
ECE276B: Planning & Learning in Robotics
Lecture 11: Model-Free Prediction

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu


Outline

Model-Free Policy Evaluation

Monte Carlo Policy Evaluation

Temporal Difference Policy Evaluation

2



From Optimal Control To Reinforcement Learning

▶ Stochastic Optimal Control: MDP with known motion model pf (x′ | x,u)
and cost function ℓ(x,u)
▶ Model-Based Prediction: compute value function V π of given policy π

▶ Policy Evaluation Theorem

▶ Model-Based Control: optimize value function V π to get improved policy π′

▶ Policy Improvement Theorem

▶ Reinforcement Learning: MDP with unknown motion model pf (x′ | x,u)
and cost function ℓ(x,u) but access to samples {(x′i , xi ,ui , ℓi )}i of system
transitions and incurred costs
▶ Model-Free Prediction: estimate value function V π of given policy π:

▶ Monte-Carlo (MC) Prediction
▶ Temporal-Difference (TD) Prediction

▶ Model-Free Control: optimize value function V π to get improved policy π′:
▶ On-policy MC Control: ϵ-greedy
▶ On-policy TD Control: SARSA
▶ Off-policy MC Control: Importance Sampling
▶ Off-policy TD Control: Q-Learning

3



Bellman Operators
▶ Hamiltonian:

H[x,u,V ] = ℓ(x,u) + γEx′∼pf (·|x,u) [V (x′)]

▶ Operators for policy value functions:
▶ Policy Evaluation Operator:

Bπ[V ](x) := ℓ(x, π(x)) + γEx′∼pf (·|x,π(x))

[
V (x′)

]
= H[x, π(x),V (·)]

▶ Policy Q-Evaluation Operator:

Bπ[Q](x, u) := ℓ(x, u) + γEx′∼pf (·|x,u)
[
Q(x′, π(x′))

]
= H[x, u,Q(·, π(·))]

▶ Operators for optimal value functions:
▶ Value Operator:

B∗[V ](x) := min
u∈U

{
ℓ(x, u) + γEx′∼pf (·|x,u)

[
V (x′)

]}
= min

u∈U
H[x, u,V (·)]

▶ Q-Value Operator:

B∗[Q](x, u) := ℓ(x, u) + γEx′∼pf (·|x,u)

[
min
u′∈U

Q(x′, u′)

]
= H[x, u, min

u′∈U
Q(·, u′)]

4



Model-Free Prediction

▶ Objective: estimate value function V π of given policy π

▶ Approach: approximate Policy Evaluation operators Bπ[V ] and Bπ[Q] using
samples {(x′i , xi ,ui , ℓi )}i instead of computing the expectation over x′ exactly:

▶ Monte-Carlo (MC) methods:
▶ expected long-term cost approximated by sample average over whole system

trajectories (applies to First-Exit and Finite-Horizon settings only)

▶ Temporal-Difference (TD) methods:
▶ expected long-term cost approximated by a sample average over few system

transitions and an estimate of the expected long-term cost at the reached state
(bootstrapping)

▶ Sampling: value estimates V π(x)
rely on samples {(x′i , xi ,ui , ℓi )}i :
▶ DP does not sample

▶ MC samples

▶ TD samples

▶ Bootstrapping: value estimates
V π(x) rely on other value
estimates V π(x′):
▶ DP bootstraps
▶ MC does not bootstrap
▶ TD bootstraps

5



Outline

Model-Free Policy Evaluation

Monte Carlo Policy Evaluation

Temporal Difference Policy Evaluation

6



Monte-Carlo Policy Evaluation
▶ Assumption: MC policy evaluation applies to the First-Exit problem

▶ Episode: a sequence ρτ of states and controls from initial state xτ at initial
time τ , following the stochastic system transitions under policy π:

ρτ := xτ ,uτ , xτ+1,uτ+1, . . . , xT−1,uT−1, xT ∼ π

▶ Long-Term Cost of episode ρτ :

Lτ (ρτ ) := γT−τq(xT ) +
T−1∑
t=τ

γt−τ ℓ(xt ,ut)

▶ Goal: approximate V π(x) from several episodes ρ
(k)
τ ∼ π, k = 1, . . . ,K

▶ MC Policy Evaluation: uses the empirical mean of the long-term costs of

the episodes ρ
(k)
τ to approximate the value of π:

V π(x) = Eρ∼π[Lτ (ρ) | xτ = x] ≈ 1

K

K∑
k=1

Lτ (ρ
(k)
τ )

7



Monte-Carlo Policy Evaluation

▶ Goal: approximate V π(x) from episodes ρ(k) ∼ π

▶ First-Visit MC Policy Evaluation:
▶ for each state x and episode ρ(k), find the first time step t that state x is

visited in ρ(k) and increment:
▶ the number of visits to x: N(x)← N(x) + 1
▶ the long-term cost starting from x: C(x)← C(x) + Lt(ρ(k))

▶ Approximate the value function of π: V π(x) ≈ C(x)
N(x)

▶ Every-Visit MC Policy Evaluation: same approach but the long-term costs
are accumulated following every time step t that state x is visited in ρ(k)

8



Monte-Carlo Policy Evaluation

Algorithm First-Visit MC Policy Evaluation

1: Initialize π(x)
2: C (x)← 0 for all x, N(x)← 0 for all x
3: loop
4: Generate ρ = x0,u0, x1,u1, . . . , xT−1,uT−1, xT from π
5: for x ∈ ρ do
6: L← return following first appearance of x in ρ
7: N(x)← N(x) + 1
8: C (x)← C (x) + L

9: return V π(x)← C(x)
N(x)

▶ Every-Visit MC adds to C (x) not a single return L but the returns {L}
following all appearances of x in ρ

9



Running Sample Average
▶ Consider a sequence x1, x2, . . . , of samples from a random variable
▶ Sample average:

µk+1 =
1

k + 1

k+1∑
j=1

xj

▶ Running average:

µk+1 =
1

k + 1

k+1∑
j=1

xj =
1

k + 1

xk+1 +
k∑

j=1

xj

 =
1

k + 1
(xk+1 + kµk)

= µk +
1

k + 1
(xk+1 − µk)

▶ Weighted running average: update µk using a step-size αk+1 ̸= 1
k+1 :

µk+1 = µk + αk+1(xk+1 − µk)

▶ Robbins-Monro step size: convergence to the true mean is guaranteed
almost surely under the following conditions:

(independence from
initial conditions

)
∞∑
k=1

αk =∞
∞∑
k=1

α2
k <∞ (ensures convergence)

10



First-Visit MC Policy Evaluation (Running Average)

Algorithm First-Visit MC Policy Evaluation (Running Average)

1: Initialize π(x)
2: V π(x)← 0 for all x
3: loop
4: Generate ρ = x0,u0, x1,u1, . . . , xT−1,uT−1, xT from π
5: for x ∈ ρ do
6: L← return following first appearance of x in ρ
7: V π(x)← V π(x) + α(L− V π(x)) ▷ usual choice: α := 1

N(x)+1

11



Outline

Model-Free Policy Evaluation

Monte Carlo Policy Evaluation

Temporal Difference Policy Evaluation

12



Temporal-Difference Policy Evaluation
▶ Bootstrapping: the estimate of V π(x) at state x relies on the estimate

V π(x′) at another state

▶ TD combines the sampling of MC with the bootstrapping of DP:

V π(x) = Eρ∼π[Lτ (ρ) | xτ = x]

= Eρ∼π

[
γT−τq(xT ) +

T−1∑
t=τ

γt−τ ℓ(xt ,ut) | xτ = x

]

= Eρ∼π

[
ℓ(xτ ,uτ ) + γ

(
γT−τ−1q(xT ) +

T−1∑
t=τ+1

γt−τ−1ℓ(xt ,ut)

)
| xτ = x

]
TD(0)

======
bootstrap

Eρ∼π [ℓ(xτ ,uτ ) + γV π(xτ+1) | xτ = x]

TD(n)
======
bootstrap

Eρ∼π

[
τ+n∑
t=τ

γt−τ ℓ(xt ,ut) + γn+1V π(xτ+n+1) | xτ = x

]
MC
≈ 1

K

K∑
k=1

[
τ+n∑
t=τ

γt−τ ℓ(x
(k)
t ,u

(k)
t ) + γn+1V π(x

(k)
τ+n+1)

]

13



Temporal-Difference Policy Evaluation

▶ Goal: approximate V π(x) from episodes ρ ∼ π

▶ MC Policy Evaluation: updates the value estimate V π(xt) towards the
long-term cost Lt(ρt):

V π(xt)← V π(xt) + α(Lt(ρt)− V π(xt))

▶ TD(0) Policy Evaluation: updates the value estimate V π(xt) towards an
estimated long-term cost ℓ(xt ,ut) + γV π(xt+1):

V π(xt)← V π(xt) + α(ℓ(xt ,ut) + γV π(xt+1)− V π(xt))

▶ TD(n) Policy Evaluation: updates the value estimate V π(xt) towards an

estimated long-term cost
t+n∑
τ=t

γτ−tℓ(xτ ,uτ ) + γn+1V π(xt+n+1):

V π(xt)← V π(xt) + α

(
t+n∑
τ=t

γτ−tℓ(xτ ,uτ ) + γn+1V π(xt+n+1)− V π(xt)

)

14



TD(n) Policy Evaluation

15



MC and TD Errors

▶ TD error: measures the difference between the estimated value V π(xt) and
the improved estimate ℓ(xt ,ut) + γV π(xt+1):

δt := ℓ(xt ,ut) + γV π(xt+1)− V π(xt)

▶ MC error: a sum of TD errors:

Lt(ρt)− V π(xt) = ℓ(xt ,ut) + γLt+1(ρt+1)− V π(xt)

= δt + γ (Lt+1(ρt+1)− V π(xt+1))

= δt + γδt+1 + γ2 (Lt+2(ρt+2)− V π(xt+2))

=
T−t−1∑
n=0

γnδt+n

▶ MC and TD converge: V π(x) approaches the true value function of π as
the number of sampled episodes →∞ as long as αk is a Robbins-Monro
sequence and X is finite (needed for TD convergence)

16



Monte-Carlo Backup

V π(xt)← V π(xt) + α(Lt(ρt)− V π(xt))

17



Temporal-Difference Backup

V π(xt)← V π(xt) + α(ℓ(xt ,ut) + γV π(xt+1)− V π(xt))

18



Dynamic-Programming Backup

V π(xt)← ℓ(xt ,ut) + γExt+1∼pf (·|xt ,ut) [V
π(xt+1)]

19



Comparison of Policy Evaluation Methods

20



MC vs TD Policy Evaluation

▶ MC:
▶ Must wait until the end of an episode before updating V π(x)

▶ Value estimates are zero bias but high variance (long-term cost depends on
many random transitions)

▶ Not sensitive to initialization

▶ Has good convergence properties even with function approximation (infinite
state space)

▶ TD:
▶ Can update V π(x) without complete episodes and hence can learn online after

each transition

▶ Value estimates are biased but low variance (the TD(0) target depends on
one random transition but has bias from bootstrapping)

▶ More sensitive to initialization than MC

▶ May not converge with function approximation (infinite state space)

21



Bias-Variance Trade-off

22



Batch MC and TD Policy Evaluation

▶ Batch setting: given set of episodes {ρ(k)}Kk=1
▶ Accumulate value function updates according to MC or TD for k = 1, . . . ,K
▶ Update the value estimates only after a complete pass through all data
▶ Repeat until the value function estimate converges

▶ Batch MC: converges to V π that best fits the observed costs:

V π(x) ∈ argmin
V

K∑
k=1

Tk∑
t=0

(
Lt(ρ

(k))− V
)2
1{x(k)t = x}

▶ Batch TD(0): converges to V π of the maximum likelihood MDP model
that best fits the observed data

p̂f (x
′ | x,u) = 1

N(x,u)

K∑
k=1

Tk∑
t=1

1{x(k)t = x,u
(k)
t = u, x

(k)
t+1 = x′}

ℓ̂(x,u) =
1

N(x,u)

K∑
k=1

Tk∑
t=1

1{x(k)t = x,u
(k)
t = u}ℓ(x(k)t ,u

(k)
t )

23



Averaged-Return TD

▶ Define the n-step return:

L
(n)
t (ρ) := ℓ(xt ,ut) + γℓ(xt+1,ut+1) + . . .+ γnℓ(xt+n,ut+n) + γn+1V π(xt+n+1) TD(n)

L
(0)
t (ρ) = ℓ(xt ,ut) + γV π(xt+1) TD(0)

L
(1)
t (ρ) = ℓ(xt ,ut) + γℓ(xt+1,ut+1) + γ2V π(xt+2) TD(1)

...

L
(∞)
t (ρ) = ℓ(xt ,ut) + γℓ(xt+1,ut+1) + . . .+ γT−t−1ℓ(xT−1,uT−1) + γT−tq(xT ) MC

▶ TD(n):

V π(xt)← V π(xt) + α(L
(n)
t (ρ)− V π(xt))

▶ Averaged-Return TD: combines bootstrapping from several states:

V π(xt)← V π(xt) + α

(
1

2
L
(2)
t (ρ) +

1

2
L
(4)
t (ρ)− V π(xt)

)
▶ Can we combine the information from all time-steps?

24



Forward-View TD(λ)
▶ λ-return: combines all n-step returns:

Lλt (ρ) = (1−λ)
T−t−2∑
n=0

λnL
(n)
t (ρ)+λT−t−1L

(∞)
t (ρ)

▶ Forward-View TD(λ):

V π(xt)← V π(xt) + α
(
Lλt (ρ)− V π(xt)

)
▶ Like MC, the Lλt return can only be

computed from complete episodes

25



Backward-View TD(λ)
▶ Forward-View TD(λ) is equivalent to TD(0) for λ = 0 and to every-visit MC

for λ = 1

▶ Backward-View TD(λ) allows online updates from incomplete episodes

▶ Credit assignment problem: did the bell or the light cause the shock?

▶ Frequency heuristic: assigns credit to the most frequent states
▶ Recency heuristic: assigns credit to the most recent states
▶ Eligibility trace: combines both heuristics

et(x) = γλet−1(x) + 1{x = xt}

▶ Backward-View TD(λ): updates in proportion to the TD error δt and the
eligibility trace et(x):

V π(xt)← V π(xt) + α (ℓ(xt ,ut) + γV π(xt+1)− V π(xt)) et(xt)

26


	Model-Free Policy Evaluation
	Monte Carlo Policy Evaluation
	Temporal Difference Policy Evaluation

