\mathbf{x}) \leq \mathcal{B}_{*}[V'](\mathbf{x})$ 2. γ -Additivity: $\mathcal{B}_{*}[V + d](\mathbf{x}) = \mathcal{B}_{*}[V](\mathbf{x}) + \gamma d$ for $d \in \mathbb{R}$ 3. Contraction: $\|\mathcal{B}_{*}[V] - \mathcal{B}_{*}[V']\|_{\infty} \leq \gamma \|V - V'\|_{\infty}$

Proof of Contraction: Let $d = \sup_{\mathbf{x}} |V(\mathbf{x}) - V'(\mathbf{x})|$. Then:

$$V(\mathbf{x}) - d \leq V'(\mathbf{x}) \leq V(\mathbf{x}) + d, \quad \forall \mathbf{x} \in \mathcal{X}$$

Apply \mathcal{B}_* to both sides and use monotonicity and γ -additivity:

$$\mathcal{B}_*[V](\mathbf{x}) - \gamma d \leq \mathcal{B}_*[V'](\mathbf{x}) \leq \mathcal{B}_*[V](\mathbf{x}) + \gamma d, \quad orall \mathbf{x} \in \mathcal{X}$$

Proof of VI Convergence in Discounted Problems

- $\mathcal{B}_*[V]$ is monotone, γ -additive, and a contraction mapping
- By the contraction mapping theorem, there exists V*(x) such that B_{*}[V*] = V*
- Value Iteration Algorithm:

$$egin{aligned} V_0(\mathbf{x}) &\equiv 0 \ V_{k+1}(\mathbf{x}) &= \mathcal{B}_*[V_k](\mathbf{x}) \end{aligned}$$

- Since $\mathcal{B}_*[V]$ is a contraction, the sequence V_k is Cauchy, i.e., $\|V_{k+1} - V_k\|_{\infty} \le \gamma^k \|V_1 - V_0\|_{\infty}$
- If (𝓕(𝒜), || · ||∞) is a complete metric space, then V_k has a limit V* ∈ 𝓕(𝒜) and V* is a fixed point of 𝔅_{*}

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Discounted Problem Policy Iteration (PI)

- ▶ PI is an alternative algorithm to VI for computing $V^*(\mathbf{x})$
- PI iterates over policies instead of values
- ▶ Policy Iteration: repeat until $V^{\pi'}(\mathbf{x}) = V^{\pi}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$:
 - 1. **Policy Evaluation**: given a policy π , compute V^{π} :

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}')
ight], \qquad orall \mathbf{x} \in \mathcal{X}$$

2. **Policy Improvement**: given V^{π} , obtain a new policy π' :

$$\pi'(\mathbf{x}) \in \underset{\mathbf{u} \in \mathcal{U}}{\arg\min} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X}$$

First-Exit Problem Policy Iteration (PI)

Policy Iteration: repeat until V^{π'}(x) = V^π(x) for all x ∈ X \ T:
 1. Policy Evaluation: given a policy π, compute V^π:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}')
ight], \qquad orall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

2. **Policy Improvement**: given V^{π} , obtain a new policy π' :

$$\pi'(\mathbf{x}) = \operatorname*{arg\,min}_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

Policy Improvement Theorem

Let π and π' be such that $V^{\pi}(\mathbf{x}) \geq Q^{\pi}(\mathbf{x}, \pi'(\mathbf{x}))$ for all $\mathbf{x} \in \mathcal{X}$. Then, π' is at least as good as π , i.e., $V^{\pi}(\mathbf{x}) \geq V^{\pi'}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$

► Proof:

$$V^{\pi}(\mathbf{x}) \geq Q^{\pi}(\mathbf{x}, \pi'(\mathbf{x})) = \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} [V^{\pi}(\mathbf{x}')]$$

$$\geq \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} [Q^{\pi}(\mathbf{x}', \pi'(\mathbf{x}'))]$$

$$= \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} \{\ell(\mathbf{x}', \pi'(\mathbf{x}')) + \gamma \mathbb{E}_{\mathbf{x}'' \sim p_{f}(\cdot | \mathbf{x}', \pi'(\mathbf{x}'))} V^{\pi}(\mathbf{x}'')\}$$

$$\geq \cdots \geq \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi'(\mathbf{x}_{t})) \middle| \mathbf{x}_{0} = \mathbf{x} \right] = V^{\pi'}(\mathbf{x})$$

Theorem: Optimality of PI

Suppose that \mathcal{X} is finite and:

• $\gamma \in [0, 1)$ (Discounted Problem),

there exists a proper policy (First-Exit Problem).

Then, the Policy Iteration algorithm converges to an optimal policy after a finite number of steps.

Proof of Optimality of PI (First-Exit Problem)

- Let π be a proper policy with value V^{π} obtained from Policy Evaluation
- \blacktriangleright Let π' be the policy obtained from Policy Improvement
- ▶ By definition of Policy Improvement: $V^{\pi}(\mathbf{x}) \ge Q^{\pi}(\mathbf{x}, \pi'(\mathbf{x}))$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$
- ▶ By the Policy Improvement Thm., $V^{\pi}(\mathbf{x}) \ge V^{\pi'}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$
- Since π is proper, $V^{\pi}(\mathbf{x}) < \infty$ for all $\mathbf{x} \in \mathcal{X}$, and hence π' is proper
- Since π' is proper, the Policy Evaluation step has a unique solution $V^{\pi'}$
- Since the number of stationary policies is finite, eventually V^π = V^{π'} after a finite number of steps
- Once V^{π} has converged, it follows from the Policy Improvement step:

$$V^{\pi'}(\mathbf{x}) = V^{\pi}(\mathbf{x}) = \min_{\mathbf{u}\in\mathcal{U}} \left\{ \ell(\mathbf{x},\mathbf{u}) + \sum_{\mathbf{x}'\in\mathcal{X}} \tilde{p}_f(\mathbf{x}'\mid\mathbf{x},\mathbf{u})V^{\pi}(\mathbf{x}')
ight\}, \quad \mathbf{x}\in\mathcal{X}\setminus\mathcal{T}$$

Since this is the Bellman equation for the first-exit problem, we have converged to an optimal policy π^{*} = π with optimal value V^{*} = V^π

Generalized Policy Iteration

- ▶ PI and VI have a lot in common
- Rewrite VI as follows:
 - 2. **Policy Improvement**: Given $V_k(\mathbf{x})$ obtain a policy:

$$\pi(\mathbf{x}) \in \operatorname*{arg\,min}_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V_k(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X}$$

1. Value Update: Given $\pi(\mathbf{x})$ and $V_k(\mathbf{x})$, compute

$$V_{k+1}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot \mid \mathbf{x}, \mathbf{u})} \left[V_k(\mathbf{x}')
ight], \qquad orall \mathbf{x} \in \mathcal{X}$$

- Value Update is a single step of the iterative Policy Evaluation algorithm
- PI solves the Policy Evaluation equation completely, which is equivalent to running the Value Update step of VI an infinite number of times
- Generalized Policy Iteration: assuming the Value Update and Policy Improvement steps are executed an infinite number of times for all states, all combinations of the following converge:
 - Any number of Value Update steps in between Policy Improvement steps
 - Any number of states updated at each Value Update step
 - Any number of states updated at each Policy Improvement step

Complexity of VI and PI

- \blacktriangleright Consider the complexity of VI and PI for a finite state space ${\cal X}$
- Complexity of VI per Iteration: O(|X|²|U|): evaluating the expectation (i.e., sum over x') requires |X| operations and there are |X| minimizations over |U| possible control inputs
- Complexity of PI per Iteration: O(|X|² (|X| + |U|)): the Policy Evaluation step requires solving a system of |X| equations in |X| unknowns (O(|X|³)), while the Policy Improvement step has the same complexity as one iteration of VI
- PI is more computationally expensive than VI
- Theoretically it takes an infinite number of iterations for VI to converge
- ▶ PI converges in $|U|^{|X|}$ iterations (all possible policies) in the worst case

Value Iteration

▶ V^* is a fixed point of \mathcal{B}_* : V_0 , $\mathcal{B}_*[V_0]$, $\mathcal{B}^2_*[V_0]$, $\mathcal{B}^3_*[V_0]$,... $\to V^*$

Algorithm Value Iteration

- 1: Initialize V_0
- 2: for $k = 0, 1, 2, \dots$ do
- 3: $V_{k+1} = \mathcal{B}_{*}[V_k]$

▶ Q^* is a fixed point of \mathcal{B}_* : Q_0 , $\mathcal{B}_*[Q_0]$, $\mathcal{B}^2_*[Q_0]$, $\mathcal{B}^3_*[Q_0]$,... $\to Q^*$

Algorithm Q-Value Iteration

- 1: Initialize Q_0
- 2: for $k = 0, 1, 2, \dots$ do
- $3: \qquad Q_{k+1} = \mathcal{B}_*\left[Q_k\right]$

Policy Iteration

▶ Policy Evaluation: V_0 , $\mathcal{B}_{\pi}[V_0]$, $\mathcal{B}_{\pi}^2[V_0]$, $\mathcal{B}_{\pi}^3[V_0]$,... $\rightarrow V^{\pi}$

Algorithm Policy Iteration

Policy Improvement
Policy Evaluation

▶ Policy Q-Evaluation: Q_0 , $\mathcal{B}_{\pi}[Q_0]$, $\mathcal{B}_{\pi}^2[Q_0]$, $\mathcal{B}_{\pi}^3[Q_0]$,... $\rightarrow Q^{\pi}$

Algorithm Q-Policy Iteration

1: Initialize Q_0 2: for k = 0, 1, 2... do 3: $\pi_{k+1}(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg \min} Q_k(\mathbf{x}, \mathbf{u})$ 4: $Q_{k+1} = \mathcal{B}_{\pi_{k+1}}^{\infty} [Q_k]$

Policy Improvement

▷ Policy Evaluation

Generalized Policy Iteration

Algorithm Generalized Policy Iteration		
1: Initialize V ₀		
2: for $k = 0, 1, 2, \dots$ do		
3: $\pi_{k+1}(\mathbf{x}) = rg\min H[\mathbf{x},\mathbf{u},V_k(\cdot)]$	Policy Improvement	
$u \in \mathcal{U}(x)$		
4: $V_{k+1} = \mathcal{B}_{\pi_{k+1}}^n [V_k], \text{ for } n \ge 1$	Policy Evaluation	
·		

Algorithm Generalized Q-Policy Iteration

1: Initialize Q_0	
2: for $k = 0, 1, 2, \dots$ do	
3: $\pi_{k+1}(\mathbf{x}) = \arg\min Q_k(\mathbf{x}, \mathbf{u})$	Policy Improvement
$u \in \mathcal{U}(x)$	
4: $Q_{k+1} = \mathcal{B}^n_{\pi_{k+1}}\left[Q_k ight], ext{ for } n \geq 1$	Policy Evaluation

Example: Frozen Lake Problem

Winter is here

- You and your friends were tossing around a frisbee at the park when you made a wild throw that left the frisbee out in the middle of the lake
- The water is mostly frozen but there are a few holes where the ice has melted
- If you step into one of those holes, you fall into the freezing water
- There is an international frisbee shortage so it is absolutely imperative that you navigate across the lake and retrieve the disc
- However, the ice is slippery so you cannot always move in the direction you intend

Example: Frozen Lake Problem

- S : starting point, safe
- F : frozen surface, safe
- ► H : hole, fall to your doom
- ► G : goal, where the frisbee is located

$$\blacktriangleright \ \mathcal{X} = \{0, 1, \dots, 15\}$$

- $\mathcal{U} = {\text{Left}(0), \text{Down}(1), \text{Right}(2), \text{Up}(3)}$
- You receive a reward of 1 if you reach the goal, and zero otherwise

An input $u \in U$ succeeds 80% of the time. A neighboring control is executed in the other 50% of the time due to slip, e.g.,

$$x' \mid x = 9, u = 1 = \begin{cases} 13, & \text{with prob. 0.8} \\ 8, & \text{with prob. 0.1} \\ 10, & \text{with prob. 0.1} \end{cases}$$

- The state remains unchanged if a control leads outside of the map
- An episode ends when you reach the goal or fall in a hole

Value Iteration on Frozen Lake

(a) t = 0

(b) t = 1

(c) t = 2

(d) t = 3

(e) t = 4

(f) t = 5

Value Iteration on Frozen Lake			
Iteration	$\max_{x} V_{t+1}(x)-V_{t}(x) $	# changed actions	V(0)
0	0.80000	0	0.000
1	0.60800	1	0.000
2	0.51984	2	0.000
3	0.39508	2	0.000
4	0.30026	2	0.000
5	0.25355	2	0.254
6	0.10478	1	0.345
7	0.09657	0	0.442
8	0.03656	0	0.478
9	0.02772	0	0.506
10	0.01111	0	0.517
11	0.00735	0	0.524
12	0.00310	0	0.527
13	0.00190	0	0.529
14	0.00083	0	0.530
15	0.00049	0	0.531
16	0.00022	0	0.531
17	0.00013	0	0.531
18	0.00006	0	0.531
19	0.00003	0	0.531

Policy Iteration on Frozen Lake

(a) t = 0

(b) t = 1

 S+
 E+
 F+
 FF

 E+
 F+
 F+
 F+

 F+
 F+
 F+
 F+

 F+
 F+
 F+
 F+

(c) t = 2

(d) t = 3

(e) t = 4

(f) t = 5

Policy Iteratio	n on Frozen Lake		
Iteration	$ \max_{x} V_{t+1}(x) - V_{t}(x) $	# changed actions	V(0)
0	0.00000	0	0.000
1	0.89296	1	0.000
2	0.88580	9	0.398
3	0.48504	2	0.455
4	0.07573	1	0.531
5	0.00000	0	0.531
6	0.00000	0	0.531
7	0.00000	0	0.531
8	0.00000	0	0.531
9	0.00000	0	0.531
10	0.00000	0	0.531
11	0.00000	0	0.531
12	0.00000	0	0.531
13	0.00000	0	0.531
14	0.00000	0	0.531
15	0.00000	0	0.531
16	0.00000	0	0.531
17	0.00000	0	0.531
18	0.00000	0	0.531
19	0.00000	0	0.531

F

50

Value Iteration vs Policy Iteration

Value Iteration vs Policy Iteration

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Linear Programming Solution to the Bellman Equation

- Consider a Discounted Problem with finite state space \mathcal{X}
- Suppose we initialize VI with V₀ that satisfies a relaxed Bellman equation condition:

$$V_0(\mathbf{x}) \leq \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_0(\mathbf{x}') \right), \qquad \forall \mathbf{x} \in \mathcal{X}$$

• Since \mathcal{B}_* is monotone, applying VI to V_0 leads to:

$$\begin{split} V_{1}(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_{0}(\mathbf{x}') \right) \geq V_{0}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \\ V_{2}(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_{1}(\mathbf{x}') \right) \\ &\geq \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_{0}(\mathbf{x}') \right) = V_{1}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \end{split}$$

Linear Programming Solution to the Bellman Equation

- ▶ The above shows that $V_{k+1}(\mathbf{x}) \ge V_k(\mathbf{x})$ for all k and $\mathbf{x} \in \mathcal{X}$
- ▶ Since VI guarantees that $V_k(\mathbf{x}) \rightarrow V^*(\mathbf{x})$ as $k \rightarrow \infty$, we also have:

$$V^*(\mathbf{x}) \ge V_0(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \quad \Rightarrow \quad \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V^*(\mathbf{x}) \ge \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V_0(\mathbf{x})$$

for any $w(\mathbf{x}) > 0$ for all $\mathbf{x} \in \mathcal{X}$.

The above holds for any V₀ that satisfies:

$$V_0(\mathbf{x}) \leq \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_0(\mathbf{x}') \right), \qquad \forall \mathbf{x} \in \mathcal{X}$$

Since V* satisfies this condition with equality (Bellman Equation), it is the maximal V₀ that satisfies the condition

Linear Programming Solution to the Bellman Equation

LP Solution to Bellman Equation (Discounted Problem)

For finite \mathcal{X} , the solution $V^*(\mathbf{x})$ to the linear program with $w(\mathbf{x}) > 0$:

$$\begin{split} \max_{V} & \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V(\mathbf{x}) \\ \text{s.t.} & V(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V(\mathbf{x}') \right), \qquad \forall \mathbf{u} \in \mathcal{U}, \forall \mathbf{x} \in \mathcal{X} \end{split}$$

also solves the Bellman Equation to yield the optimal value function of an infinite-horizon finite-state discounted stochastic optimal control problem.

An equivalent result holds for the First-Exit Problem

LP Solution to Bellman Equation (Proof)

• Let J^* be the solution to the linear program so that:

$$J^*(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) J^*(\mathbf{x}')\right), \qquad \forall \mathbf{u} \in \mathcal{U}, \forall \mathbf{x} \in \mathcal{X}$$

▶ Since J^* is feasible, it satisfies $J^*(\mathbf{x}) \leq V^*(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$

▶ By contradiction, suppose that $J^* \neq V^*$

• Then, there exists a state $\mathbf{y} \in \mathcal{X}$ such that:

$$J^*(\mathbf{y}) < V^*(\mathbf{y}) \quad \Rightarrow \quad \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) J^*(\mathbf{x}) < \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V^*(\mathbf{x})$$

for any positive $w(\mathbf{x})$ but since V^* solves the Bellman Equation:

$$V^*(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^*(\mathbf{x}')\right), \quad \forall \mathbf{u} \in \mathcal{U}, \forall \mathbf{x} \in \mathcal{X},$$

 V^* is feasible and has higher value than J^* , which is a contradiction.

Dual Linear Program

Dual linear program:

$$\begin{split} \min_{\lambda \geq 0} & \sum_{\mathbf{x} \in \mathcal{X}} \sum_{\mathbf{u} \in \mathcal{U}} \ell(\mathbf{x}, \mathbf{u}) \lambda(\mathbf{x}, \mathbf{u}) \\ \text{s.t.} & \sum_{\mathbf{u}' \in \mathcal{U}} \lambda(\mathbf{x}', \mathbf{u}') = w(\mathbf{x}) + \gamma \sum_{\mathbf{x} \in \mathcal{X}} \sum_{\mathbf{u} \in \mathcal{U}} \lambda(\mathbf{x}, \mathbf{u}) p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}), \qquad \forall \mathbf{x}' \in \mathcal{X} \end{split}$$

If ∑_{x∈X} w(x) = 1, the constraint ensures that λ(x, u) is a probability measure on X × U induced by an optimal policy π:

$$\lambda(\mathbf{x},\mathbf{u}) = \sum_{\mathbf{x}_0 \in \mathcal{X}} w(\mathbf{x}_0) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}^{\pi}(\mathbf{x}_t = \mathbf{x}, \mathbf{u}_t = \mathbf{u} | \mathbf{x}_0)$$

Optimal policy:

$$\pi^*(\mathbf{x}) \in \operatorname*{arg\,min}_{\mathbf{u} \in \mathcal{U}} \lambda(\mathbf{x}, \mathbf{u})$$