ECE276B: Planning & Learning in Robotics Lecture 13: Value Function Approximation

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

[Value Function Approximation](#page-1-0)

[Incremental Methods](#page-12-0)

[Batch Methods](#page-20-0)

Optimal Control in Large and Infinite Spaces

- \triangleright So far we have been using a vector to represent the value function:
	- riangleright every state **x** has an entry $V^{\pi}(\mathbf{x})$
	- vevery state-control pair (x, u) has an entry $Q^{\pi}(x, u)$
- \blacktriangleright In very large and continuous state and control spaces:
	- \triangleright there are too many states and controls to store in memory
	- \triangleright it is too slow to approximate the value of each state individually
- \blacktriangleright Key idea:
	- **EX** represent the value function using function approximation with parameters θ :

$$
V^{\pi}(\mathbf{x}) \approx \hat{V}(\mathbf{x}; \theta) \qquad Q^{\pi}(\mathbf{x}, \mathbf{u}) \approx \hat{Q}(\mathbf{x}, \mathbf{u}; \theta)
$$

- \triangleright update the parameters θ using MC or TD learning
- ▶ this allows generalization from seen to unseen states and controls

Value Function Approximation

Value Function Approximation

▶ Many function approximators are possible:

- \blacktriangleright Linear combination of features (differentiable)
- ▶ Neural network (differentiable)
- \blacktriangleright Fourier / wavelet base (differentiable)
- ▶ Nearest neighbor
- ▶ Decision tree
- ▶ A differentiable function approximator is necessary to allow parameter updates
- ▶ A training method for non-stationary non-iid data is required

Value Approximation via Unconstrained Optimization

▶ Main idea:

- \blacktriangleright define a function $J(\theta)$ measuring the error between $V^{\pi}(\mathbf{x})$ and $\hat{V}(\mathbf{x};\theta)$
- \blacktriangleright determine the parameters through an optimization problem:

$$
\theta^*\in\argmin_\theta J(\theta)
$$

 \blacktriangleright Two approaches to solving min θ J(θ):

 \blacktriangleright Incremental: use a (stochastic) descent method:

$$
\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \alpha_k \delta \boldsymbol{\theta}_k
$$

where $\delta \bm{\theta}_k$ is a valid descent direction with $\nabla_{\bm{\theta}} J(\bm{\theta}_k)^\top \delta \bm{\theta}_k < 0$

► Batch: obtain θ^* from the optimality conditions:

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = 0
$$

Optimality Conditions

First-order Necessary Condition

Suppose $J(\theta)$ is differentiable at $\bar{\theta}$. If $\bar{\theta}$ is a local minimizer, then $\nabla J(\bar{\theta}) = 0$.

Second-order Necessary Condition

Suppose $J(\theta)$ is twice-differentiable at $\bar{\theta}$. If $\bar{\theta}$ is a local minimizer, then $\nabla J(\bar{\boldsymbol{\theta}}) = 0$ and $\nabla^2 J(\bar{\boldsymbol{\theta}}) \succeq 0.$

Second-order Sufficient Condition

Suppose $J(\bm{\theta})$ is twice-differentiable at $\bar{\bm{\theta}}$. If $\nabla J(\bar{\bm{\theta}})=0$ and $\nabla^2 J(\bar{\bm{\theta}})\succ 0$, then $\bar{\bm{\theta}}$ is a local minimizer.

Necessary and Sufficient Condition

Suppose $J(\theta)$ is differentiable at $\bar{\theta}$. If J is convex, then $\bar{\theta}$ is a global minimizer if and only if $\nabla J(\theta) = 0$.

Descent Optimization Methods

Descent Direction Theorem

Suppose $J(\bm{\theta})$ is differentiable at $\bar{\bm{\theta}}$. If $\exists\ \delta\bm{\theta}$ such that $\nabla J(\bar{\bm{\theta}})^T\delta\bm{\theta}< 0$, then $\exists \epsilon > 0$ such that $J(\bar{\theta} + \alpha \delta \theta) < J(\bar{\theta})$ for all $\alpha \in (0, \epsilon)$.

- \triangleright The vector $\delta\theta$ is called a **descent direction**
- ▶ The theorem states that if a descent direction exists at $\bar{\theta}$, then it is possible to move to a new point that has a lower J value.
- **Descent method**: given an initial guess θ_k , take a step of size $\alpha_k > 0$ along a descent direction $\delta \theta_k$:

$$
\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \alpha_k \delta \boldsymbol{\theta}_k
$$

Descent Optimization Methods

- \blacktriangleright Methods differ in the way $\delta \theta_k$ and α_k are chosen:
	- \blacktriangleright $\delta \theta_k$ should be a descent direction: $\nabla J(\theta_k)^T \delta \theta_k < 0$ for all $\theta_k \neq \theta^*$
	- \triangleright α_k needs to ensure sufficient decrease in J to guarantee convergence:

$$
\alpha_k^* \in \argmin_{\alpha > 0} J(\boldsymbol{\theta}_k + \alpha \delta \boldsymbol{\theta}_k)
$$

usually obtained via line search

- ▶ Steepest descent direction: $\delta \theta_k := -\frac{\nabla J(\theta_k)}{\|\nabla J(\theta_k)\|}$ $\|\nabla J(\boldsymbol{\theta}_k)\|$
- ▶ Gradient descent: $\delta \theta_k := -\nabla_{\theta} J(\theta_k)$ points in the direction of steepest local descent and we can iterate:

$$
\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \alpha_k \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_k)
$$

Min Square Error Value Function Approximation

 \blacktriangleright Find parameters θ minimizing the mean-square error (MSE) between the true and approximate value function of policy π :

$$
J(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E}\left[\left(V^{\pi}(\mathbf{x}) - \hat{V}(\mathbf{x}; \boldsymbol{\theta}) \right)^2 \right] \quad \text{OR} \quad J(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E}\left[\left(Q^{\pi}(\mathbf{x}, \mathbf{u}) - \hat{Q}(\mathbf{x}, \mathbf{u}; \boldsymbol{\theta}) \right)^2 \right]
$$

where the expectation is over the state-control distribution induced by π

- ▶ Need to choose:
	- \blacktriangleright an incremental or batch optimization approach
	- ▶ a representation for $\hat{V}(\mathbf{x}; \theta)$ or $\hat{Q}(\mathbf{x}, \mathbf{u}; \theta)$

Incremental vs Batch optimization

- ▶ Incremental optimization:
	- ▶ Gradient descent:

$$
\delta \theta = -\nabla_{\theta} J(\theta) = \mathbb{E}\left[\left(V^{\pi}(\mathbf{x}) - \hat{V}(\mathbf{x}; \theta)\right) \nabla_{\theta} \hat{V}(\mathbf{x}, \theta)\right] \delta \theta = -\nabla_{\theta} J(\theta) = \mathbb{E}\left[\left(Q^{\pi}(\mathbf{x}, \mathbf{u}) - \hat{Q}(\mathbf{x}, \mathbf{u}; \theta)\right) \nabla_{\theta} \hat{Q}(\mathbf{x}, \mathbf{u}; \theta)\right]
$$

▶ Stochastic gradient descent: uses samples x_t , u_t from π rather than computing the exact expectation:

$$
\delta \theta_t = \left(V^{\pi}(\mathbf{x}_t) - \hat{V}(\mathbf{x}_t; \theta) \right) \nabla_{\theta} \hat{V}(\mathbf{x}_t; \theta)
$$

$$
\delta \theta_t = \left(Q^{\pi}(\mathbf{x}_t, \mathbf{u}_t) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \theta) \right) \nabla_{\theta} \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \theta)
$$

The stochastic gradient equals the true gradient in expectation $\mathbb{E}[\delta \theta_t] = \delta \theta$

• Batch optimization: the expected update $\mathbb{E}[\delta \theta_t]$ must be zero at the minimizer θ^* of $J(\theta)$. Determine θ^* directly by solving:

$$
\mathbb{E}[\delta \boldsymbol{\theta}_t] = 0
$$

Linear Value Function Approximation

- ▶ Associate state x with feature vector $\phi(\mathbf{x})$ or state-control pair (\mathbf{x}, \mathbf{u}) with feature vector $\phi(\mathbf{x}, \mathbf{u})$, e.g.:
	- ▶ kernel distance to *n* landmarks: $\phi(\mathbf{x}) = [k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_n)]^{\top}$
	- \triangleright piece and pawn configurations in chess

 \blacktriangleright Represent the value function by a linear combination of features:

$$
\hat{V}(\mathbf{x}; \theta) = \theta^{\top} \phi(\mathbf{x}) = \sum_{j} \theta_{j} \phi_{j}(\mathbf{x})
$$

$$
\hat{Q}(\mathbf{x}, \mathbf{u}; \theta) = \theta^{\top} \phi(\mathbf{x}, \mathbf{u}) = \sum_{j} \theta_{j} \phi_{j}(\mathbf{x}, \mathbf{u})
$$

Example: finite-space representation of $V^{\pi}(\mathbf{x})$ over $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ is a special case of linear function approximation with $\phi(\mathbf{x}) = [\mathbb{1}_{\{\mathbf{x}=\mathbf{x}_1\}},\ldots,\mathbb{1}_{\{\mathbf{x}=\mathbf{x}_n\}}]^\top$ and $\bm{\theta}$ stores the values of the n points: $\hat{V}(\mathbf{x};\bm{\theta})=\sum_j \theta_j \mathbb{1}_{\{\mathbf{x}=\mathbf{x}_j\}}$

Outline

[Value Function Approximation](#page-1-0)

[Incremental Methods](#page-12-0)

[Batch Methods](#page-20-0)

Incremental Prediction for Linear Approximation

▶ When the value function is represented by a linear combination of features, the objective function $J(\theta)$ is quadratic in θ :

$$
J(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E}\left[\left(V^{\pi}(\mathbf{x}) - \boldsymbol{\theta}^{\top} \phi(\mathbf{x}) \right)^2 \right] \qquad J(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E}\left[\left(Q^{\pi}(\mathbf{x}, \mathbf{u}) - \boldsymbol{\theta}^{\top} \phi(\mathbf{x}, \mathbf{u}) \right)^2 \right]
$$

- \triangleright Stochastic gradient descent converges to a global optimum
- A descent direction $\delta \theta_t$ is easy to obtain:

Incremental Prediction Algorithms

- \triangleright The (stochastic) gradient descent for optimizing θ can be performed only if $V^{\pi}(\mathbf{x})$ is available to compute the prediction error
- In practice, we substitute a *target* for $V^{\pi}(\mathbf{x})$ obtained from noisy samples along an episode $\rho = \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \ldots \sim \pi$:
	- \blacktriangleright MC: uses a dataset $\mathcal{D} := \{(\mathbf{x}_t, L_t(\rho_t))\}$
	- ▶ TD: uses a dataset $\mathcal{D} := \big\{ (\mathbf{x}_t, \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{V}(\mathbf{x}_{t+1}; \boldsymbol{\theta}) \big\}$
	- ▶ TD(λ): uses a dataset $\mathcal{D} := \{(\mathbf{x}_t, L_t^{\lambda}(\rho_t))\}$

Incremental Prediction Algorithms

 \blacktriangleright MC: the target is the return $L_t(\rho_t)$:

$$
\delta \boldsymbol{\theta}_t = \left(L_t(\rho_t) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \hat{V}(\mathbf{x}_t; \boldsymbol{\theta})
$$

 \blacktriangleright TD: the target is the TD target:

$$
\delta \boldsymbol{\theta}_t = \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{V}(\mathbf{x}_{t+1}; \boldsymbol{\theta}) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \hat{V}(\mathbf{x}_t; \boldsymbol{\theta})
$$

Forward-view TD(λ): the target is the λ -return $L_t^{\lambda}(\rho_t)$:

$$
\delta \boldsymbol{\theta}_t = \left(L_t^{\lambda}(\rho_t) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \hat{V}(\mathbf{x}_t; \boldsymbol{\theta})
$$

Backward-view TD (λ) :

$$
\delta_t = \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{V}(\mathbf{x}_{t+1}; \boldsymbol{\theta}) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta})
$$

$$
\mathbf{e}_t = \gamma \lambda \mathbf{e}_{t-1} + \nabla_{\boldsymbol{\theta}} \hat{V}(\mathbf{x}_t; \boldsymbol{\theta})
$$

$$
\delta \boldsymbol{\theta}_t = \delta_t \mathbf{e}_t
$$

Control with Value Function Approximation

▶ Policy Evaluation: approximate $Q^{\pi}(\mathbf{x},\mathbf{u}) \approx \hat{Q}(\mathbf{x},\mathbf{u};\theta)$ via stochastic gradient descent

▶ Policy Improvement: ϵ -greedy policy improvement based on $\hat{Q}(\mathbf{x}, \mathbf{u}; \theta)$

Incremental Control Algorithms

▶ Q-Prediction: we must substitute a target for $Q^{\pi}(\mathbf{x}, \mathbf{u})$

• MC:
\n
$$
\delta \theta_t = \left(L_t(\rho) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \theta) \right) \nabla_{\theta} \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \theta)
$$

▶ TD:

$$
\delta \theta_t = \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{Q}(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}; \boldsymbol{\theta}) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta})
$$

Forward-view TD (λ) :

$$
\delta \boldsymbol{\theta}_t = \left(L_t^{\lambda}(\rho) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta})
$$

Backward-view TD (λ) :

$$
\delta_t = \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{Q}(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}; \theta) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \theta)
$$

$$
\mathbf{e}_t = \gamma \lambda \mathbf{e}_{t-1} + \nabla_{\theta} \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \theta)
$$

$$
\delta \theta_t = \delta_t \mathbf{e}_t
$$

Linear SARSA with Coarse Coding in Mountain Car

Convergence of Prediction and Control Algorithms

▶ Model-free Prediction:

▶ There is a version of TD that follows the gradient of the projected Bellman error and converges in all cases

▶ Model-free Control:

 \blacktriangleright (\checkmark) = chatters around a near-optimal value function

▶ There is a gradient Q-learning version that converges in the linear case

Outline

[Value Function Approximation](#page-1-0)

[Incremental Methods](#page-12-0)

[Batch Methods](#page-20-0)

Batch Prediction

 \blacktriangleright Given:

- ▶ Value function approximation $\hat{V}(\mathbf{x}; \theta) \approx V^{\pi}(\mathbf{x})$
- Experience $\mathcal{D} := \{(\mathbf{x}_t, V^{\pi}(\mathbf{x}_t))\}$

 \triangleright Goal: find the best fitting value function approximation:

$$
\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) := \frac{1}{2} \mathbb{E}\left[\left(V^{\pi}(\mathbf{x}) - \hat{V}(\mathbf{x}; \boldsymbol{\theta}) \right)^2 \right] \approx \frac{1}{2} \sum_{\mathbf{x}_t \in \mathcal{D}} \left(V^{\pi}(\mathbf{x}_t) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \right)^2
$$

▶ Stochastic gradient descent (SGD) with experience replay:

- 1. Sample: $(\mathbf{x}_t, V^{\pi}(\mathbf{x}_t)) \sim \mathcal{D}$
- 2. Apply SGD update with $\delta\bm{\theta}_t=\left(V^{\pi}(\mathbf{x}_t)-\hat{V}(\mathbf{x}_t;\bm{\theta})\right)\nabla_{\bm{\theta}}\hat{V}(\mathbf{x}_t,\bm{\theta})$
- ▶ SGD with experience replay finds the least-squares solution but it may take many iterations

• Batch method: the expected update must be zero at the min of $J(\theta)$:

$$
0 = \mathbb{E}[\delta \theta_t] \approx \sum_{\mathbf{x}_t \in \mathcal{D}} \left(V^{\pi}(\mathbf{x}_t) - \hat{V}(\mathbf{x}_t; \theta) \right) \nabla_{\theta} \hat{V}(\mathbf{x}_t, \theta)
$$

 \triangleright Obtain θ^* directly by solving the above equation

Batch Prediction for Linear Approximation

▶ When the value function is represented by a linear combination of features $\hat{V}(\mathsf{x};\theta) = \theta^\top \phi(\mathsf{x})$, the function $J(\theta)$ is quadratic in θ :

$$
J(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E}\left[\left(V^{\pi}(\mathbf{x}) - \boldsymbol{\theta}^{\top} \phi(\mathbf{x}) \right)^2 \right] \approx \frac{1}{2} \sum_{\mathbf{x}_t \in \mathcal{D}} \left(V^{\pi}(\mathbf{x}_t) - \boldsymbol{\theta}^{\top} \phi(\mathbf{x}_t) \right)^2
$$

▶ We can obtain the least squares solution θ^* directly:

$$
0 = \mathbb{E} [\delta \theta_t] = \sum_{\mathbf{x}_t \in \mathcal{D}} (\mathbf{V}^\pi(\mathbf{x}_t) - \theta^\top \phi(\mathbf{x}_t)) \phi(\mathbf{x}_t)
$$

$$
\left(\sum_{\mathbf{x}_t \in \mathcal{D}} \phi(\mathbf{x}_t) \phi(\mathbf{x}_t)^\top\right) \theta = \sum_{\mathbf{x}_t \in \mathcal{D}} \mathbf{V}^\pi(\mathbf{x}_t) \phi(\mathbf{x}_t)
$$

Linear Least Squares Prediction Algorithms

- \blacktriangleright We do not know the true values $V^{\pi}(\mathbf{x}_t)$ and must use noisy samples instead
- ▶ Least-Squares Monte Carlo (LSMC):

 $V^{\pi}(\mathbf{x}_t) \approx L_t(\rho)$

▶ Least-Squares Temporal Difference (LSTD):

 $V^{\pi}(\mathbf{x}_t) \approx \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{V}(\mathbf{x}_{t+1}; \boldsymbol{\theta})$

• Least-Squares TD(λ **) (LSTD(** λ **)):**

 $V^{\pi}(\mathbf{x}_t) \approx L_t^{\lambda}(\rho)$

▶ In each case, we can solve directly for the fixed point $\boldsymbol{\theta}^*$

Linear Least-Squares Prediction Algorithms

$$
0 = \sum_{t=0}^{T} \alpha \left(L_{t}(\rho) - \hat{V}(\mathbf{x}_{t}; \theta) \right) \phi(\mathbf{x}_{t})
$$

\n
$$
\mathbf{B} \mathbf{M} \mathbf{C}:
$$

\n
$$
\theta^{*} = \left(\sum_{t=0}^{T} \phi(\mathbf{x}_{t}) \phi(\mathbf{x}_{t})^{T} \right)^{-1} \sum_{t=0}^{T} \phi(\mathbf{x}_{t}) L_{t}(\rho)
$$

\n
$$
0 = \sum_{t=0}^{T} \alpha \left(\ell(\mathbf{x}_{t}, \mathbf{u}_{t}) + \gamma \hat{V}(\mathbf{x}_{t+1}; \theta) - \hat{V}(\mathbf{x}_{t}; \theta) \right) \phi(\mathbf{x}_{t})
$$

\n
$$
\mathbf{L} \mathbf{S} \mathbf{T} \mathbf{D}:
$$

\n
$$
\theta^{*} = \left(\sum_{t=0}^{T} \phi(\mathbf{x}_{t}) \left(\phi(\mathbf{x}_{t}) - \gamma \phi(\mathbf{x}_{t+1}) \right)^{-1} \right) \sum_{t=0}^{T} \phi(\mathbf{x}_{t}) \ell(\mathbf{x}_{t}, \mathbf{u}_{t})
$$

\n
$$
0 = \sum_{t=0}^{T} \alpha \left(\ell(\mathbf{x}_{t}, \mathbf{u}_{t}) + \gamma \hat{V}(\mathbf{x}_{t+1}; \theta) - \hat{V}(\mathbf{x}_{t}; \theta) \right) \mathbf{e}_{t}
$$

\n
$$
\mathbf{L} \mathbf{S} \mathbf{T} \mathbf{D}(\lambda):
$$

\n
$$
\theta^{*} = \left(\sum_{t=0}^{T} \mathbf{e}_{t} \left(\phi(\mathbf{x}_{t}) - \gamma \phi(\mathbf{x}_{t+1}) \right)^{-1} \right) \sum_{t=0}^{T} \mathbf{e}_{t} \ell(\mathbf{x}_{t}, \mathbf{u}_{t})
$$

Convergence of Linear-Least Squares Prediction Algorithms

▶ On-Policy:

▶ Off-Policy:

Least Squares Policy Iteration

- \triangleright Policy Evaluation: least-squares Q estimation using data from old policies
- ▶ Policy Improvement: does not have to be ϵ -greedy since data from old policies is stored

Least Squares Policy Iteration

▶ Policy Evaluation: efficiently use all experience $\mathcal{D} := \{(\mathbf{x}_t, \mathbf{u}_t, V^{\pi}(\mathbf{x}_t))\}$ to compute $\hat{Q}(\mathbf{x},\mathbf{u};\boldsymbol{\theta}) = \boldsymbol{\theta}^\top \phi(\mathbf{x},\mathbf{u})$

- ▶ Since the policy in PI is changing, the experience is generated from many different policies and we must approximate Q^{π} using **off-policy** learning
- \triangleright Instead of importance sampling, use an idea from Q-learning:
	- ▶ Use experience: $\mathbf{x}_t, \mathbf{u}_t, \ell(\mathbf{x}_t, \mathbf{u}_t), \mathbf{x}_{t+1} \sim \pi_{old}$
	- ▶ With new action: $\mathbf{u}_{t+1} = \pi_{new}(\mathbf{x}_{t+1})$
	- ▶ Update $\hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \theta)$ towards new action value: $\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{Q}(\mathbf{x}_t, \mathbf{u}_{t+1}; \theta)$

Least Squares Policy Iteration

- ▶ Experience: $\mathbf{x}_t, \mathbf{u}_t, \ell(\mathbf{x}_t, \mathbf{u}_t), \mathbf{x}_{t+1} \sim \pi_{\text{old}}$
- ▶ Incremental update:

$$
\delta \boldsymbol{\theta}_t = \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{Q}(\mathbf{x}_{t+1}, \pi(\mathbf{x}_{t+1}); \theta) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta}) \right) \phi(\mathbf{x}_t, \mathbf{u}_t)
$$

▶ LSTDQ: least-squares TD Q estimation algorithm using the fact that the expected update must be zero at the minimum of $J(\theta)$:

$$
0 = \sum_{t=0}^{T} \alpha \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{Q}(\mathbf{x}_{t+1}, \pi(\mathbf{x}_{t+1}); \theta) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \theta) \right) \phi(\mathbf{x}_t, \mathbf{u}_t)
$$

$$
\theta^* = \left(\sum_{t=0}^{T} \phi(\mathbf{x}_t, \mathbf{u}_t) \left(\phi(\mathbf{x}_t, \mathbf{u}_t) - \gamma \phi(\mathbf{x}_{t+1}, \pi(\mathbf{x}_{t+1})) \right)^T \right)^{-1} \sum_{t=0}^{T} \phi(\mathbf{x}_t, \mathbf{u}_t) \ell(\mathbf{x}_t, \mathbf{u}_t)
$$

Algorithm LSPI-TD

- 1: Input: experience $\mathcal D$ and base policy π
- 2: loop
- 3: $\theta^* \leftarrow \text{LSTDQ}(\pi, \mathcal{D})$

4:
$$
\pi(\mathbf{x}) \leftarrow \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg \min} \hat{Q}(\mathbf{x}, \mathbf{u}; \theta^*)
$$

Convergence of Control Algorithms

 $\blacktriangleright (\checkmark) =$ chatters around a near-optimal value function

Example: Chain Walk

- ▶ Consider a 50 state version of the problem
- ▶ Cost: −1 in states 10 and 41 and 0 elsewhere

► Optimal policy:
$$
\pi(x) = \begin{cases} R & \text{if } x \in \{1, ..., 9\} \cup \{26, ..., 41\} \\ L & \text{if } x \in \{10, ..., 25\} \cup \{42, ..., 50\} \end{cases}
$$

- ▶ Features: 10 evenly spaced Gaussians ($\sigma = 4$) for each control
- \blacktriangleright Experience: 10,000 steps from a random walk policy

Chain Walk LSPI: Action-Value Function

- ▶ True (dotted) and approximate (smooth) action-value function
- ▶ Left (blue) and right (red) control

Chain Walk LSPI: Policy

▶ Left (blue) and right (red) control