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Finite-Horizon Stochastic Optimal Control

▶ Recall the finite-horizon stochastic optimal control problem:

min
πτ :T−1

V π
τ (xτ ) := Exτ+1:T

[
γT−τq(xT ) +

T−1∑
t=τ

γt−τ ℓ(xt , πt(xt))

∣∣∣∣ xτ
]

s.t. xt+1 ∼ pf (· | xt , πt(xt)), t = τ, . . . ,T − 1

xt ∈ X , πt(xt) ∈ U

x ∈ X state
u ∈ U control
pf (x′ | x,u) motion model
x′ = f (x,u,w) motion model
ℓ(x,u) stage cost
q(x) terminal cost
T ∈ N planning horizon
γ ∈ [0, 1] discount factor
πt(x) policy function at time t
V π
t (x) value function at state x, time t, under policy πt:T−1
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Finite-Horizon Deterministic Optimal Control

▶ Finite-horizon deterministic optimal control (DOC) problem:

min
uτ :T−1

V uτ :T−1
τ (xτ ) := γT−τq(xT ) +

T−1∑
t=τ

γt−τ ℓt(xt ,ut)

s.t. xt+1 = f (xt ,ut), t = τ, . . . ,T − 1

xt ∈ X , ut ∈ U

▶ An open-loop control sequence u∗τ :T−1 is optimal for the DOC problem

▶ The DOC problem is equivalent to the deterministic shortest path (DSP)
problem, which led to the forward Dynamic Programming and Label
Correcting algorithms
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Infinite-Horizon Stochastic Optimal Control

▶ In this lecture, we consider what happens with the stochastic optimal control
problem as the planning horizon T goes to infinity

▶ We will consider two formulations of the infinite-horizon stochastic optimal
control problem
▶ Discounted Problem: obtained by letting T → ∞ in the finite-horizon

stochastic optimal control problem with γ < 1

▶ First-Exit Problem: obtained by considering stochastic transitions in the
shortest path problem and terminating when the goal region is reached

▶ Just like the DOC and DSP problems, the Discounted Problem and the
First-Exit Problem are equivalent, i.e., one can be converted into the other
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Discounted Problem
▶ Let T →∞ in the finite-horizon stochastic optimal control problem

▶ The terminal cost q is no longer necessary since the problem never terminates

▶ Assume the motion model pf and the stage cost ℓ are time-invariant

▶ The discount factor γ must be < 1 to ensure that the infinite sum of stage
costs is finite

▶ As T →∞, the time-invariant motion model and stage costs lead to
time-invariant optimal value function V ∗(x) = min

π
V π(x) and associated

optimal policy π∗(x) ∈ argmin
π

V π(x)

▶ Discounted Problem:

V ∗(x) = min
π

V π(x) := E

[ ∞∑
t=0

γtℓ(xt , π(xt))

∣∣∣∣ x0 = x

]
s.t. xt+1 ∼ pf (· | xt , π(xt)),

xt ∈ X , π(xt) ∈ U
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First-Exit Problem

▶ Consider a stochastic shortest path problem with state space X and
transitions defined by pf (x′|x,u) with control u ∈ U

▶ Let T ⊆ X be a set of terminal states with terminal cost q(x) for x ∈ T

▶ First-Exit Time: terminate at T := min {t ≥ 0 | xt ∈ T }, the first passage
time from an initial state x0 to a terminal state xt ∈ T

▶ Note that T is a random variable unlike in the finite-horizon problem

▶ First-Exit Problem:

V ∗(x) = min
π

V π(x) := E

[
q(xT ) +

T−1∑
t=0

ℓ(xt , π(xt))

∣∣∣∣ x0 = x

]
s.t. xt+1 ∼ pf (· | xt , π(xt)),

xt ∈ X , π(xt) ∈ U
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From Discounted Problem to First-Exit Problem
▶ Given a Discounted Problem, we can define an equivalent First-Exit problem

▶ Discounted Problem: X , U , pf (x′|x,u), ℓ(x,u)
▶ First-Exit Problem:

▶ State space: X̃ = X ∪ {τ} and T = {τ} where τ is a virtual terminal state
▶ Control space: Ũ = U
▶ Motion model:

p̃f (x
′ | x, u) = γpf (x

′ | x, u) for x′ ̸= τ

p̃f (τ | x, u) = 1− γ,

p̃f (x
′ | τ, u) = 0, for x′ ̸= τ

p̃f (τ | τ, u) = 1,

▶ Stage cost: ℓ̃(x, u) =

{
ℓ(x, u) x ̸= τ

0 x = τ
▶ Terminal cost: q̃(x) = 0
▶ There is a one-to-one mapping between a policy π̃ of this first-exit problem

and a policy π of the discounted problem:

π̃(x) =

{
π(x) x ̸= τ

some u ∈ U , x = τ
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From Discounted Problem to First-Exit Problem

▶ Next, we show that for all x ∈ X :

Ṽ π̃(x) = E

[
T−1∑
t=0

ℓ̃(x̃t , π̃t(x̃t))

∣∣∣∣ x̃0 = x

]
= V π(x) = E

[
T−1∑
t=0

γtℓ(xt , πt(xt))

∣∣∣∣ x0 = x

]

where the expectations are over x̃1:T and x1:T and subject to transitions
induced by π̃ and π, respectively

▶ Conclusion: since Ṽ π̃(x) = V π(x) for all x ∈ X and π̃ maps to π, by solving
the auxiliary First-Exit Problem, we can obtain an optimal policy and the
optimal value for the Discounted Problem
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From Discounted Problem to First-Exit Problem

Ex̃1:T [ℓ̃(x̃t ,π̃t(x̃t)) | x0 = x] =
∑

x̄1:T∈X̃T

ℓ̃(x̄t , π̃t(x̄t))P(x̃1:T = x̄1:T | x0 = x)

=
∑
x̄t∈X̃

ℓ̃(x̄t , π̃t(x̄t))P(x̃t = x̄t | x0 = x)

ℓ̃(τ,u)=0
========
X̃=X∪{τ}

∑
x̄t∈X

ℓ̃(x̄t , π̃t(x̄t))P(x̃t = x̄t , x̃t ̸= τ | x0 = x)

=
∑
x̄t∈X

ℓ̃(x̄t , π̃t(x̄t))P(x̃t = x̄t | x0 = x, x̃t ̸= τ)P(x̃t ̸= τ | x0 = x)

(?)
===

∑
x̄t∈X

ℓ̃(x̄t , π̃t(x̄t))P(xt = x̄t | x0 = x)γt

=
∑
x̄t∈X

ℓ(x̄t , πt(x̄t))P(xt = x̄t | x0 = x)γt

= Ex1:T

[
γtℓ(xt , πt(xt)) | x0 = x

]
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From Discounted Problem to First-Exit Problem

(?) Show that for transitions p̃f (x′ | x,u) under π̃, P(x̃t ̸= 0 | x0 = x) = γt

▶ For any x ∈ X and u ∈ Ũ :

P(x̃t+1 ̸= τ | x̃t = x) = 1− p̃f (τ | x, u) = γ

▶ Similarly, for any x ∈ X

P(x̃t+2 ̸= τ | x̃t = x) =
∑
x′∈X

P(x̃t+2 ̸= τ | x̃t+1 = x′, x̃t = x)P(x̃t+1 = x′ | x̃t = x)

=
∑
x′∈X

P(x̃t+2 ̸= τ | x̃t+1 = x′)P(x̃t+1 = x′ | x̃t = x)

= γ
∑
x′∈X

p̃f (x
′ | x, π̃(x)) = γ2

▶ Similarly, we can show that for any m > 0: P(x̃t+m ̸= τ | xt = x) = γm
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From Discounted Problem to First-Exit Problem

(?) Show that P(x̃t = x̄t | x0 = x, x̃t ̸= τ) = P(xt = x̄t | x0 = x)
▶ For any x, x′ ∈ X and u = π̃t(x) = πt(x), we have

P(x̃t+1 = x′ |x̃t+1 ̸= τ, x̃t = x, ũt = u) =
P(x̃t+1 = x′, x̃t+1 ̸= τ | x̃t = x, ũt = u)

P(x̃t+1 ̸= τ | x̃t = x, ũt = u)

=
p̃f (x

′ | x, u)
γ

= pf (x
′ | x, u) = P(xt+1 = x′ | xt = x, ut = u)

▶ Similarly, it can be shown that for x̄t ∈ X :

P(x̃t = x̄t | x0 = x, x̃t ̸= 0) = P(xt = x̄t | x0 = x)
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Bellman Equation

▶ Recall the Dynamic Programming algorithm for finite horizon T :

VT (x) = q(x), ∀x ∈ X
Vt(x) = min

u∈U(x)
ℓ(x,u) + γEx′∼pf (·|x,u) [Vt+1(x

′)] , ∀x ∈ X , t = T − 1, . . . , τ

▶ Bellman Equation: as T →∞, the sequence . . . ,Vt+1(x),Vt(x), . . .
converges to a fixed point V (x) of the dynamic programming recursion:

V (x) = min
u∈U(x)

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

}
, ∀x ∈ X

▶ Assuming convergence, V (x) is equal to the optimal value V ∗(x)

▶ Both V ∗(x) and the associated opitmal policy π∗(x) are stationary

▶ The Bellman Equation needs to be solved for all x ∈ X simultaneously, which
can be done analytically only for very few problems (e.g., the Linear
Quadratic Regulator (LQR) problem)
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Bellman Equation

▶ The optimal value function V ∗(x) satisfies:

V ∗(x) = min
u∈U(x)

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V

∗(x′)]
}
, ∀x ∈ X

▶ The value function V π(x) of policy π satisfies:

V π(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [V
π(x′)] , ∀x ∈ X

▶ The latter can be obtained from:

V π(x) :=E

[ ∞∑
t=0

γtℓ(xt , π(xt))

∣∣∣∣ x0 = x

]

=ℓ(x, π(x)) + γE

[ ∞∑
t=1

γt−1ℓ(xt , π(xt))

∣∣∣∣ x0 = x

]
=ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [V

π(x′)]
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Action-Value (Q) Function
▶ Value Function V π(x): the expected long-term cost of following policy π

starting from state x

▶ Q Function Qπ(x,u): the expected long-term cost of taking action u in
state x and following policy π afterwards:

Qπ(x,u) := ℓ(x,u) + E

[ ∞∑
t=1

γtℓ(xt , π(xt))

∣∣∣∣ x0 = x

]
= ℓ(x,u) + γEx′∼pf (·|x,u) [V

π(x′)]

= ℓ(x,u) + γEx′∼pf (·|x,u) [Q
π(x′, π(x′))]︸ ︷︷ ︸

Vπ(x′)

▶ Optimal Q Function: Q∗(x,u) := minπ Q
π(x,u)

Q∗(x,u) = ℓ(x,u) + γEx′∼pf (·|x,u) [V
∗(x′)]

= ℓ(x,u) + γEx′∼pf (·|x,u)

[
min

u′∈U(x′)
Q∗(x′,u′)

]
π∗(x) ∈ argmin

u∈U
Q∗(x,u)
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Bellman Equations Summary

▶ Value Function:

V π(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [V
π(x′)] , ∀x ∈ X

▶ Optimal Value Function:

V ∗(x) = min
u∈U(x)

{
ℓ(x,u) + γEx′∼pf (·|x,π(x)) [V

∗(x′)]
}
, ∀x ∈ X

▶ Q Function:

Qπ(x,u) = ℓ(x,u) + γEx′∼pf (·|x,u) [Q
π(x′, π(x′))] , ∀x ∈ X ,u ∈ U

▶ Optimal Q Function:

Q∗(x,u) = ℓ(x,u) + γEx′∼pf (·|x,u)

[
min

u′∈U(x′)
Q∗(x′,u′)

]
, ∀x ∈ X ,u ∈ U
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Bellman Operators
▶ Hamiltonian:

H[x,u,V ] = ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

▶ Policy Evaluation Operator:

Bπ[V ](x) := ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [V (x′)] = H[x, π(x),V (·)]

▶ Value Operator:

B∗[V ](x) := min
u∈U

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

}
= min

u∈U
H[x,u,V (·)]

▶ Policy Q-Evaluation Operator:

Bπ[Q](x,u) := ℓ(x,u) + γEx′∼pf (·|x,u) [Q(x′, π(x′))] = H[x,u,Q(·, π(·))]

▶ Q-Value Operator:

B∗[Q](x,u) := ℓ(x,u) + γEx′∼pf (·|x,u)

[
min
u′∈U

Q(x′,u′)

]
= H[x,u, min

u′∈U
Q(·,u′)]
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Finite-Horizon Problem

▶ Trajectories terminate at fixed T <∞

min
π

V π
τ (x) = E

[
γT−τq(xT ) +

T−1∑
t=τ

γt−τ ℓ(xt , πt(xt))

∣∣∣∣xτ = x

]

▶ The optimal value V ∗
t (x) can be found with a single backward pass through

time, initialized from V ∗
T (x) = q(x) and following the recursion:

Bellman Equations (Finite-Horizon Problem)

Hamiltonian: H[x,u,V (·)] = ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

Policy Evaluation: V π
t (x) = Qπ

t (x, πt(x)) = H[x, πt(x),V
π
t+1(·)]

Bellman Equation: V ∗
t (x) = min

u∈U
Q∗

t (x,u) = min
u∈U

H[x,u,V ∗
t+1(·)]

Optimal Policy: π∗
t (x) = argmin

u∈U
Q∗

t (x,u) = argmin
u∈U

H[x,u,V ∗
t+1(·)]
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Discounted Problem

▶ Trajectories continue forever but costs are discounted via γ ∈ [0, 1):

min
π

V π(x) = E

[ ∞∑
t=0

γtℓ(xt , π(xt))

∣∣∣∣x0 = x

]

Bellman Equations (Discounted Problem)

Hamiltonian: H[x,u,V (·)] = ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

Policy Evaluation: V π(x) = Qπ(x, π(x)) = H[x, π(x),V π(·)]

Bellman Equation: V ∗(x) = min
u∈U

Q∗(x,u) = min
u∈U

H[x,u,V ∗(·)]

Optimal Policy: π∗(x) = argmin
u∈U

Q∗(x,u) = argmin
u∈U

H[x,u,V ∗(·)]
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First-Exit Problem
▶ Trajectories terminate at T := inf {t ≥ 1|xt ∈ T }, the first passage time

from initial state x0 to a terminal state xt ∈ T ⊆ X :

min
π

V π(x) = E

[
q(xT ) +

T−1∑
t=0

ℓ(xt , π(xt))

∣∣∣∣x0 = x

]

▶ At terminal states, V ∗(x) = V π(x) = q(x) for all x ∈ T

▶ At other states, the following are satisfied:

Bellman Equations (First-Exit Problem)

Hamiltonian: H[x,u,V (·)] = ℓ(x,u) + Ex′∼pf (·|x,u) [V (x′)]

Policy Evaluation: V π(x) = Qπ(x, π(x)) = H[x, π(x),V π(·)]

Bellman Equation: V ∗(x) = min
u∈U

Q∗(x,u) = min
u∈U

H[x,u,V ∗(·)]

Optimal Policy: π∗(x) = argmin
u∈U

Q∗(x,u) = argmin
u∈U

H[x,u,V ∗(·)]
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Bellman Equation Algorithms
▶ To determine the value function of policy π in either the Discounted or

First-Exit Problem, we need to solve a Policy Evaluation equation:
▶ Policy Evaluation: V π(x) = H[x, π(x),V π(·)]
▶ Policy Q-Evaluation: Qπ(x, u) = H[x, u,Qπ(·, π(·))]

▶ The Policy Evaluation equations can be solved by:
▶ Iterative Policy Evaluation
▶ Linear System Solution (only for finite state space X )

▶ To the determine the optimal value function in either the Discounted or
First-Exit Problem, we need to solve a Bellman equation:
▶ Bellman Equation: V ∗(x) = min

u∈U
H[x, u,V ∗(·)]

▶ Q-Bellman Equation: Q∗(x, u) = H[x, u, min
u′∈U

Q∗(·, u′)]

▶ The Bellman equations can be solved by:
▶ Value Iteration
▶ Policy Iteration
▶ Linear Programming (only for finite state space X )
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Policy Evaluation

Policy Evaluation Theorem (Discounted Problem)

The value function V π(x) of policy π is the unique solution of:

V π(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [V
π(x′)] , ∀x ∈ X .

If γ ∈ [0, 1), for any initial condition V0(x), the sequence Vk(x) generated by the
recursion below converges to V π(x):

Vk+1(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [Vk(x
′)] , ∀x ∈ X .

▶ The PE algorithm requires infinite iterations for Vk(x) to converge to V π(x)

▶ In practice, the PE algorithm is terminated when |Vk+1(x)− Vk(x)| < ϵ for
all x ∈ X and some threshold ϵ
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Policy Evaluation

▶ Proper policy for first-exit problem: a policy π for which there exists an
integer m such that P(xm ∈ T | x0 = x) > 0 for all x ∈ X \ T

Policy Evaluation Theorem (First-Exit Problem)

The value function V π(x) of policy π is the unique solution of:

V π(x) = q(x), ∀x ∈ T ,
V π(x) = ℓ(x, π(x)) + Ex′∼pf (·|x,π(x)) [V

π(x′)] , ∀x ∈ X \ T .

If π is a proper policy, for any initial condition V0(x), the sequence Vk(x)
generated by the recursion below converges to V π(x) for all x ∈ X \ T :

Vk+1(x) = ℓ(x, π(x)) + Ex′∼pf (·|x,π(x)) [Vk(x
′)] , ∀x ∈ X \ T .
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Policy Evaluation (Discounted Finite-State Problem)
▶ Let X = {1, . . . , n}
▶ Let vi := V π(i), ℓi := ℓ(i , π(i)), Pij := pf (j | i , π(i)) for i , j = 1, . . . , n

▶ Policy evaluation:

v = ℓ+ γPv ⇒ (I − γP)v = ℓ

▶ Existence of solution: The matrix P has eigenvalues with modulus ≤ 1. All
eigenvalues of γP have modulus < 1, so (γP)T → 0 as T →∞ and
(I − γP)−1 exists.

▶ The Policy Evaluation Theorem is an iterative solution to the linear system:

v1 = ℓ+ γPv0

v2 = ℓ+ γPv1 = ℓ+ γPℓ+ (γP)2v0

...

vk = (I + γP + (γP)2 + . . .+ (γP)k−1)ℓ+ (γP)kv0

...

v∞ → (I − γP)−1ℓ
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Policy Evaluation (First-Exit Finite-State Problem)

▶ Let X = N ∪ T and Pij := pf (j | i , π(i)) for i , j ∈ N ∪ T

▶ Let qi := q(i) for i ∈ T and vi := V π(i), ℓi := ℓ(i , π(i)) for i ∈ N

▶ Policy evaluation:

v = ℓ+ PNN v + PNT q ⇒ (I − PNN ) v = ℓ+ PNT q

▶ Existence of solution: A unique solution for v exists as long as π is a proper
policy. By the Chapman-Kolmogorov equation, [Pk ]ij = P(xk = j | x0 = i)
and since π is proper, [Pk ]ij → 0 as k →∞ for all i , j ∈ X \ T . Since Pk

NN
vanishes as k →∞, all eigenvalues of PNN must have modulus less than 1
and (I − PNN )−1 exists.

▶ The Policy Evaluation Theorem is an iterative solution to the linear system:

v1 = ℓ+ PNT q+ PNN v0

v2 = ℓ+ PNT q+ PNN v1 = ℓ+ PNT q+ PNN (ℓ+ PNT q) + P2
NN v0

v∞ → (I − PNN )−1 (ℓ+ PNT q)
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Value Iteration

Value Iteration Theorem (Discounted Problem)

The optimal value function V ∗(x) is the unique solution of:

V ∗(x) = min
u∈U

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V

∗(x′)]
}
, ∀x ∈ X .

If γ ∈ [0, 1), for any initial condition V0(x), the sequence Vk(x) generated by the
recursion below converges to V ∗(x):

Vk+1(x) = min
u∈U

{
ℓ(x,u) + γEx′∼pf (·|x,u) [Vk(x

′)]
}
, ∀x ∈ X .

▶ The VI algorithm is an infinite-horizon equivalent of the DP algorithm
(V0(x) in VI corresponds to VT→∞(x) in DP)

▶ VI requires infinite iterations for Vk(x) to converge to V ∗(x)

▶ In practice, the VI algorithm is terminated when |Vk+1(x)− Vk(x)| < ϵ for all
x ∈ X and some threshold ϵ
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Gauss-Seidel Value Iteration

▶ A regular VI implementation stores the values from a previous iteration and
updates them for all states simultaneously:

V̂ (x)← min
u∈U

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

}
, ∀x ∈ X

V (x)← V̂ (x), ∀x ∈ X

▶ Gauss-Seidel Value Iteration updates the values in place:

V (x)← min
u∈U(x)

{
ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

}
, ∀x ∈ X

▶ Gauss-Seidel VI converges and often leads to faster convergence and requires
less memory than VI
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Value Iteration

Value Iteration Theorem (First-Exit Problem)

The optimal value function V ∗(x) is the unique solution of:

V ∗(x) = q(x), ∀x ∈ T ,
V ∗(x) = min

u∈U

{
ℓ(x,u) + Ex′∼pf (·|x,u) [V

∗(x′)]
}
, ∀x ∈ X \ T .

If a proper policy exists, for any initial condition V0(x), the sequence Vk(x)
generated by the recursion below converges to V ∗(x):

Vk(x) = q(x), ∀x ∈ T , ∀k,
Vk+1(x) = min

u∈U

{
ℓ(x,u) + Ex′∼pf (·|x,u) [Vk(x

′)]
}
, ∀x ∈ X \ T .
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Contraction in Discounted Problems

Contraction Mapping

Let F(X ) denote the linear space of bounded functions V : X 7→ R with norm
∥V ∥∞ := supx∈X |V (x)|. A function B : F(X ) 7→ F(X ) is called a contraction
mapping if there exists a scalar α < 1 such that:

∥B[V ]− B[V ′]∥∞ ≤ α∥V − V ′∥∞ ∀V ,V ′ ∈ F(X )

Contraction Mapping Theorem

If B : F(X ) 7→ F(X ) is a contraction mapping, then there exists a unique
function V ∗ ∈ F(X ) such that B[V ∗] = V ∗.
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Contraction in Discounted Problems

Properties of B∗[V ]

The operator B∗[V ](x) = minu∈U
{
ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

}
satisfies:

1. Monotonicity: V (x) ≤ V ′(x) ⇒ B∗[V ](x) ≤ B∗[V ′](x)

2. γ-Additivity: B∗[V + d ](x) = B∗[V ](x) + γd for d ∈ R

3. Contraction: ∥B∗[V ]− B∗[V ′]∥∞ ≤ γ∥V − V ′∥∞

▶ Proof of Contraction: Let d = supx |V (x)− V ′(x)|. Then:

V (x)− d ≤ V ′(x) ≤ V (x) + d , ∀x ∈ X

Apply B∗ to both sides and use monotonicity and γ-additivity:

B∗[V ](x)− γd ≤ B∗[V ′](x) ≤ B∗[V ](x) + γd , ∀x ∈ X
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Proof of VI Convergence in Discounted Problems

▶ B∗[V ] is monotone, γ-additive, and a contraction mapping

▶ By the contraction mapping theorem, there exists V ∗(x) such that
B∗[V ∗] = V ∗

▶ Value Iteration Algorithm:

V0(x) ≡ 0

Vk+1(x) = B∗[Vk ](x)

▶ Since B∗[V ] is a contraction, the sequence Vk is Cauchy, i.e.,
∥Vk+1 − Vk∥∞ ≤ γk∥V1 − V0∥∞

▶ If (F(X ), ∥ · ∥∞) is a complete metric space, then Vk has a limit V ∗ ∈ F(X )
and V ∗ is a fixed point of B∗
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Discounted Problem Policy Iteration (PI)

▶ PI is an alternative algorithm to VI for computing V ∗(x)

▶ PI iterates over policies instead of values

▶ Policy Iteration: repeat until V π′
(x) = V π(x) for all x ∈ X :

1. Policy Evaluation: given a policy π, compute V π:

V π(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,u)
[
V π(x′)

]
, ∀x ∈ X

2. Policy Improvement: given V π, obtain a new policy π′:

π′(x) ∈ argmin
u∈U

{
ℓ(x, u) + γEx′∼pf (·|x,u)

[
V π(x′)

]}
, ∀x ∈ X
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First-Exit Problem Policy Iteration (PI)

▶ Policy Iteration: repeat until V π′
(x) = V π(x) for all x ∈ X \ T :

1. Policy Evaluation: given a policy π, compute V π:

V π(x) = ℓ(x, π(x)) + Ex′∼pf (·|x,u)
[
V π(x′)

]
, ∀x ∈ X \ T

2. Policy Improvement: given V π, obtain a new policy π′:

π′(x) = argmin
u∈U

{
ℓ(x, u) + Ex′∼pf (·|x,u)

[
V π(x′)

]}
, ∀x ∈ X \ T

37



Policy Improvement Theorem

Let π and π′ be such that V π(x) ≥ Qπ(x, π′(x)) for all x ∈ X . Then, π′ is at
least as good as π, i.e., V π(x) ≥ V π′

(x) for all x ∈ X

▶ Proof:
V π(x) ≥ Qπ(x, π′(x)) = ℓ(x, π′(x)) + γEx′∼pf (·|x,π′(x)) [V

π(x′)]

≥ ℓ(x, π′(x)) + γEx′∼pf (·|x,π′(x)) [Q
π(x′, π′(x′))]

= ℓ(x, π′(x)) + γEx′∼pf (·|x,π′(x))

{
ℓ(x′, π′(x′)) + γEx′′∼pf (·|x′,π′(x′))V

π(x′′)
}

≥ · · · ≥ E

[ ∞∑
t=0

γtℓ(xt , π
′(xt))

∣∣∣∣x0 = x

]
= V π′

(x)

Theorem: Optimality of PI

Suppose that X is finite and:

▶ γ ∈ [0, 1) (Discounted Problem),

▶ there exists a proper policy (First-Exit Problem).

Then, the Policy Iteration algorithm converges to an optimal policy after a finite
number of steps.
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Proof of Optimality of PI (First-Exit Problem)
▶ Let π be a proper policy with value V π obtained from Policy Evaluation

▶ Let π′ be the policy obtained from Policy Improvement

▶ By definition of Policy Improvement: V π(x) ≥ Qπ(x, π′(x)) for all x ∈ X \ T

▶ By the Policy Improvement Thm., V π(x) ≥ V π′
(x) for all x ∈ X \ T

▶ Since π is proper, V π(x) <∞ for all x ∈ X , and hence π′ is proper

▶ Since π′ is proper, the Policy Evaluation step has a unique solution V π′

▶ Since the number of stationary policies is finite, eventually V π = V π′
after a

finite number of steps

▶ Once V π has converged, it follows from the Policy Improvement step:

V π′
(x) = V π(x) = min

u∈U

{
ℓ(x,u) +

∑
x′∈X

p̃f (x
′ | x,u)V π(x′)

}
, x ∈ X \ T

▶ Since this is the Bellman equation for the first-exit problem, we have
converged to an optimal policy π∗ = π with optimal value V ∗ = V π
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Generalized Policy Iteration
▶ PI and VI have a lot in common

▶ Rewrite VI as follows:
2. Policy Improvement: Given Vk(x) obtain a policy:

π(x) ∈ argmin
u∈U

{
ℓ(x, u) + γEx′∼pf (·|x,u)

[
Vk(x

′)
]}

, ∀x ∈ X

1. Value Update: Given π(x) and Vk(x), compute

Vk+1(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,u)
[
Vk(x

′)
]
, ∀x ∈ X

▶ Value Update is a single step of the iterative Policy Evaluation algorithm

▶ PI solves the Policy Evaluation equation completely, which is equivalent to
running the Value Update step of VI an infinite number of times

▶ Generalized Policy Iteration: assuming the Value Update and Policy
Improvement steps are executed an infinite number of times for all states, all
combinations of the following converge:
▶ Any number of Value Update steps in between Policy Improvement steps
▶ Any number of states updated at each Value Update step
▶ Any number of states updated at each Policy Improvement step
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Complexity of VI and PI

▶ Consider the complexity of VI and PI for a finite state space X

▶ Complexity of VI per Iteration: O(|X |2|U|): evaluating the expectation
(i.e., sum over x′) requires |X | operations and there are |X | minimizations
over |U| possible control inputs

▶ Complexity of PI per Iteration: O(|X |2 (|X |+ |U|)): the Policy Evaluation
step requires solving a system of |X | equations in |X | unknowns (O(|X |3)),
while the Policy Improvement step has the same complexity as one iteration
of VI

▶ PI is more computationally expensive than VI

▶ Theoretically it takes an infinite number of iterations for VI to converge

▶ PI converges in |U||X | iterations (all possible policies) in the worst case
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Value Iteration

▶ V ∗ is a fixed point of B∗: V0, B∗[V0], B2∗[V0], B3∗[V0], . . . → V ∗

Algorithm Value Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: Vk+1 = B∗ [Vk ]

▶ Q∗ is a fixed point of B∗: Q0, B∗[Q0], B2∗[Q0], B3∗[Q0], . . . → Q∗

Algorithm Q-Value Iteration

1: Initialize Q0

2: for k = 0, 1, 2, . . . do
3: Qk+1 = B∗ [Qk ]

42



Policy Iteration
▶ Policy Evaluation: V0, Bπ[V0], B2π[V0], B3π[V0], . . . → V π

Algorithm Policy Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = argmin

u∈U(x)
H[x,u,Vk(·)] ▷ Policy Improvement

4: Vk+1 = B∞πk+1
[Vk ] ▷ Policy Evaluation

▶ Policy Q-Evaluation: Q0, Bπ[Q0], B2π[Q0], B3π[Q0], . . . → Qπ

Algorithm Q-Policy Iteration

1: Initialize Q0

2: for k = 0, 1, 2 . . . do
3: πk+1(x) = argmin

u∈U(x)
Qk(x,u) ▷ Policy Improvement

4: Qk+1 = B∞πk+1
[Qk ] ▷ Policy Evaluation
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Generalized Policy Iteration

Algorithm Generalized Policy Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = argmin

u∈U(x)
H[x,u,Vk(·)] ▷ Policy Improvement

4: Vk+1 = Bnπk+1
[Vk ] , for n ≥ 1 ▷ Policy Evaluation

Algorithm Generalized Q-Policy Iteration

1: Initialize Q0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = argmin

u∈U(x)
Qk(x,u) ▷ Policy Improvement

4: Qk+1 = Bnπk+1
[Qk ] , for n ≥ 1 ▷ Policy Evaluation
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Example: Frozen Lake Problem

▶ Winter is here

▶ You and your friends were tossing around a frisbee at the park when you
made a wild throw that left the frisbee out in the middle of the lake

▶ The water is mostly frozen but there are a few holes where the ice has melted

▶ If you step into one of those holes, you fall into the freezing water

▶ There is an international frisbee shortage so it is absolutely imperative that
you navigate across the lake and retrieve the disc

▶ However, the ice is slippery so you cannot always move in the direction you
intend
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Example: Frozen Lake Problem
▶ S : starting point, safe

▶ F : frozen surface, safe

▶ H : hole, fall to your doom

▶ G : goal, where the frisbee is located

▶ X = {0, 1, . . . , 15}
▶ U = {Left(0), Down(1), Right(2), Up(3)}
▶ You receive a reward of 1 if you reach the goal,

and zero otherwise

▶ An input u ∈ U succeeds 80% of the time. A neighboring control is executed
in the other 50% of the time due to slip, e.g.,

x ′ | x = 9, u = 1 =


13, with prob. 0.8

8, with prob. 0.1

10, with prob. 0.1

▶ The state remains unchanged if a control leads outside of the map

▶ An episode ends when you reach the goal or fall in a hole
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Value Iteration on Frozen Lake

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5
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Value Iteration on Frozen Lake
Iteration maxx |Vt+1(x)− Vt(x)| # changed actions V (0)

0 0.80000 0 0.000
1 0.60800 1 0.000
2 0.51984 2 0.000
3 0.39508 2 0.000
4 0.30026 2 0.000
5 0.25355 2 0.254
6 0.10478 1 0.345
7 0.09657 0 0.442
8 0.03656 0 0.478
9 0.02772 0 0.506
10 0.01111 0 0.517
11 0.00735 0 0.524
12 0.00310 0 0.527
13 0.00190 0 0.529
14 0.00083 0 0.530
15 0.00049 0 0.531
16 0.00022 0 0.531
17 0.00013 0 0.531
18 0.00006 0 0.531
19 0.00003 0 0.531 48



Policy Iteration on Frozen Lake

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5
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Policy Iteration on Frozen Lake
Iteration maxx |Vt+1(x)− Vt(x)| # changed actions V (0)

0 0.00000 0 0.000
1 0.89296 1 0.000
2 0.88580 9 0.398
3 0.48504 2 0.455
4 0.07573 1 0.531
5 0.00000 0 0.531
6 0.00000 0 0.531
7 0.00000 0 0.531
8 0.00000 0 0.531
9 0.00000 0 0.531
10 0.00000 0 0.531
11 0.00000 0 0.531
12 0.00000 0 0.531
13 0.00000 0 0.531
14 0.00000 0 0.531
15 0.00000 0 0.531
16 0.00000 0 0.531
17 0.00000 0 0.531
18 0.00000 0 0.531
19 0.00000 0 0.531 50



Value Iteration vs Policy Iteration

(a) VI (b) PI
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Value Iteration vs Policy Iteration

(a) State 0 (b) State 1

(c) State 2 (d) State 3

52



Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

53



Linear Programming Solution to the Bellman Equation

▶ Consider a Discounted Problem with finite state space X

▶ Suppose we initialize VI with V0 that satisfies a relaxed Bellman equation
condition:

V0(x) ≤ min
u∈U(x)

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V0(x

′)

)
, ∀x ∈ X

▶ Since B∗ is monotone, applying VI to V0 leads to:

V1(x) = min
u∈U(x)

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V0(x

′)

)
≥ V0(x), ∀x ∈ X

V2(x) = min
u∈U(x)

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V1(x

′)

)

≥ min
u∈U(x)

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V0(x

′)

)
= V1(x), ∀x ∈ X

54



Linear Programming Solution to the Bellman Equation

▶ The above shows that Vk+1(x) ≥ Vk(x) for all k and x ∈ X

▶ Since VI guarantees that Vk(x)→ V ∗(x) as k →∞, we also have:

V ∗(x) ≥ V0(x), ∀x ∈ X ⇒
∑
x∈X

w(x)V ∗(x) ≥
∑
x∈X

w(x)V0(x)

for any w(x) > 0 for all x ∈ X .

▶ The above holds for any V0 that satisfies:

V0(x) ≤ min
u∈U(x)

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V0(x

′)

)
, ∀x ∈ X

▶ Since V ∗ satisfies this condition with equality (Bellman Equation), it is the
maximal V0 that satisfies the condition
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Linear Programming Solution to the Bellman Equation

LP Solution to Bellman Equation (Discounted Problem)

For finite X , the solution V ∗(x) to the linear program with w(x) > 0:

max
V

∑
x∈X

w(x)V (x)

s.t. V (x) ≤

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V (x′)

)
, ∀u ∈ U ,∀x ∈ X

also solves the Bellman Equation to yield the optimal value function of an
infinite-horizon finite-state discounted stochastic optimal control problem.

▶ An equivalent result holds for the First-Exit Problem
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LP Solution to Bellman Equation (Proof)
▶ Let J∗ be the solution to the linear program so that:

J∗(x) ≤

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)J∗(x′)

)
, ∀u ∈ U ,∀x ∈ X

▶ Since J∗ is feasible, it satisfies J∗(x) ≤ V ∗(x) for all x ∈ X

▶ By contradiction, suppose that J∗ ̸= V ∗

▶ Then, there exists a state y ∈ X such that:

J∗(y) < V ∗(y) ⇒
∑
x∈X

w(x)J∗(x) <
∑
x∈X

w(x)V ∗(x)

for any positive w(x) but since V ∗ solves the Bellman Equation:

V ∗(x) ≤

(
ℓ(x,u) + γ

∑
x′∈X

pf (x
′ | x,u)V ∗(x′)

)
, ∀u ∈ U ,∀x ∈ X ,

V ∗ is feasible and has higher value than J∗, which is a contradiction.
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Dual Linear Program

▶ Dual linear program:

min
λ≥0

∑
x∈X

∑
u∈U

ℓ(x,u)λ(x,u)

s.t.
∑
u′∈U

λ(x′,u′) = w(x) + γ
∑
x∈X

∑
u∈U

λ(x,u)pf (x
′ | x,u), ∀x′ ∈ X

▶ If
∑

x∈X w(x) = 1, the constraint ensures that λ(x,u) is a probability
measure on X × U induced by an optimal policy π:

λ(x,u) =
∑
x0∈X

w(x0)
∞∑
t=0

γtPπ(xt = x,ut = u|x0)

▶ Optimal policy:
π∗(x) ∈ argmin

u∈U
λ(x,u)
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