
ECE276B: Planning & Learning in Robotics
Lecture 12: Model-Free Control

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

2

Model-Free Generalized Policy Iteration

▶ Model-based case: Our main tool for stochastic infinite-horizon problems
over MDPs with known models is Generalized Policy Iteration (GPI):

▶ Policy Evaluation: Given π, compute V π:

V π(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,π(x))

[
V π(x′)

]
, ∀x ∈ X

▶ Policy Improvement: Given V π obtain a new policy π′:

π′(x) ∈ argmin
u∈U(x)

{
ℓ(x, u) + γEx′∼pf (·|x,u)

[
V π(x′)

]}︸ ︷︷ ︸
Qπ(x,u)

, ∀x ∈ X

▶ Model-free case: Is it still possible to implement the GPI algorithm?

▶ Policy Evaluation: Given π, MC or TD learning from Lecture 11 can be used
to estimate V π or Qπ

▶ Policy Improvement: Computing π′ based on V π requires access to ℓ(x, u),
pf (x

′, x, u) but based on Qπ can be done without knowing ℓ(x, u), pf (x
′, x, u):

π′(x) ∈ argmin
u∈U(x)

Qπ(x, u)

3

Policy Evaluation (Recap)
▶ Given π, iterate Bπ to compute V π or Qπ via Dynamic Programming (DP),

Temporal Difference (TD), or Monte Carlo (MC)

▶ DP needs the models ℓ(xt ,ut), pf (xt+1|xt ,ut) while MC and TD are
model-free and use samples xt ,ut , ℓt , xt+1 instead

▶ V π Policy Evaluation:

DP : Bπ[V](xt) = ℓ(xt , π(xt)) + γExt+1∼pf (·|xt ,π(xt)) [V (xt+1)]

TD : Bπ[V](xt) ≈ V (xt) + α [ℓ(xt ,ut) + γV (xt+1)− V (xt)]

MC : Bπ[V](xt) ≈ V (xt) + α

[
T−t−1∑
k=0

γkℓ(xt+k ,ut+k) + γT−tq(xT)− V (xt)

]
▶ Qπ Policy Evaluation:

DP : Bπ[Q](xt ,ut) = ℓ(xt ,ut) + γExt+1∼pf (·|xt ,ut) [Q(xt+1, π(xt+1))]

TD : Bπ[Q](xt ,ut) ≈ Q(xt ,ut) + α [ℓ(xt ,ut) + γQ(xt+1,ut+1)− Q(xt ,ut)]

MC : Bπ[Q](xt ,ut) ≈ Q(xt ,ut) + α

[
T−t−1∑
k=0

γkℓ(xt+k ,ut+k) + γT−tq(xT)− Q(xt ,ut)

]

4

Model-Free Policy Improvement

▶ If Qπ, instead of V π, is estimated via MC or TD, then the policy
improvement step can be implemented model-free, i.e., can compute
minu Q

π(x,u) without knowing the motion model pf or the stage cost ℓ

▶ Since Qπ(x,u) computed by MC or TD is an approximation to the true Q
function, we might not get an improved policy with respect to the true Q
function:

▶ picking the “best” control according to the current estimate of Qπ might not
be the actual best control

▶ if a deterministic policy π(x) is used for Evaluation and Improvement, we will
observe returns for only one of the possible controls at each state and might
not visit many states; estimating Qπ will not be possible at those never-visited
states and controls

5

Example

▶ There are two doors in front of you

▶ You open the left door and get reward 0
ℓ(left) = 0

▶ You open the right door and get reward +1
ℓ(right) = −1

▶ You open the right door and get reward +3
ℓ(right) = −3

▶ You open the right door and get reward +2
ℓ(right) = −2

▶ Which door is the best long-term choice?

6

Model-Free Control

▶ Two ideas to ensure that we do not commit to wrong controls due to
approximation error in Qπ too early and continue exploring the state and
control space:

1. Exploring Starts: in each episode ρ(k) ∼ π, choose initial state-control pairs
randomly with non-zero probability among all possible pairs in X × U

2. ϵ-Soft Policy: a stochastic policy π(u|x) under which every control has a
non-zero probability of being chosen and hence every reachable state will have
non-zero probability of being encountered

▶ Deterministic Stationary Policy: function π : X → U

▶ Stochastic Stationary Policy: function π : X → P(U), where P(U) is the
set of probability density functions on U :

π(u|x) ≥ 0

∫
U
π(u|x)du = 1

7

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

8

First-Visit MC Policy Iteration with Exploring Starts

Algorithm MC Policy Iteration with Exploring Starts

1: Initialize: Q(x, u), π(x) for all x ∈ X and u ∈ U
2: loop
3: Choose (x0, u0) ∈ X × U randomly ▷ exploring starts
4: Generate an episode ρ = x0, u0, x1, u1, . . . , xT−1, ut−1, xT from π
5: for each x, u in ρ do
6: L← return following the first occurrence of x, u
7: Q(x, u)← Q(x, u) + α (L− Q(x, u))

8: for each x in ρ do
9: π(x)← argmin

u
Q(x, u)

9

ϵ-Greedy Exploration
▶ An alternative to exploring starts

▶ To ensure exploration it must be possible to encounter all control U controls
with non-zero probability

▶ Assume |U| <∞

▶ ϵ-Soft Policy: stochastic policy that picks each u with at least ϵ
|U|

probability:

π(u|x) = P(ut = u | xt = x) ≥ ϵ

|U|
∀x ∈ X ,u ∈ U

▶ ϵ-Greedy Policy: an ϵ-soft policy that picks the best control according to
Q(x,u) in the policy improvement step but ensures that all other controls are
selected with at least ϵ

|U| probability:

π(u | x) = P(ut = u | xt = x) =

1− ϵ+ ϵ
|U| if u = argmin

u′∈U
Q(x,u′)

ϵ
|U| otherwise

10

Bellman Equations with a Stochastic Policy

▶ Value function of a stochastic policy π:

V π(x) := Eu0,x1,u1,x2,...

[∞∑
t=0

γtℓ(xt ,ut) | x0 = x

]
= Eu∼π(·|x)

[
ℓ(x,u) + γEx′∼pf (·|x,u) [V

π(x′)]
]

= Eu∼π(·|x) [Q
π(x,u)]

▶ Q function of a stochastic policy π:

Qπ(x,u) := ℓ(x,u) + Ex1,u1,...

[∞∑
t=1

γtℓ(xt ,ut) | x0 = x,u0 = u

]
= ℓ(x,u) + γEx′∼pf (·|x,u),u′∼π(·|x′) [Q

π(x′,u′)]

11

ϵ-Greedy Policy Improvement

Theorem: ϵ-Greedy Policy Improvement

For any ϵ-soft policy π with associated Qπ, the ϵ-greedy policy π′ with respect to
Qπ is an improvement, i.e., V π′

(x) ≤ V π(x) for all x ∈ X

▶ Proof:

Eu′∼π′(·|x) [Q
π(x,u′)] =

∑
u′∈U

π′(u′ | x)Qπ(x,u′)

=
ϵ

|U|
∑
u′∈U

Qπ(x,u′) + (1− ϵ)min
u∈U

Qπ(x,u)

≤ ϵ

|U|
∑
u′∈U

Qπ(x,u′) + (1− ϵ)
∑
u∈U

π(u | x)− ϵ
|U|

1− ϵ
Qπ(x,u)

=
∑
u∈U

π(u | x)Qπ(x,u) = V π(x)

12

ϵ-Greedy Policy Improvement

▶ Then, similarity to the policy improvement theorem for deterministic policies,
for all x ∈ X :

V π(x) ≥ Eu0∼π′(·|x) [Q
π(x,u0)]

= Eu0∼π′(·|x)
[
ℓ(x,u0) + γEx1∼pf (·|x,u0) [V

π(x1)]
]

≥ Eu0∼π′(·|x)
[
ℓ(x,u0) + γEx1∼pf (·|x,u0)

[
Eu1∼π′(·|x1) [Q

π(x1,u1)]
]]

= Eu0∼π′(·|x) [ℓ(x,u0) + γEx1,u1 [ℓ(x1,u1) + γEx2V
π(x2)]]

≥ · · · ≥ Eρ0∼π′

[∞∑
t=0

γtℓ(xt ,ut)

∣∣∣∣x0 = x

]
= V π′

(x)

13

First-Visit MC Policy Iteration with ϵ-Greedy Improvement

Algorithm First-Visit MC Policy Iteration with ϵ-Greedy Improvement

1: Init: Q(x, u), π(u|x) (ϵ-soft policy) for all x ∈ X and u ∈ U
2: loop
3: Generate an episode ρ := x0, u0, x1, u1, . . . , xT−1, ut−1, xT from π
4: for each x, u in ρ do
5: L← return following the first occurrence of x, u
6: Q(x, u)← Q(x, u) + α (L− Q(x, u))

7: for each x in ρ do
8: U∗ ← argmin

u
Q(x, u)

9: π(u|x)←

{
1−ϵ
|U∗| +

ϵ
|U(x)| if u ∈ U∗

ϵ
|U(x)| if u ̸= u∗

14

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

15

Temporal-Difference Control

▶ TD prediction has several advantages over MC prediction:
▶ works with incomplete episodes

▶ can perform online updates to Qπ after every transition

▶ TD estimate of Qπ has lower variance than the MC one

▶ TD in the policy iteration algorithm:
▶ use TD for policy evaluation

▶ can update Q(x, u) after every transition within an episode

▶ use an ϵ-greedy policy for policy improvement because we still need to trade
off exploration and exploitation

16

TD Policy Iteration with ϵ-Greedy Improvement (SARSA)

▶ SARSA: estimates Qπ using TD updates after every St ,At ,Rt ,St+1,At+1

transition:

Q(xt ,ut)← Q(xt ,ut) + α [ℓ(xt ,ut) + γQ(xt+1,ut+1)− Q(xt ,ut)]

▶ Ensures exploration via an ϵ-greedy policy in the policy improvement step

Algorithm SARSA

1: Init: Q(x,u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ϵ-greedy policy derived from Q
4: Generate episode ρ := x0,u0, x1,u1, . . . , xT−1,ut−1, xT from π
5: for (x,u, x′,u′) ∈ ρ do
6: Q(x,u)← Q(x,u) + α [ℓ(x,u) + γQ(x′,u′)− Q(x,u)]

17

Convergence of Model-Free Policy Iteration

▶ Greedy in the Limit with Infinite Exploration (GLIE):
▶ Number of visits to all state-control pairs approach infinity, i.e., all

state-control pairs are explored infinitely many times: limk→∞ Nk(x, u) =∞
▶ The ϵ-greedy policy converges to a greedy policy wrt u∗ ∈ argmin

u∈U(x)

Q(x, u)

▶ Example: ϵ-greedy is GLIE with ϵk = 1
k

πk(u | x) =

{
1− ϵk +

ϵk
|U| if u = u∗

ϵk
|U| if u ̸= u∗

lim
k→∞

πk(u | x) =

{
1 if u = u∗

0 if u ̸= u∗

Theorem: Convergence of Model-Free Policy Iteration

Both MC Policy Iteration and SARSA converge to the optimal action-value
function, Q(x,u)→ Q∗(x,u), as the number of episodes k →∞ as long as:

▶ the sequence of ϵ-greedy policies πk(u | x) is GLIE,
▶ the sequence of step sizes αk is Robbins-Monro.

18

On-Policy vs Off-Policy Learning

▶ On-policy prediction: estimate V π or Qπ using episodes from π

▶ Off-policy prediction: estimate V π or Qπ using episodes from µ

▶ On-policy learning methods:
▶ evaluate or improve a policy π that is used to both make decisions and collect

experience
▶ require well-designed exploration functions
▶ empirically successful with function approximation

▶ Off-policy learning methods:
▶ evaluate or improve a policy π that is different from the policy µ used to

generate data
▶ can use an effective exploration policy µ to generate data while learning an

optimal policy π
▶ can learn from observing other agents
▶ can re-use experience from old policies π1, π2, . . . , πk−1

▶ can learn about multiple policies while following one policy
▶ causes theoretical challenges with function approximation

19

Importance Sampling for Off-Policy Learning

▶ Off-policy learning: use episodes generated from µ to evaluate π

▶ The stage costs obtained from µ need to be re-weighted according to the
likelihood that the same states would be encountered by π

▶ Importance Sampling: estimates the expectation of a function ℓ(x) with
respect to a probability density function p(x) by computing a re-weighted
expectation over a different probability density q(x):

Ex∼p(·)[ℓ(x)] =

∫
p(x)ℓ(x)dx

=

∫
q(x)

p(x)

q(x)
ℓ(x)dx = Ex∼q(·)

[
p(x)

q(x)
ℓ(x)

]
Requires that q(x) ̸= 0 when p(x) ̸= 0.

20

Importance Sampling for Off-Policy MC Learning

▶ To use returns generated from µ to evaluate π via MC, re-weight the
long-term cost Lt via importance-sampling corrections along the whole
episode:

L
π/µ
t =

π(ut |xt)
µ(ut |xt)

π(ut+1|xt+1)

µ(ut+1|xt+1)
· · · π(uT−1|xT−1)

µ(uT−1|xT−1)
Lt

▶ This requires that µ should not be zero for any of state-control pairs along
the episode from π

▶ Update the value estimate towards the corrected long-term cost L
π/µ
t :

V π(xt)← V π(xt) + α
(
L
π/µ
t − V π(xt)

)
▶ Note: importance sampling in MC can dramatically increase variance

21

Importance Sampling for Off-Policy TD Learning

▶ To use returns generated from µ to evaluate π via TD, re-weight the TD
target ℓ(x,u) + γV (x′) by importance sampling:

V π(xt)← V π(xt) + α

(
π(ut | xt)
µ(ut | xt)

(ℓ(xt ,ut) + γV π(xt+1))− V π(xt)

)
▶ Importance sampling in TD is much lower variance than in MC and the

policies need to be similar (i.e., µ should not be zero when π is non-zero)
over a single step only

22

Off-Policy TD Control without Importance Sampling

▶ Q-Learning (Watkins, 1989): one of the early breakthroughs in
reinforcement learning was the development of an off-policy TD algorithm
that does not use importance sampling

▶ Q-Learning approximates B∗[Q](x,u) directly using samples:

Q(xt ,ut)← Q(xt ,ut) + α

[
ℓ(xt ,ut) + γmin

u∈U
Q(xt+1,u)− Q(xt ,ut)

]
▶ The learned Q function approximates Q∗ regardless of the policy being

followed!

Theorem: Convergence of Q-Learning

Q-Learning converges almost surely to Q∗ assuming all state-control pairs
continue to be updated and the sequence of step sizes αk is Robbins-Monro.

▶ C. J. Watkins and P. Dayan. “Q-learning,” Machine learning, 1992.

23

Q-Learning: Off-Policy TD Learning of Q∗(x,u)

Algorithm Q-Learning

1: Init: Q(x,u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ϵ-greedy policy derived from Q ▷ π can be arbitrary!
4: Generate episode ρ := x0,u0, x1,u1, . . . , xT−1,ut−1, xT from π
5: for (x,u, x′) ∈ ρ do
6: Q(x,u)← Q(x,u) + α [ℓ(x,u) + γminu′ Q(x′,u′)− Q(x,u)]

24

Relationship Between Full and Sample Backups

Full Backups (DP) Sample Backups (TD)
Policy Evaluation TD Policy Evaluation
V (x)← Bπ[V](x) = ℓ(x, π(x)) + γEx′ [V (x′)] V (x)← V (x) + α(ℓ(x,u) + γV (x′)− V (x))
Policy Q-Evaluation TD Policy Q-Evaluation (SARSA)
Q(x,u)← Bπ[Q](x,u) = ℓ(x,u) + γEx′ [Q(x′, π(x′))] Q(x,u)← Q(x,u) + α(ℓ(x,u) + γQ(x′,u′)− Q(x,u))
Value Iteration N/A
V (x)← B∗[V](x) = min

u
{ℓ(x,u) + γEx′ [V (x′)]}

Q-Value Iteration Q-Learning

Q(x,u)← B∗[Q](x,u) = ℓ(x,u) + γEx′

[
min
u′

Q(x′,u′)
]

Q(x,u)← Q(x,u) + α
(
ℓ(x,u) + γmin

u′
Q(x′,u′)− Q(x,u)

)

25

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

26

Batch Sampling-Based Q-Value Iteration

Algorithm Batch Sampling-Based Q-Value Iteration

1: Init: Q0(x,u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ϵ-greedy policy derived from Qi ▷ π can be arbitrary!
4: Generate episodes {ρ(k)}Kk=1 from π
5: for (x,u) ∈ X × U do

6: Qi+1(x,u) =
1

K

K∑
k=1

∑T (k)

t=0 B∗[Qi](x
(k)
t ,u

(k)
t , x

(k)
t+1)1{(x

(k)
t ,u

(k)
t) = (x,u)}∑T (k)

t=0 1{(x
(k)
t ,u

(k)
t) = (x,u)}

▶ Batch sampling-based Q-value iteration behaves like Qi+1 = B∗[Qi] + noise.
Does it actually converge?

27

Batch Least-Squares Q-Value Iteration

▶ Qi+1(x,u) = mean
{
B∗[Qi](x

(k)
t ,u

(k)
t , x

(k)
t+1), ∀k , t such that (x

(k)
t ,u

(k)
t) = (x,u)

}
▶ Note that: mean

{
x(k)
}
= argmin

x

∑K
k=1 ∥x(k) − x∥2

▶ Qi+1(x,u) = argmin
q

∑K
k=1

∑
(x

(k)
t ,u

(k)
t)=(x,u)

∥∥∥B∗[Qi](x
(k)
t ,u

(k)
t , x

(k)
t+1)− q

∥∥∥2
▶ Qi+1(·, ·) = argmin

Q(·,·)

∑K
k=1

∑T (k)

t=0

∥∥∥B∗[Qi](x
(k)
t ,u

(k)
t , x

(k)
t+1)− Q(x

(k)
t ,u

(k)
t)
∥∥∥2

Algorithm Batch Least-Squares Q-Value Iteration

1: Init: Q0(x,u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ϵ-greedy policy derived from Qi ▷ π can be arbitrary!
4: Generate episodes {ρ(k)}Kk=1 from π

5: Qi+1(·, ·) = argmin
Q(·,·)

K∑
k=1

T (k)∑
t=0

∥∥∥B∗[Qi](x
(k)
t ,u

(k)
t , x

(k)
t+1)− Q(x

(k)
t ,u

(k)
t)
∥∥∥2

28

Small Steps in the Backup Direction
▶ Full backup: Qi+1 ← B∗[Qi] + noise

▶ Partial backup: Qi+1 ← αB∗[Qi] + (1− α)Qi + noise

▶ Equivalent to a gradient step on a squared error objective function:

Qi+1 ← αB∗[Qi] + (1− α)Qi + noise

= Qi + α (B∗[Qi]− Qi) + noise

= Qi − α

(
1

2
∇Q∥B∗[Qi]− Q∥2

∣∣∣∣
Q=Qi

+ noise

)

▶ Behaves like stochastic gradient descent for f (Q) := 1
2∥B∗[Qi]−Q∥2 but the

objective is changing because B∗[Qi] is a moving target

▶ Stochastic Approximation Theory: a partial update to ensure contraction
+ appropriate step size α implies convergence to the contraction fixed point:
limi→∞ Qi = Q∗

▶ T. Jaakkola, M. Jordan, S. Singh, “On the convergence of stochastic
iterative dynamic programming algorithms,” Neural computation, 1994.

29

Batch Gradient Least-Squares Q-Value Iteration

Algorithm Batch Gradient Least-Squares Q-Value Iteration

1: Init: Q0(x,u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ϵ-greedy policy derived from Qi ▷ π can be arbitrary!
4: Generate episodes {ρ(k)}Kk=1 from π

5: Qi+1 ← Qi −
α

2
∇Q

 K∑
k=1

T (k)∑
t=0

∥B∗[Qi](x
(k)
t ,u

(k)
t , x

(k)
t+1)− Q(x

(k)
t ,u

(k)
t)∥2

∣∣∣∣
Q=Qi

▶ Q-learning is a special case with K = 1

30

	Model-Free Policy Iteration
	Monte Carlo Policy Iteration
	Temporal Difference Policy Iteration
	Batch Q-Value Iteration

