
ECE276B: Planning & Learning in Robotics
Lecture 10: Infinite-Horizon Optimal Control

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

2

Finite-Horizon Stochastic Optimal Control

▶ Recall the finite-horizon stochastic optimal control problem:

min
πτ :T−1

V π
τ (xτ) := Exτ+1:T

[
γT−τq(xT) +

T−1∑
t=τ

γt−τ ℓ(xt , πt(xt))

∣∣∣∣ xτ
]

s.t. xt+1 ∼ pf (· | xt , πt(xt)), t = τ, . . . ,T − 1

xt ∈ X , πt(xt) ∈ U

x ∈ X state
u ∈ U control
pf (x′ | x,u) motion model
x′ = f (x,u,w) motion model
ℓ(x,u) stage cost
q(x) terminal cost
T ∈ N planning horizon
γ ∈ [0, 1] discount factor
πt(x) policy function at time t
V π
t (x) value function at state x, time t, under policy πt:T−1

3

Finite-Horizon Deterministic Optimal Control

▶ Finite-horizon deterministic optimal control (DOC) problem:

min
uτ :T−1

V uτ :T−1
τ (xτ) := γT−τq(xT) +

T−1∑
t=τ

γt−τ ℓt(xt ,ut)

s.t. xt+1 = f (xt ,ut), t = τ, . . . ,T − 1

xt ∈ X , ut ∈ U

▶ An open-loop control sequence u∗τ :T−1 is optimal for the DOC problem

▶ The DOC problem is equivalent to the deterministic shortest path (DSP)
problem, which led to the forward Dynamic Programming and Label
Correcting algorithms

4

Infinite-Horizon Stochastic Optimal Control

▶ In this lecture, we consider what happens with the stochastic optimal control
problem as the planning horizon T goes to infinity

▶ We will consider two formulations of the infinite-horizon stochastic optimal
control problem
▶ Discounted Problem: obtained by letting T → ∞ in the finite-horizon

stochastic optimal control problem with γ < 1

▶ First-Exit Problem: obtained by considering stochastic transitions in the
shortest path problem and terminating when the goal region is reached

▶ Just like the DOC and DSP problems, the Discounted Problem and the
First-Exit Problem are equivalent, i.e., one can be converted into the other

5

Discounted Problem
▶ Let T →∞ in the finite-horizon stochastic optimal control problem

▶ The terminal cost q is no longer necessary since the problem never terminates

▶ Assume the motion model pf and the stage cost ℓ are time-invariant

▶ The discount factor γ must be < 1 to ensure that the infinite sum of stage
costs is finite

▶ As T →∞, the time-invariant motion model and stage costs lead to
time-invariant optimal value function V ∗(x) = min

π
V π(x) and associated

optimal policy π∗(x) ∈ argmin
π

V π(x)

▶ Discounted Problem:

V ∗(x) = min
π

V π(x) := E

[∞∑
t=0

γtℓ(xt , π(xt))

∣∣∣∣ x0 = x

]
s.t. xt+1 ∼ pf (· | xt , π(xt)),

xt ∈ X , π(xt) ∈ U

6

First-Exit Problem

▶ Consider a stochastic shortest path problem with state space X and
transitions defined by pf (x′|x,u) with control u ∈ U

▶ Let T ⊆ X be a set of terminal states with terminal cost q(x) for x ∈ T

▶ First-Exit Time: terminate at T := min {t ≥ 0 | xt ∈ T }, the first passage
time from an initial state x0 to a terminal state xt ∈ T

▶ Note that T is a random variable unlike in the finite-horizon problem

▶ First-Exit Problem:

V ∗(x) = min
π

V π(x) := E

[
q(xT) +

T−1∑
t=0

ℓ(xt , π(xt))

∣∣∣∣ x0 = x

]
s.t. xt+1 ∼ pf (· | xt , π(xt)),

xt ∈ X , π(xt) ∈ U

7

From Discounted Problem to First-Exit Problem
▶ Given a Discounted Problem, we can define an equivalent First-Exit problem

▶ Discounted Problem: X , U , pf (x′|x,u), ℓ(x,u)
▶ First-Exit Problem:

▶ State space: X̃ = X ∪ {τ} and T = {τ} where τ is a virtual terminal state
▶ Control space: Ũ = U
▶ Motion model:

p̃f (x
′ | x, u) = γpf (x

′ | x, u) for x′ ̸= τ

p̃f (τ | x, u) = 1− γ,

p̃f (x
′ | τ, u) = 0, for x′ ̸= τ

p̃f (τ | τ, u) = 1,

▶ Stage cost: ℓ̃(x, u) =

{
ℓ(x, u) x ̸= τ

0 x = τ
▶ Terminal cost: q̃(x) = 0
▶ There is a one-to-one mapping between a policy π̃ of this first-exit problem

and a policy π of the discounted problem:

π̃(x) =

{
π(x) x ̸= τ

some u ∈ U , x = τ

8

From Discounted Problem to First-Exit Problem

▶ Next, we show that for all x ∈ X :

Ṽ π̃(x) = E

[
T−1∑
t=0

ℓ̃(x̃t , π̃t(x̃t))

∣∣∣∣ x̃0 = x

]
= V π(x) = E

[
T−1∑
t=0

γtℓ(xt , πt(xt))

∣∣∣∣ x0 = x

]

where the expectations are over x̃1:T and x1:T and subject to transitions
induced by π̃ and π, respectively

▶ Conclusion: since Ṽ π̃(x) = V π(x) for all x ∈ X and π̃ maps to π, by solving
the auxiliary First-Exit Problem, we can obtain an optimal policy and the
optimal value for the Discounted Problem

9

From Discounted Problem to First-Exit Problem

Ex̃1:T [ℓ̃(x̃t ,π̃t(x̃t)) | x0 = x] =
∑

x̄1:T∈X̃T

ℓ̃(x̄t , π̃t(x̄t))P(x̃1:T = x̄1:T | x0 = x)

=
∑
x̄t∈X̃

ℓ̃(x̄t , π̃t(x̄t))P(x̃t = x̄t | x0 = x)

ℓ̃(τ,u)=0
========
X̃=X∪{τ}

∑
x̄t∈X

ℓ̃(x̄t , π̃t(x̄t))P(x̃t = x̄t , x̃t ̸= τ | x0 = x)

=
∑
x̄t∈X

ℓ̃(x̄t , π̃t(x̄t))P(x̃t = x̄t | x0 = x, x̃t ̸= τ)P(x̃t ̸= τ | x0 = x)

(?)
===

∑
x̄t∈X

ℓ̃(x̄t , π̃t(x̄t))P(xt = x̄t | x0 = x)γt

=
∑
x̄t∈X

ℓ(x̄t , πt(x̄t))P(xt = x̄t | x0 = x)γt

= Ex1:T

[
γtℓ(xt , πt(xt)) | x0 = x

]
10

From Discounted Problem to First-Exit Problem

(?) Show that for transitions p̃f (x′ | x,u) under π̃, P(x̃t ̸= 0 | x0 = x) = γt

▶ For any x ∈ X and u ∈ Ũ :

P(x̃t+1 ̸= τ | x̃t = x) = 1− p̃f (τ | x, u) = γ

▶ Similarly, for any x ∈ X

P(x̃t+2 ̸= τ | x̃t = x) =
∑
x′∈X

P(x̃t+2 ̸= τ | x̃t+1 = x′, x̃t = x)P(x̃t+1 = x′ | x̃t = x)

=
∑
x′∈X

P(x̃t+2 ̸= τ | x̃t+1 = x′)P(x̃t+1 = x′ | x̃t = x)

= γ
∑
x′∈X

p̃f (x
′ | x, π̃(x)) = γ2

▶ Similarly, we can show that for any m > 0: P(x̃t+m ̸= τ | xt = x) = γm

11

From Discounted Problem to First-Exit Problem

(?) Show that P(x̃t = x̄t | x0 = x, x̃t ̸= τ) = P(xt = x̄t | x0 = x)
▶ For any x, x′ ∈ X and u = π̃t(x) = πt(x), we have

P(x̃t+1 = x′ |x̃t+1 ̸= τ, x̃t = x, ũt = u) =
P(x̃t+1 = x′, x̃t+1 ̸= τ | x̃t = x, ũt = u)

P(x̃t+1 ̸= τ | x̃t = x, ũt = u)

=
p̃f (x

′ | x, u)
γ

= pf (x
′ | x, u) = P(xt+1 = x′ | xt = x, ut = u)

▶ Similarly, it can be shown that for x̄t ∈ X :

P(x̃t = x̄t | x0 = x, x̃t ̸= 0) = P(xt = x̄t | x0 = x)

12

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

13

Bellman Equation

▶ Recall the Dynamic Programming algorithm for finite horizon T :

VT (x) = q(x), ∀x ∈ X
Vt(x) = min

u∈U(x)
ℓ(x,u) + γEx′∼pf (·|x,u) [Vt+1(x

′)] , ∀x ∈ X , t = T − 1, . . . , τ

▶ Bellman Equation: as T →∞, the sequence . . . ,Vt+1(x),Vt(x), . . .
converges to a fixed point V (x) of the dynamic programming recursion:

V (x) = min
u∈U(x)

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

}
, ∀x ∈ X

▶ Assuming convergence, V (x) is equal to the optimal value V ∗(x)

▶ Both V ∗(x) and the associated opitmal policy π∗(x) are stationary

▶ The Bellman Equation needs to be solved for all x ∈ X simultaneously, which
can be done analytically only for very few problems (e.g., the Linear
Quadratic Regulator (LQR) problem)

14

Bellman Equation

▶ The optimal value function V ∗(x) satisfies:

V ∗(x) = min
u∈U(x)

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V

∗(x′)]
}
, ∀x ∈ X

▶ The value function V π(x) of policy π satisfies:

V π(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [V
π(x′)] , ∀x ∈ X

▶ The latter can be obtained from:

V π(x) :=E

[∞∑
t=0

γtℓ(xt , π(xt))

∣∣∣∣ x0 = x

]

=ℓ(x, π(x)) + γE

[∞∑
t=1

γt−1ℓ(xt , π(xt))

∣∣∣∣ x0 = x

]
=ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [V

π(x′)]

15

Action-Value (Q) Function
▶ Value Function V π(x): the expected long-term cost of following policy π

starting from state x

▶ Q Function Qπ(x,u): the expected long-term cost of taking action u in
state x and following policy π afterwards:

Qπ(x,u) := ℓ(x,u) + E

[∞∑
t=1

γtℓ(xt , π(xt))

∣∣∣∣ x0 = x

]
= ℓ(x,u) + γEx′∼pf (·|x,u) [V

π(x′)]

= ℓ(x,u) + γEx′∼pf (·|x,u) [Q
π(x′, π(x′))]︸ ︷︷ ︸

Vπ(x′)

▶ Optimal Q Function: Q∗(x,u) := minπ Q
π(x,u)

Q∗(x,u) = ℓ(x,u) + γEx′∼pf (·|x,u) [V
∗(x′)]

= ℓ(x,u) + γEx′∼pf (·|x,u)

[
min

u′∈U(x′)
Q∗(x′,u′)

]
π∗(x) ∈ argmin

u∈U
Q∗(x,u)

16

Bellman Equations Summary

▶ Value Function:

V π(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [V
π(x′)] , ∀x ∈ X

▶ Optimal Value Function:

V ∗(x) = min
u∈U(x)

{
ℓ(x,u) + γEx′∼pf (·|x,π(x)) [V

∗(x′)]
}
, ∀x ∈ X

▶ Q Function:

Qπ(x,u) = ℓ(x,u) + γEx′∼pf (·|x,u) [Q
π(x′, π(x′))] , ∀x ∈ X ,u ∈ U

▶ Optimal Q Function:

Q∗(x,u) = ℓ(x,u) + γEx′∼pf (·|x,u)

[
min

u′∈U(x′)
Q∗(x′,u′)

]
, ∀x ∈ X ,u ∈ U

17

Bellman Operators
▶ Hamiltonian:

H[x,u,V] = ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

▶ Policy Evaluation Operator:

Bπ[V](x) := ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [V (x′)] = H[x, π(x),V (·)]

▶ Value Operator:

B∗[V](x) := min
u∈U

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

}
= min

u∈U
H[x,u,V (·)]

▶ Policy Q-Evaluation Operator:

Bπ[Q](x,u) := ℓ(x,u) + γEx′∼pf (·|x,u) [Q(x′, π(x′))] = H[x,u,Q(·, π(·))]

▶ Q-Value Operator:

B∗[Q](x,u) := ℓ(x,u) + γEx′∼pf (·|x,u)

[
min
u′∈U

Q(x′,u′)

]
= H[x,u, min

u′∈U
Q(·,u′)]

18

Finite-Horizon Problem

▶ Trajectories terminate at fixed T <∞

min
π

V π
τ (x) = E

[
γT−τq(xT) +

T−1∑
t=τ

γt−τ ℓ(xt , πt(xt))

∣∣∣∣xτ = x

]

▶ The optimal value V ∗
t (x) can be found with a single backward pass through

time, initialized from V ∗
T (x) = q(x) and following the recursion:

Bellman Equations (Finite-Horizon Problem)

Hamiltonian: H[x,u,V (·)] = ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

Policy Evaluation: V π
t (x) = Qπ

t (x, πt(x)) = H[x, πt(x),V
π
t+1(·)]

Bellman Equation: V ∗
t (x) = min

u∈U
Q∗

t (x,u) = min
u∈U

H[x,u,V ∗
t+1(·)]

Optimal Policy: π∗
t (x) = argmin

u∈U
Q∗

t (x,u) = argmin
u∈U

H[x,u,V ∗
t+1(·)]

19

Discounted Problem

▶ Trajectories continue forever but costs are discounted via γ ∈ [0, 1):

min
π

V π(x) = E

[∞∑
t=0

γtℓ(xt , π(xt))

∣∣∣∣x0 = x

]

Bellman Equations (Discounted Problem)

Hamiltonian: H[x,u,V (·)] = ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

Policy Evaluation: V π(x) = Qπ(x, π(x)) = H[x, π(x),V π(·)]

Bellman Equation: V ∗(x) = min
u∈U

Q∗(x,u) = min
u∈U

H[x,u,V ∗(·)]

Optimal Policy: π∗(x) = argmin
u∈U

Q∗(x,u) = argmin
u∈U

H[x,u,V ∗(·)]

20

First-Exit Problem
▶ Trajectories terminate at T := inf {t ≥ 1|xt ∈ T }, the first passage time

from initial state x0 to a terminal state xt ∈ T ⊆ X :

min
π

V π(x) = E

[
q(xT) +

T−1∑
t=0

ℓ(xt , π(xt))

∣∣∣∣x0 = x

]

▶ At terminal states, V ∗(x) = V π(x) = q(x) for all x ∈ T

▶ At other states, the following are satisfied:

Bellman Equations (First-Exit Problem)

Hamiltonian: H[x,u,V (·)] = ℓ(x,u) + Ex′∼pf (·|x,u) [V (x′)]

Policy Evaluation: V π(x) = Qπ(x, π(x)) = H[x, π(x),V π(·)]

Bellman Equation: V ∗(x) = min
u∈U

Q∗(x,u) = min
u∈U

H[x,u,V ∗(·)]

Optimal Policy: π∗(x) = argmin
u∈U

Q∗(x,u) = argmin
u∈U

H[x,u,V ∗(·)]

21

Bellman Equation Algorithms
▶ To determine the value function of policy π in either the Discounted or

First-Exit Problem, we need to solve a Policy Evaluation equation:
▶ Policy Evaluation: V π(x) = H[x, π(x),V π(·)]
▶ Policy Q-Evaluation: Qπ(x, u) = H[x, u,Qπ(·, π(·))]

▶ The Policy Evaluation equations can be solved by:
▶ Iterative Policy Evaluation
▶ Linear System Solution (only for finite state space X)

▶ To the determine the optimal value function in either the Discounted or
First-Exit Problem, we need to solve a Bellman equation:
▶ Bellman Equation: V ∗(x) = min

u∈U
H[x, u,V ∗(·)]

▶ Q-Bellman Equation: Q∗(x, u) = H[x, u, min
u′∈U

Q∗(·, u′)]

▶ The Bellman equations can be solved by:
▶ Value Iteration
▶ Policy Iteration
▶ Linear Programming (only for finite state space X)

22

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

23

Policy Evaluation

Policy Evaluation Theorem (Discounted Problem)

The value function V π(x) of policy π is the unique solution of:

V π(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [V
π(x′)] , ∀x ∈ X .

If γ ∈ [0, 1), for any initial condition V0(x), the sequence Vk(x) generated by the
recursion below converges to V π(x):

Vk+1(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [Vk(x
′)] , ∀x ∈ X .

▶ The PE algorithm requires infinite iterations for Vk(x) to converge to V π(x)

▶ In practice, the PE algorithm is terminated when |Vk+1(x)− Vk(x)| < ϵ for
all x ∈ X and some threshold ϵ

24

Policy Evaluation

▶ Proper policy for first-exit problem: a policy π for which there exists an
integer m such that P(xm ∈ T | x0 = x) > 0 for all x ∈ X \ T

Policy Evaluation Theorem (First-Exit Problem)

The value function V π(x) of policy π is the unique solution of:

V π(x) = q(x), ∀x ∈ T ,
V π(x) = ℓ(x, π(x)) + Ex′∼pf (·|x,π(x)) [V

π(x′)] , ∀x ∈ X \ T .

If π is a proper policy, for any initial condition V0(x), the sequence Vk(x)
generated by the recursion below converges to V π(x) for all x ∈ X \ T :

Vk+1(x) = ℓ(x, π(x)) + Ex′∼pf (·|x,π(x)) [Vk(x
′)] , ∀x ∈ X \ T .

25

Policy Evaluation (Discounted Finite-State Problem)
▶ Let X = {1, . . . , n}
▶ Let vi := V π(i), ℓi := ℓ(i , π(i)), Pij := pf (j | i , π(i)) for i , j = 1, . . . , n

▶ Policy evaluation:

v = ℓ+ γPv ⇒ (I − γP)v = ℓ

▶ Existence of solution: The matrix P has eigenvalues with modulus ≤ 1. All
eigenvalues of γP have modulus < 1, so (γP)T → 0 as T →∞ and
(I − γP)−1 exists.

▶ The Policy Evaluation Theorem is an iterative solution to the linear system:

v1 = ℓ+ γPv0

v2 = ℓ+ γPv1 = ℓ+ γPℓ+ (γP)2v0

...

vk = (I + γP + (γP)2 + . . .+ (γP)k−1)ℓ+ (γP)kv0

...

v∞ → (I − γP)−1ℓ

26

Policy Evaluation (First-Exit Finite-State Problem)

▶ Let X = N ∪ T and Pij := pf (j | i , π(i)) for i , j ∈ N ∪ T

▶ Let qi := q(i) for i ∈ T and vi := V π(i), ℓi := ℓ(i , π(i)) for i ∈ N

▶ Policy evaluation:

v = ℓ+ PNN v + PNT q ⇒ (I − PNN) v = ℓ+ PNT q

▶ Existence of solution: A unique solution for v exists as long as π is a proper
policy. By the Chapman-Kolmogorov equation, [Pk]ij = P(xk = j | x0 = i)
and since π is proper, [Pk]ij → 0 as k →∞ for all i , j ∈ X \ T . Since Pk

NN
vanishes as k →∞, all eigenvalues of PNN must have modulus less than 1
and (I − PNN)−1 exists.

▶ The Policy Evaluation Theorem is an iterative solution to the linear system:

v1 = ℓ+ PNT q+ PNN v0

v2 = ℓ+ PNT q+ PNN v1 = ℓ+ PNT q+ PNN (ℓ+ PNT q) + P2
NN v0

v∞ → (I − PNN)−1 (ℓ+ PNT q)

27

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

28

Value Iteration

Value Iteration Theorem (Discounted Problem)

The optimal value function V ∗(x) is the unique solution of:

V ∗(x) = min
u∈U

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V

∗(x′)]
}
, ∀x ∈ X .

If γ ∈ [0, 1), for any initial condition V0(x), the sequence Vk(x) generated by the
recursion below converges to V ∗(x):

Vk+1(x) = min
u∈U

{
ℓ(x,u) + γEx′∼pf (·|x,u) [Vk(x

′)]
}
, ∀x ∈ X .

▶ The VI algorithm is an infinite-horizon equivalent of the DP algorithm
(V0(x) in VI corresponds to VT→∞(x) in DP)

▶ VI requires infinite iterations for Vk(x) to converge to V ∗(x)

▶ In practice, the VI algorithm is terminated when |Vk+1(x)− Vk(x)| < ϵ for all
x ∈ X and some threshold ϵ

29

Gauss-Seidel Value Iteration

▶ A regular VI implementation stores the values from a previous iteration and
updates them for all states simultaneously:

V̂ (x)← min
u∈U

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

}
, ∀x ∈ X

V (x)← V̂ (x), ∀x ∈ X

▶ Gauss-Seidel Value Iteration updates the values in place:

V (x)← min
u∈U(x)

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

}
, ∀x ∈ X

▶ Gauss-Seidel VI converges and often leads to faster convergence and requires
less memory than VI

30

Value Iteration

Value Iteration Theorem (First-Exit Problem)

The optimal value function V ∗(x) is the unique solution of:

V ∗(x) = q(x), ∀x ∈ T ,
V ∗(x) = min

u∈U

{
ℓ(x,u) + Ex′∼pf (·|x,u) [V

∗(x′)]
}
, ∀x ∈ X \ T .

If a proper policy exists, for any initial condition V0(x), the sequence Vk(x)
generated by the recursion below converges to V ∗(x):

Vk(x) = q(x), ∀x ∈ T , ∀k,
Vk+1(x) = min

u∈U

{
ℓ(x,u) + Ex′∼pf (·|x,u) [Vk(x

′)]
}
, ∀x ∈ X \ T .

31

Contraction in Discounted Problems

Contraction Mapping

Let F(X) denote the linear space of bounded functions V : X 7→ R with norm
∥V ∥∞ := supx∈X |V (x)|. A function B : F(X) 7→ F(X) is called a contraction
mapping if there exists a scalar α < 1 such that:

∥B[V]− B[V ′]∥∞ ≤ α∥V − V ′∥∞ ∀V ,V ′ ∈ F(X)

Contraction Mapping Theorem

If B : F(X) 7→ F(X) is a contraction mapping, then there exists a unique
function V ∗ ∈ F(X) such that B[V ∗] = V ∗.

32

Contraction in Discounted Problems

Properties of B∗[V]

The operator B∗[V](x) = minu∈U
{
ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

}
satisfies:

1. Monotonicity: V (x) ≤ V ′(x) ⇒ B∗[V](x) ≤ B∗[V ′](x)

2. γ-Additivity: B∗[V + d](x) = B∗[V](x) + γd for d ∈ R

3. Contraction: ∥B∗[V]− B∗[V ′]∥∞ ≤ γ∥V − V ′∥∞

▶ Proof of Contraction: Let d = supx |V (x)− V ′(x)|. Then:

V (x)− d ≤ V ′(x) ≤ V (x) + d , ∀x ∈ X

Apply B∗ to both sides and use monotonicity and γ-additivity:

B∗[V](x)− γd ≤ B∗[V ′](x) ≤ B∗[V](x) + γd , ∀x ∈ X

33

Proof of VI Convergence in Discounted Problems

▶ B∗[V] is monotone, γ-additive, and a contraction mapping

▶ By the contraction mapping theorem, there exists V ∗(x) such that
B∗[V ∗] = V ∗

▶ Value Iteration Algorithm:

V0(x) ≡ 0

Vk+1(x) = B∗[Vk](x)

▶ Since B∗[V] is a contraction, the sequence Vk is Cauchy, i.e.,
∥Vk+1 − Vk∥∞ ≤ γk∥V1 − V0∥∞

▶ If (F(X), ∥ · ∥∞) is a complete metric space, then Vk has a limit V ∗ ∈ F(X)
and V ∗ is a fixed point of B∗

34

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

35

Discounted Problem Policy Iteration (PI)

▶ PI is an alternative algorithm to VI for computing V ∗(x)

▶ PI iterates over policies instead of values

▶ Policy Iteration: repeat until V π′
(x) = V π(x) for all x ∈ X :

1. Policy Evaluation: given a policy π, compute V π:

V π(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,u)
[
V π(x′)

]
, ∀x ∈ X

2. Policy Improvement: given V π, obtain a new policy π′:

π′(x) ∈ argmin
u∈U

{
ℓ(x, u) + γEx′∼pf (·|x,u)

[
V π(x′)

]}
, ∀x ∈ X

36

First-Exit Problem Policy Iteration (PI)

▶ Policy Iteration: repeat until V π′
(x) = V π(x) for all x ∈ X \ T :

1. Policy Evaluation: given a policy π, compute V π:

V π(x) = ℓ(x, π(x)) + Ex′∼pf (·|x,u)
[
V π(x′)

]
, ∀x ∈ X \ T

2. Policy Improvement: given V π, obtain a new policy π′:

π′(x) = argmin
u∈U

{
ℓ(x, u) + Ex′∼pf (·|x,u)

[
V π(x′)

]}
, ∀x ∈ X \ T

37

Policy Improvement Theorem

Let π and π′ be such that V π(x) ≥ Qπ(x, π′(x)) for all x ∈ X . Then, π′ is at
least as good as π, i.e., V π(x) ≥ V π′

(x) for all x ∈ X

▶ Proof:
V π(x) ≥ Qπ(x, π′(x)) = ℓ(x, π′(x)) + γEx′∼pf (·|x,π′(x)) [V

π(x′)]

≥ ℓ(x, π′(x)) + γEx′∼pf (·|x,π′(x)) [Q
π(x′, π′(x′))]

= ℓ(x, π′(x)) + γEx′∼pf (·|x,π′(x))

{
ℓ(x′, π′(x′)) + γEx′′∼pf (·|x′,π′(x′))V

π(x′′)
}

≥ · · · ≥ E

[∞∑
t=0

γtℓ(xt , π
′(xt))

∣∣∣∣x0 = x

]
= V π′

(x)

Theorem: Optimality of PI

Suppose that X is finite and:

▶ γ ∈ [0, 1) (Discounted Problem),

▶ there exists a proper policy (First-Exit Problem).

Then, the Policy Iteration algorithm converges to an optimal policy after a finite
number of steps.

38

Proof of Optimality of PI (First-Exit Problem)
▶ Let π be a proper policy with value V π obtained from Policy Evaluation

▶ Let π′ be the policy obtained from Policy Improvement

▶ By definition of Policy Improvement: V π(x) ≥ Qπ(x, π′(x)) for all x ∈ X \ T

▶ By the Policy Improvement Thm., V π(x) ≥ V π′
(x) for all x ∈ X \ T

▶ Since π is proper, V π(x) <∞ for all x ∈ X , and hence π′ is proper

▶ Since π′ is proper, the Policy Evaluation step has a unique solution V π′

▶ Since the number of stationary policies is finite, eventually V π = V π′
after a

finite number of steps

▶ Once V π has converged, it follows from the Policy Improvement step:

V π′
(x) = V π(x) = min

u∈U

{
ℓ(x,u) +

∑
x′∈X

p̃f (x
′ | x,u)V π(x′)

}
, x ∈ X \ T

▶ Since this is the Bellman equation for the first-exit problem, we have
converged to an optimal policy π∗ = π with optimal value V ∗ = V π

39

Generalized Policy Iteration
▶ PI and VI have a lot in common

▶ Rewrite VI as follows:
2. Policy Improvement: Given Vk(x) obtain a policy:

π(x) ∈ argmin
u∈U

{
ℓ(x, u) + γEx′∼pf (·|x,u)

[
Vk(x

′)
]}

, ∀x ∈ X

1. Value Update: Given π(x) and Vk(x), compute

Vk+1(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,u)
[
Vk(x

′)
]
, ∀x ∈ X

▶ Value Update is a single step of the iterative Policy Evaluation algorithm

▶ PI solves the Policy Evaluation equation completely, which is equivalent to
running the Value Update step of VI an infinite number of times

▶ Generalized Policy Iteration: assuming the Value Update and Policy
Improvement steps are executed an infinite number of times for all states, all
combinations of the following converge:
▶ Any number of Value Update steps in between Policy Improvement steps
▶ Any number of states updated at each Value Update step
▶ Any number of states updated at each Policy Improvement step

40

Complexity of VI and PI

▶ Consider the complexity of VI and PI for a finite state space X

▶ Complexity of VI per Iteration: O(|X |2|U|): evaluating the expectation
(i.e., sum over x′) requires |X | operations and there are |X | minimizations
over |U| possible control inputs

▶ Complexity of PI per Iteration: O(|X |2 (|X |+ |U|)): the Policy Evaluation
step requires solving a system of |X | equations in |X | unknowns (O(|X |3)),
while the Policy Improvement step has the same complexity as one iteration
of VI

▶ PI is more computationally expensive than VI

▶ Theoretically it takes an infinite number of iterations for VI to converge

▶ PI converges in |U||X | iterations (all possible policies) in the worst case

41

Value Iteration

▶ V ∗ is a fixed point of B∗: V0, B∗[V0], B2∗[V0], B3∗[V0], . . . → V ∗

Algorithm Value Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: Vk+1 = B∗ [Vk]

▶ Q∗ is a fixed point of B∗: Q0, B∗[Q0], B2∗[Q0], B3∗[Q0], . . . → Q∗

Algorithm Q-Value Iteration

1: Initialize Q0

2: for k = 0, 1, 2, . . . do
3: Qk+1 = B∗ [Qk]

42

Policy Iteration
▶ Policy Evaluation: V0, Bπ[V0], B2π[V0], B3π[V0], . . . → V π

Algorithm Policy Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = argmin

u∈U(x)
H[x,u,Vk(·)] ▷ Policy Improvement

4: Vk+1 = B∞πk+1
[Vk] ▷ Policy Evaluation

▶ Policy Q-Evaluation: Q0, Bπ[Q0], B2π[Q0], B3π[Q0], . . . → Qπ

Algorithm Q-Policy Iteration

1: Initialize Q0

2: for k = 0, 1, 2 . . . do
3: πk+1(x) = argmin

u∈U(x)
Qk(x,u) ▷ Policy Improvement

4: Qk+1 = B∞πk+1
[Qk] ▷ Policy Evaluation

43

Generalized Policy Iteration

Algorithm Generalized Policy Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = argmin

u∈U(x)
H[x,u,Vk(·)] ▷ Policy Improvement

4: Vk+1 = Bnπk+1
[Vk] , for n ≥ 1 ▷ Policy Evaluation

Algorithm Generalized Q-Policy Iteration

1: Initialize Q0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = argmin

u∈U(x)
Qk(x,u) ▷ Policy Improvement

4: Qk+1 = Bnπk+1
[Qk] , for n ≥ 1 ▷ Policy Evaluation

44

Example: Frozen Lake Problem

▶ Winter is here

▶ You and your friends were tossing around a frisbee at the park when you
made a wild throw that left the frisbee out in the middle of the lake

▶ The water is mostly frozen but there are a few holes where the ice has melted

▶ If you step into one of those holes, you fall into the freezing water

▶ There is an international frisbee shortage so it is absolutely imperative that
you navigate across the lake and retrieve the disc

▶ However, the ice is slippery so you cannot always move in the direction you
intend

45

Example: Frozen Lake Problem
▶ S : starting point, safe

▶ F : frozen surface, safe

▶ H : hole, fall to your doom

▶ G : goal, where the frisbee is located

▶ X = {0, 1, . . . , 15}
▶ U = {Left(0), Down(1), Right(2), Up(3)}
▶ You receive a reward of 1 if you reach the goal,

and zero otherwise

▶ An input u ∈ U succeeds 80% of the time. A neighboring control is executed
in the other 50% of the time due to slip, e.g.,

x ′ | x = 9, u = 1 =

13, with prob. 0.8

8, with prob. 0.1

10, with prob. 0.1

▶ The state remains unchanged if a control leads outside of the map

▶ An episode ends when you reach the goal or fall in a hole

46

Value Iteration on Frozen Lake

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5

47

Value Iteration on Frozen Lake
Iteration maxx |Vt+1(x)− Vt(x)| # changed actions V (0)

0 0.80000 0 0.000
1 0.60800 1 0.000
2 0.51984 2 0.000
3 0.39508 2 0.000
4 0.30026 2 0.000
5 0.25355 2 0.254
6 0.10478 1 0.345
7 0.09657 0 0.442
8 0.03656 0 0.478
9 0.02772 0 0.506
10 0.01111 0 0.517
11 0.00735 0 0.524
12 0.00310 0 0.527
13 0.00190 0 0.529
14 0.00083 0 0.530
15 0.00049 0 0.531
16 0.00022 0 0.531
17 0.00013 0 0.531
18 0.00006 0 0.531
19 0.00003 0 0.531 48

Policy Iteration on Frozen Lake

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5

49

Policy Iteration on Frozen Lake
Iteration maxx |Vt+1(x)− Vt(x)| # changed actions V (0)

0 0.00000 0 0.000
1 0.89296 1 0.000
2 0.88580 9 0.398
3 0.48504 2 0.455
4 0.07573 1 0.531
5 0.00000 0 0.531
6 0.00000 0 0.531
7 0.00000 0 0.531
8 0.00000 0 0.531
9 0.00000 0 0.531
10 0.00000 0 0.531
11 0.00000 0 0.531
12 0.00000 0 0.531
13 0.00000 0 0.531
14 0.00000 0 0.531
15 0.00000 0 0.531
16 0.00000 0 0.531
17 0.00000 0 0.531
18 0.00000 0 0.531
19 0.00000 0 0.531 50

Value Iteration vs Policy Iteration

(a) VI (b) PI

51

Value Iteration vs Policy Iteration

(a) State 0 (b) State 1

(c) State 2 (d) State 3

52

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

53

Linear Programming Solution to the Bellman Equation

▶ Consider a Discounted Problem with finite state space X

▶ Suppose we initialize VI with V0 that satisfies a relaxed Bellman equation
condition:

V0(x) ≤ min
u∈U(x)

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V0(x

′)

)
, ∀x ∈ X

▶ Since B∗ is monotone, applying VI to V0 leads to:

V1(x) = min
u∈U(x)

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V0(x

′)

)
≥ V0(x), ∀x ∈ X

V2(x) = min
u∈U(x)

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V1(x

′)

)

≥ min
u∈U(x)

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V0(x

′)

)
= V1(x), ∀x ∈ X

54

Linear Programming Solution to the Bellman Equation

▶ The above shows that Vk+1(x) ≥ Vk(x) for all k and x ∈ X

▶ Since VI guarantees that Vk(x)→ V ∗(x) as k →∞, we also have:

V ∗(x) ≥ V0(x), ∀x ∈ X ⇒
∑
x∈X

w(x)V ∗(x) ≥
∑
x∈X

w(x)V0(x)

for any w(x) > 0 for all x ∈ X .

▶ The above holds for any V0 that satisfies:

V0(x) ≤ min
u∈U(x)

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V0(x

′)

)
, ∀x ∈ X

▶ Since V ∗ satisfies this condition with equality (Bellman Equation), it is the
maximal V0 that satisfies the condition

55

Linear Programming Solution to the Bellman Equation

LP Solution to Bellman Equation (Discounted Problem)

For finite X , the solution V ∗(x) to the linear program with w(x) > 0:

max
V

∑
x∈X

w(x)V (x)

s.t. V (x) ≤

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V (x′)

)
, ∀u ∈ U ,∀x ∈ X

also solves the Bellman Equation to yield the optimal value function of an
infinite-horizon finite-state discounted stochastic optimal control problem.

▶ An equivalent result holds for the First-Exit Problem

56

LP Solution to Bellman Equation (Proof)
▶ Let J∗ be the solution to the linear program so that:

J∗(x) ≤

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)J∗(x′)

)
, ∀u ∈ U ,∀x ∈ X

▶ Since J∗ is feasible, it satisfies J∗(x) ≤ V ∗(x) for all x ∈ X

▶ By contradiction, suppose that J∗ ̸= V ∗

▶ Then, there exists a state y ∈ X such that:

J∗(y) < V ∗(y) ⇒
∑
x∈X

w(x)J∗(x) <
∑
x∈X

w(x)V ∗(x)

for any positive w(x) but since V ∗ solves the Bellman Equation:

V ∗(x) ≤

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V ∗(x′)

)
, ∀u ∈ U ,∀x ∈ X ,

V ∗ is feasible and has higher value than J∗, which is a contradiction.

57

Dual Linear Program

▶ Dual linear program:

min
λ≥0

∑
x∈X

∑
u∈U

ℓ(x,u)λ(x,u)

s.t.
∑
u′∈U

λ(x′,u′) = w(x) + γ
∑
x∈X

∑
u∈U

λ(x,u)pf (x
′ | x,u), ∀x′ ∈ X

▶ If
∑

x∈X w(x) = 1, the constraint ensures that λ(x,u) is a probability
measure on X × U induced by an optimal policy π:

λ(x,u) =
∑
x0∈X

w(x0)
∞∑
t=0

γtPπ(xt = x,ut = u|x0)

▶ Optimal policy:
π∗(x) ∈ argmin

u∈U
λ(x,u)

58

	Infinite-Horizon Optimal Control
	Bellman Equations
	Policy Evaluation
	Value Iteration
	Policy Iteration
	Linear Programming

