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Finite-Horizon Deterministic Optimal Control

▶ Recall the finite-horizon deterministic optimal control (DOC) problem:
▶ no disturbances, i.e., wt ≡ 0

▶ closed-loop control does not offer any advantage over open-loop control

▶ Assume X = Rn and U = Rm

▶ Given x0 ∈ X , construct an optimal control sequence u0:T−1 such that:

min
u0:T−1

V
u0:T−1

0 (x0) = q(xT ) +
T−1∑
t=0

ℓ(xt ,ut)

s.t. xt+1 = f (xt ,ut), t = 0, . . . ,T − 1

▶ The DOC problem can be solved via Dynamic Programming

▶ The DOC problem can also be viewed as an equality-constrained optimization
for which we can obtain first-order necessary conditions for optimality
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Finite-Horizon Deterministic Optimal Control
▶ Introduce Lagrange multipliers p1:T to relax the constraints xt+1 = f (xt ,ut)

▶ The Lagrange multiplier pt is called the system costate

▶ Lagrangian:

L(x1:T ,u0:T−1,p1:T ) = q(xT ) +
T−1∑
t=0

ℓ(xt ,ut) + (f (xt ,ut)− xt+1)
⊤pt+1

▶ Gradients of the Lagrangian:

∇xT L = ∇xq(xT )− pT

∇xtL = ∇xℓ(xt ,ut) +∇xf (xt ,ut)
⊤pt+1 − pt , t = 1, . . . ,T − 1

∇pt+1L = f (xt ,ut)− xt+1, t = 0, . . . ,T − 1

∇utL = ∇uℓ(xt ,ut) +∇uf (xt ,ut)
⊤pt+1, t = 0, . . . ,T − 1

▶ An optimal primal-dual sequence x∗1:T , u
∗
0:T−1, p

∗
1:T satisfies:

∇ptL(x
∗
1:T ,u

∗
0:T−1,p

∗
1:T ) = 0, t = 1, . . . ,T

∇xtL(x
∗
1:T ,u

∗
0:T−1,p

∗
1:T ) = 0, t = 1, . . . ,T

∇utL(x
∗
1:T ,u

∗
0:T−1,p

∗
1:T ) = 0, t = 0, . . . ,T − 1

4



Pontryagin’s Minimum Principle

▶ Define the Hamiltonian:

H(x,u,p) = ℓ(x,u) + p⊤f (x,u)

Theorem: Discrete-Time Pontryagin Minimum Principle

If x∗0:T , u
∗
0:T−1 is an optimal state-control trajectory for the finite-horizon

deterministic optimal control problem, then there exists a costate trajectory p∗1:T
such that:

x∗t+1 = ∇pH(x∗t ,u
∗
t ,p

∗
t+1) = f (x∗t ,u

∗
t ), x∗0 = x0

p∗t = ∇xH(x∗t ,u
∗
t ,p

∗
t+1) = ∇xℓ(x

∗
t ,u

∗
t ) +∇xf (x

∗
t ,u

∗
t )

⊤p∗t+1, p∗T = ∇xq(x
∗
T )

0 = ∇uH(x∗t ,u
∗
t ,p

∗
t+1)
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Pontryagin’s Minimum Principle with Constraints
▶ Consider a finite-horizon deterministic optimal control problem with

▶ time-varying stage cost ℓt and motion model ft
▶ terminal constraint xT ∈ T
▶ input constraints U

▶ Hamiltonian with normality variable η ∈ {0, 1}:

Ht(x,u,p, η) = ηℓt(x,u) + p⊤ft(x,u)

Theorem: Discrete-Time Pontryagin Minimum Principle

If x∗0:T , u
∗
0:T−1 is an optimal state-control trajectory, then there exists a costate

trajectory p∗1:T and η ∈ {0, 1} such that:

(η,p∗1 , . . . ,p
∗
T ) ̸= 0

x∗t+1 = ∇pHt(x
∗
t ,u

∗
t ,p

∗
t+1, η), x∗0 = x0

p∗t = ∇xHt(x
∗
t ,u

∗
t ,p

∗
t+1, η), p∗T − η∇xq(x

∗
T ) ⊥x∗T

T
−∇uHt(x

∗
t ,u

∗
t ,p

∗
t+1, η) ⊥u∗t U

▶ g ⊥x X means that g is orthogonal to the tangent cone of X at x
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Pontryagin’s Minimum Principle
▶ PMP provides an efficient way to evaluate the value function gradient with

respect to ut and thus optimize control trajectories locally and numerically

▶ Given initial state x0 and trajectory u0:T−1, let x1:T , p1:T be such that:

xt+1 = f (xt ,ut), x0 given

pt = ∇xℓ(xt ,ut) + [∇xf (xt ,ut)]
⊤pt+1, pT = ∇xq(xT )

▶ Then:

∇utV
u0:T−1

0 (x0) = ∇uH(xt ,ut ,pt+1) = ∇uℓ(xt ,ut) +∇uf (xt ,ut)
⊤pt+1

▶ The states xt can be found in a forward pass and then the costates pt and
value function gradients ∇utV

u0:T−1

0 (x0) can be found in a backward pass

▶ Claim: pt = ∇xtV
ut:T−1

t (xt):
▶ Base case: pT = ∇xT q(xT )

▶ Induction: identical with costate difference equation

∇xtV
ut:T−1
t (xt)︸ ︷︷ ︸
=pt

= ∇xℓ(xt , ut) + [∇xf (xt , ut)]
⊤ ∇xt+1V

ut+1:T−1
t+1 (xt+1)︸ ︷︷ ︸
=pt+1
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Finite-Horizon Linear Quadratic Regulator
▶ Finite-horizon deterministic optimal control with linear motion model:

xt+1 = f (xt ,ut) := Axt + But

and quadratic stage and terminal costs:

ℓ(x,u) :=
1

2
x⊤Qx+

1

2
u⊤Ru q(x) :=

1

2
x⊤Qx

▶ Linear Quadratic Regulator (LQR) problem:

min
π0:T−1

V π
0 (x) :=

1

2
x⊤TQxT +

T−1∑
t=0

(
1

2
x⊤t Qxt +

1

2
u⊤t Rut

)
s.t. xt+1 = Axt + But , x0 = x

xt ∈ Rn, ut = πt(xt) ∈ Rm

where Q = Q⊤ ⪰ 0, Q = Q⊤ ⪰ 0, and R = R⊤ ≻ 0

▶ This is a special case of the finite-horizon deterministic optimal control
problem, which can be solved via Dynamic Programming
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Finite-Horizon Linear Quadratic Regulator
▶ At t = T , the value function equals the terminal cost which is quadratic in x:

V ∗
T (x) =

1

2
x⊤MTx :=

1

2
x⊤Qx

▶ Iterate backwards in time t = T − 1, . . . , 0:

V ∗
t (x) = min

u

{
1

2

(
x⊤Qx+ u⊤Ru

)
+ V ∗

t+1(Ax+ Bu)

}
︸ ︷︷ ︸

Q∗
t (x,u)

▶ At t = T − 1:

V ∗
T−1(x) = min

u

1

2

{
x⊤Qx+ u⊤Ru+ (Ax+ Bu)⊤ MT (Ax+ Bu)

}
▶ Since R ≻ 0, the cost above is a positive-definite quadratic function of u

▶ Taking the gradient and setting it equal to 0:

π∗
T−1(x) = −

(
B⊤QB + R

)−1
B⊤QAx

V ∗
T−1(x) =

1

2
x⊤MT−1x

MT−1 = A⊤MTA+ Q − A⊤MTB
(
B⊤MTB + R

)−1
B⊤MTA
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Finite-Horizon Linear Quadratic Regulator
▶ At t = T − 2:

V ∗
T−2(x) = min

u

1

2

{
x⊤Qx+ u⊤Ru+ (Ax+ Bu)⊤ MT−1 (Ax+ Bu)

}
▶ Since R ≻ 0, the cost above is a positive-definite quadratic function of u

▶ Taking the gradient and setting it equal to 0:

π∗
T−2(x) = −

(
B⊤MT−1B + R

)−1
B⊤MT−1Ax

V ∗
T−2(x) =

1

2
x⊤MT−2x

MT−2 = A⊤MT−1A+ Q − A⊤MT−1B
(
B⊤MT−1B + R

)−1
B⊤MT−1A

▶ The optimal value and policy are determined by a Riccati equation for Mt :

π∗
t (x) = −

(
B⊤Mt+1B + R

)−1
B⊤Mt+1Ax

V ∗
t (x) =

1

2
x⊤Mtx

Mt = A⊤Mt+1A+ Q − A⊤Mt+1B
(
B⊤Mt+1B + R

)−1
B⊤Mt+1A, MT = Q
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Finite-Horizon Linear Quadratic Regulator

▶ Batch formulation: instead of using the DP algorithm, express the system
evolution as a large matrix system


x0
x1
...
xT


︸ ︷︷ ︸

s

=


I
A
...

AT


︸ ︷︷ ︸

A

x0 +


0 · · · · · · 0
B 0 · · · 0

AB
. . .

. . .
...

...
. . .

. . .
...

AT−1B · · · · · · B


︸ ︷︷ ︸

B


u0
u1
...

uT−1


︸ ︷︷ ︸

v

▶ The batch formulation of LQR is a quadratic program in s and v:

min
s,v

V π
0 (x0) =

1

2

(
sTQs+ vTRv

)
Q := diag(Q, . . . ,Q,Q) ⪰ 0

s.t. s− Bv = Ax0 R := diag(R, . . . ,R) ≻ 0
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Finite-Horizon Linear Quadratic Regulator

▶ Express V π
0 (x0) only in terms of the initial condition x0 and the control

sequence v by using the batch dynamics s = Ax0 + Bv:

V π
0 (x0) =

1

2

(
v⊤

(
B⊤QB +R

)
v + 2x⊤0

(
A⊤QB

)
v + x⊤0 A⊤QAx0

)
▶ V π

0 (x0) is a positive-definite quadratic function of v since R ≻ 0

▶ Take gradient wrt v and set to 0:

v∗ = −
(
B⊤QB +R

)−1 B⊤QAx0

V ∗
0 (x0) =

1

2
x⊤0

(
A⊤QA−A⊤QB

(
B⊤QB +R

)−1 B⊤QA
)
x0

▶ The optimal sequence of control inputs v∗ = u∗0:T−1 is a linear function of x0

▶ The optimal value function V ∗
0 (x0) is a quadratic function of x0
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Finite-Horizon Linear Quadratic Gaussian

▶ Linear Quadratic Gaussian (LQG) regulation problem:

min
π0:T−1

V π
0 (x) = E

{
γT 1

2
x⊤TQxT +

T−1∑
t=0

γt 1

2

(
x⊤t Qxt + 2u⊤t Pxt + u⊤t Rut

)}
s.t. xt+1 = Axt + But + Cwt , x0 = x, wt ∼ N (0, I )

xt ∈ Rn, ut = πt(xt) ∈ Rm

▶ Discount factor: γ ∈ [0, 1]

▶ Optimal value: V ∗
t (x) =

1
2x

⊤Mtx+mt

▶ Optimal policy: π∗
t (x) = −(R + γB⊤Mt+1B)

−1(P + γB⊤Mt+1A)x

▶ Riccati equation:

Mt = Q + γA⊤Mt+1A− (P + γB⊤Mt+1A)
⊤(R + γB⊤Mt+1B)

−1(P + γB⊤Mt+1A), MT = Q

mt = γmt+1 + γ
1

2
tr(CC⊤Mt+1), mT = 0

▶ Mt is independent of the noise amplitude C , which implies that the optimal
policy π∗

t (x) is the same for LQG and LQR!
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Infinite-Horizon Linear Quadratic Gaussian
▶ Linear Quadratic Gaussian (LQG) regulation problem:

min
π

V π(x) := E

{ ∞∑
t=0

γt 1

2

(
x⊤t Qxt + 2u⊤t Pxt + u⊤t Rut

)}
s.t. xt+1 = Axt + But + Cwt , x0 = x, wt ∼ N (0, I )

xt ∈ Rn, ut = π(xt) ∈ Rm

▶ Discount factor: γ ∈ [0, 1)

▶ Optimal value: V ∗(x) = 1
2x

⊤Mx+m

▶ Optimal policy: π∗(x) = −(R + γB⊤MB)−1(P + γB⊤MA)x

▶ Riccati equation (‘dare’ in Matlab):

M = Q + γA⊤MA− (P + γB⊤MA)⊤(R + γB⊤MB)−1(P + γB⊤MA)

m =
γ

2(1− γ)
tr(CC⊤M)

▶ M is independent of the noise amplitude C , which implies that the optimal
policy π∗(x) is the same for LQG and LQR!
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Deterministic Optimal Control

▶ Deterministic optimal control with initial state x0:

min
u0:T−1

V
u0:T−1

0 (x0) = q(xT ) +
T−1∑
t=0

ℓ(xt ,ut)

s.t. xt+1 = f (xt ,ut), t = 0, . . . ,T − 1

▶ The problem has a closed-form solution when the costs are quadratic and
the dynamics are linear:

q(x) =
1

2
x⊤Qx+ a⊤x+ a, Q ⪰ 0, Q ⪰ 0, R ≻ 0,

ℓ(x,u) =
1

2
x⊤Qx+

1

2
u⊤Ru+ x⊤Pu+ q⊤x+ r⊤u+ q

f (x,u) = Ax+ Bu+ c
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Deterministic Optimal Control
▶ Cost and dynamics:

q(x) =
1

2
x⊤Qx+ a⊤x+ a, Q ⪰ 0, Qt ⪰ 0, Rt ≻ 0,

ℓt(x,u) =
1

2
x⊤Qtx+

1

2
u⊤Rtu+ x⊤Ptu+ q⊤t x+ r⊤t u+ qt

ft(x,u) = Atx+ Btu+ ct

▶ Optimal value: V ∗
t (x) =

1
2x

⊤Mtx+m⊤
t x+mt

▶ Optimal policy: π∗
t (x) = −H−1

uu,t(H
⊤
xu,tx+ hu,t)

▶ Riccati equations:

MT = Q, mT = a, mT = a

Mt = Hxx,t − Hxu,tH
−1
uu,tH

⊤
xu,t

mt = A⊤
t (mt+1 +Mt+1ct) + qt − Hxu,tH

−1
uu,thu,t

mt = −
1

2
h⊤u,tH

−1
uu,thu,t +

1

2
c⊤t Mt+1ct +m⊤

t+1ct +mt+1 + qt

hu,t = B⊤
t (mt+1 +Mt+1ct) + rt

Hxx,t = Qt + A⊤
t Mt+1At , Huu,t = Rt + B⊤

t Mt+1Bt , Hxu,t = Pt + A⊤
t Mt+1Bt
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Iterative LQR (iLQR)
▶ iLQR repeatedly approximates the cost and dynamics as quadratic and affine

respectively and solves the resulting LQR problem

▶ Initialize control and state sequence ū0:T−1 and x̄t+1 = f (x̄t , ūt)

▶ Define errors: x̃t = xt − x̄t and ũt = ut − ūt

▶ Approximate the cost and dynamics:

q(x̃T ) ≈ q(x̄T )︸ ︷︷ ︸
=:a

+∇xq(x̄T )︸ ︷︷ ︸
=:a

⊤x̃T +
1

2
x̃⊤T ∇2

xq(x̄T )︸ ︷︷ ︸
=:Q

x̃T

ℓ(x̃t , ũt) ≈ ℓ(x̄t , ūt)︸ ︷︷ ︸
=:qt

+∇xℓ(x̄t , ūt)︸ ︷︷ ︸
=:qt

⊤x̃t +∇uℓ(x̄t , ūt)︸ ︷︷ ︸
=:rt

⊤ũt

+
1

2
x̃⊤t ∇2

xxℓt(x̄t , ūt)︸ ︷︷ ︸
=:Qt

x̃t +
1

2
ũ⊤t ∇2

uuℓt(x̄t , ūt)︸ ︷︷ ︸
=:Rt

ũt + x̃⊤t ∇2
xuℓt(x̄t , ūt)︸ ︷︷ ︸

=:Pt

ũt

x̃t+1 ≈
∂f

∂x
(x̄t , ūt)︸ ︷︷ ︸
=:At

x̃t +
∂f

∂u
(x̄t , ūt)︸ ︷︷ ︸
=:Bt

ũt
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Iterative LQR (iLQR)

▶ Solve the general LQR problem with cost and dynamics:

q(x̃) =
1

2
x̃⊤Qx̃+ a⊤x̃+ a,

ℓt(x̃, ũ) =
1

2
x̃⊤Qt x̃+

1

2
ũ⊤Rt ũ+ x̃⊤Pt ũ+ q⊤t x̃+ r⊤t ũ+ qt

ft(x̃, ũ) = At x̃+ Bt ũ

to obtain an optimal policy ũt = π∗
t (x̃t)

▶ Update the nominal control trajectory: ūt ← ūt + ũt for t = 0, . . . ,T − 1

▶ Repeat the whole process until convergence (e.g., the change in ũ0:T−1 or

V
ū0:T−1

0 (x̄0) between iterations is small)
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Differential Dynamic Programming

▶ The Bellman equation for deterministic optimal control is:

V ∗
t (xt) = min

ut

{
ℓ(xt ,ut) + V ∗

t+1(f (xt ,ut))
}

▶ iLQR approximates the cost and dynamics as quadratic and affine. Then, the
right-hand side of the Bellman equation is quadratic and can be minimized to
find ũ∗t

▶ DDP assumes V ∗
t (x) =

1
2x

⊤Mtx+m⊤
t x+mt and directly approximates the

right-hand side of the Bellman equation as a quadratic

▶ DDP is equivalent to iLQR, except the second-order terms are now:

Hxx,t = Qt + A⊤
t Mt+1At +

∑d
i=1 mt+1,i∇2

xxfi (x̄t , ūt)

Huu,t = Rt + B⊤
t Mt+1Bt +

∑d
i=1 mt+1,i∇2

uufi (x̄t , ūt)

Hxu,t = Pt + A⊤
t Mt+1Bt +

∑d
i=1 mt+1,i∇2

xufi (x̄t , ūt)

▶ DDP estimates the Bellman equation more accurately than iLQR but requires
computing second-order derivatives
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Comments About iLQR and DDP

▶ Both iLQR and DDP produce an open-loop trajectory x̄0:T , ū0:T−1 that is
locally optimal and a policy πt(x; x̄t , ūt) = ūt − H−1

uu,t(H
⊤
xu,t(x− x̄t) + hu,t)

that is locally optimal for closed-loop tracking

▶ Since these methods are local optimization techniques, they can get stuck in
local minima and require good initialization

▶ If the second-order terms Hxx,t and Huu,t are not positive-semidefinite and
positive-definite, respectively, we can try regularizing them (i.e., Hxx,t + µI
and Huu,t + µI ) or projecting them

▶ The termination criterion is a design choice, e.g., we can stop when either
the change in the control trajectory is small, or when the cost improvement is
small

▶ A collection of tips with mathematical details can be found in Yuval Tassa’s
PhD thesis, “Theory and Implementation of Biomimetic Motor Controllers,”
The Hebrew University of Jerusalem, 2011
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