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What Is This Class About?

> ECE276A: sensing and estimation in robotics:

» how to model robot motion and observations
> how to estimate (the distribution of) a robot/environment state x; from the
history of observations zo.; and control inputs ug.t—1

> ECE276B: planning and decision making in robotics:
> how to select control inputs ug.;—1 to accomplish a task

> References (optional):
» Dynamic Programming and Optimal Control: Bertsekas
» Planning Algorithms: LaValle (https://lavalle.pl/planning/)

> Reinforcement Learning: Sutton & Barto
(http://incompleteideas.net/book/the-book.html)

» Calculus of Variations and Optimal Control Theory: Liberzon
(http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)


https://lavalle.pl/planning/
http://incompleteideas.net/book/the-book.html
http://liberzon.csl.illinois.edu/teaching/cvoc.pdf

Website, Assignments, Grading

» Course website: https://natanaso.github.io/ece276b

» Includes links to:

» Canvas: lecture recordings

» Piazza: course announcement, Q&A, discussion — check Piazza regularly

» Gradescope: homework submission and grades

» Assignments:
» 3 theoretical homeworks (16% of grade)
» 3 programming assignments in python + project report:

» Project 1: Dynamic Programming (18% of grade)
> Project 2: Motion Planning (18% of grade)
> Project 3: Optimal Control (18% of grade)

> Final exam (30% of grade)

» Grading:
> standard grade scale (93%+ = A) plus curve based on class performance
(e.g., if the top students have grades in the 86% - 89% range, then this will
correspond to letter grade A)
> no late submissions: work submitted past the deadline receives 0 credit


https://natanaso.github.io/ece276b

Prerequisites

>

Probability theory: random variables, probability density function,
expectation, covariance, total probability, conditional probability, Bayes rule

Linear algebra and systems: eigenvalues, symmetric positive definite
matrices, linear equations, linear systems of ODEs, matrix exponential

Optimization: unconstrained optimization, gradient descent

Programming: extensive experience with at least one language
(python/C++/Matlab), classes/objects, data structures (e.g., queue, list),
data input/output processing, plotting

It is up to you to judge if you are ready for this course!

» Consult with your classmates who took ECE276A

> Take a look at the material from last year:
https://natanaso.github.io/ece276b2023

> If the first assignment seems hard, the rest will be hard as well


https://natanaso.github.io/ece276b2023

Syllabus (Tentative)

Date Lecture Materials Assignments
Apr 01 | Introduction

Apr 03 | Markov Chains Grinstead-Snell Ch 11

Apr 08 | Markov Decision Processes] Bertsekas 1.1-1.2

Apr 10 | Dynamic Programming Bertsekas 1.3-1.4 HWI1, PR1
Apr 15 | Deterministic Shortest Path Bertsekas 2.1-2.3

Apr17 | Catch-up

Apr 22 | Configuration Space LaValle 4.3, 6.2-6.3

Apr 24 | Search-based Planning LaValle 2.1-2.3, JPS

Apr 29 | Catch-up

May 01 | Anytime Incremental Search RTAA*, ARA*, AD*, Anytime Search HW2, PR2
May 06 | Sampling-based Planning LaValle 5.5-5.6

May 08 | Infinite-Horizon Optimal Control | Bertsekas 7.1-7.3, Sutton-Barto Ch 4
May 13 | Infinite-Horizon Optimal Control | Bertsekas 7.1-7.3, Sutton-Barto Ch 4
May 15 | Catch-up

May 20 | Model-Free Prediction Sutton-Barto 6.1-6.3

May 22 | Model-Free Control Sutton-Barto 6.4-6.7 HW3, PR3
May 27 | Value Function Approximation Sutton-Barto Ch.9

May 29 | Catch-up

Jun 03 | Linear Quadratic Control Bertsekas 4.1

Jun 05 | Continuous-time Optimal Control | Bertsekas Ch. 3, Liberzon Ch. 2.4 and Ch. 4
Jun 14 | Final Exam

» Check website for updates: https://natanaso.github.io/ece276b


https://natanaso.github.io/ece276b
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Markov Chain and Markov Decision Process

2

0.
» Markov Chain: probabilistic model Cheerful 0.4
e ST

representing the evolution of a stochastic
system
» The state x; can be discrete or continuous
» The state transitions are random,

determined by a transition matrix or a
transition kernel

» Markov Decision Process: Markov chain

whose transition probabilities are decided by 06 02 02
control inputs u; P—103 04 03
» Motion planning, optimal control, and 0.0 0.3 0.7

reinforcement learning problems are
formalized using a Markov decision process

PU:P(Xt—i-l:let:i)



Motion Planning

R.0.B.0.T. Comics

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S 60T FLAIR.,"



A* Search

» Developed by Hart, Nilsson and
Raphael of Stanford Research
Institute in 1968 for the Shakey
robot

» MDP with deterministic transitions,
i.e., directed graph

» Minimize cumulative transition
costs subject to a goal constraint

» Graph search using a specific node
visitation rule

» Video: https://youtu.be/ casTen
qXdn6ynwpil?t=3mb5s



https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s

Search-Based Motion Planning

» CMU'’s autonomous car used search-based motion planning in the DARPA
Urban Challenge in 2007

P> Video: https://www.youtube.com/watch?v=4hFh100i8KI
» Video: https://www.youtube.com/watch?v=qXZt-B7iUyw

» Paper: Likhachev and Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,” [JRR, 2009,
http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445
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https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
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http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

Sampling-Based Motion Planning

> RRT* algorithm on a high-fidelity car model — 270 degree turn
> Video: https://www.youtube.com/watch?v=p3nZHnOWhrg
» Video: https://www.youtube.com/watch?v=LKL5qRBiJaM

» Karaman and Frazzoli, "Sampling-based algorithms for optimal motion
planning,” 1JRR, 2011,
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761
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https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=LKL5qRBiJaM
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

» RRT algorithm on the PR2 — planning with both arms (12 DOF)
P> Video: https://www.youtube.com/watch?v=vW74bC-Ygb4

» Karaman and Frazzoli, “Sampling-based algorithms for optimal motion

planning,” 1JRR, 2011,
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761
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https://www.youtube.com/watch?v=vW74bC-Ygb4
https://www.youtube.com/watch?v=vW74bC-Ygb4
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Optimal Control using Dynamic Programming

> Video: https://www.youtube.com/watch?v=tCQSSkBH2NI

» Tassa, Mansard and Todorov, “Control-limited Differential Dynamic
Programming,” ICRA, 2014,

http://ieeexplore.ieee.org/document/6907001/
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https://www.youtube.com/watch?v=tCQSSkBH2NI
https://www.youtube.com/watch?v=tCQSSkBH2NI
http://ieeexplore.ieee.org/document/6907001/

Model-Free Reinforcement Learning

» A robot learns to flip pancakes
P> Video: https://www.youtube.com/watch?v=W_gxLKSsSIE

» Kormushev, Calinon and Caldwell, “Robot Motor Skill Coordination with
EM-based Reinforcement Learning,” IROS, 2010,
http://www.dx.doi.org/10.1109/IR0S.2010.5649089
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https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=W_gxLKSsSIE
http://www.dx.doi.org/10.1109/IROS.2010.5649089

Applications of Optimal Control & Reinforcement Learning
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Optimal Control Problem
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Model

v

discrete time t € {0, ..., T} with finite or infinite horizon T
state x; € X and state space X
control u; € U and control space U

motion noise w;: random vector with known probability density function
(pdf), independent of w,. for 7 # t conditioned on x; and u;

motion model: a function f or equivalently a pdf ps describing the change
in the state x; when a control input u; is applied:

Xer1 = F(Xe, Up, We) or  Xe1 ~ Pr(- | Xe, ug)

» Markov assumption: x;;; conditioned on u; and x; is independent of all other
variables

18



Control Policy

» control policy: function 7, : X — U that maps state x at time t to control
input u

> A policy defines fully at any time ¢ and any state x which control u to apply
» A policy can be:

> stationary (7o = 7 = ---) or non-stationary (mo Z w1 Z -+ )

» deterministic (u; = 7m:(x;)) or stochastic (u; ~ (- | x¢))

> open-loop (u; is selected independent of x;) or closed-loop (u; = 7¢(x¢)
depends on x;)

» A control policy induces a transition from state x; at time t with control
input u; = 7¢(x;) to state x¢11 ~ pr(- | x¢, u;) according to the motion
model pr(- | x¢, ue)

19



Optimal Control Problem

> stage cost /(x,u) measures the cost of applying control u in state x
> terminal cost q(x) measures the cost of terminating at state x

> value function V[ (x) of policy 7 is the expected long-term cost of starting
at state x at time t and following transitions induced by 7y, mpy1,...,T7_1:

xt:X:|

» optimal control problem: given initial state x at time t, determine a policy
that minimizes the value function V/(x):

VE(x) == Ext+1;r|: (x1) + Zf Xry Tr(Xr))

terminal cost stage cost

> optimal value: V/*(x) = min, V/(x)

> optimal policy: 7*(x) € arg min V{"(x)

20



Optimal Control Problem Types

v

deterministic (no motion noise) vs stochastic (with motion noise)
fully observable (z; = x;) vs partially observable (z; ~ ps(-|x;))

» Markov Decision Process (MDP) vs Partially Observable Markov Decision
Process (POMDP)

stationary vs non—stationary (time-dependent motion pr ; and cost /)
discrete vs continuous state space X
» tabular approach vs function approximation
discrete vs continuous control space U:
» tabular approach vs optimization
discrete vs continuous time t
finite vs infinite horizon T
reinforcement learning (pr, ¢, q are unknown):
> Model-based RL: explicitly approximate the models pr, 7, g from data and

apply optimal control algorithms

» Model-free RL: directly approximate V;* and 7} without approximating the
motion or cost models

21



Naming Conventions

» The problem is called:
> Motion planning (MP): when the motion model pr is known and
deterministic and the cost functions ¢, q are known

»> Optimal control (OC): when the motion model pr is known but may be
stochastic and the cost functions ¢, q are known

> Reinforcement learning (RL): when the motion model pr and cost functions
£, q are unknown but samples x¢, £(x¢, u¢), q(x¢) can be obtained from them
» Naming conventions differ:
» OC: minimization, cost, state x, control u, policy u
» RL: maximization, reward, state s, action a, policy 7

> ECE276B: minimization, cost, state x, control u, policy 7
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Example: Inventory Control

» Consider keeping an item stocked in a warehouse:

> If there is too little, we may run out (not preferred)
> If there is too much, the storage cost will be high (not preferred)

> Model:
> x: € R: available stock at the beginning of time period t

» u: € R>o: stock ordered and immediately delivered at the beginning of time
period t (supply)

» w;: random demand during time period t with known pdf. Assume excess
demand is back-logged, i.e., corresponds to negative stock x;.

> Motion model: x;1 = (X, Us, W) := X¢ + Ur — Wy

»> Cost function: E [q(xr) + ZZ—:_OI (r(xe) + cue — pwt)] where

> pw;: revenue

v

cut: cost of items

v

r(xt): penalizes too much stock or negative stock

v

q(x7): remaining items we cannot sell or demand that we cannot meet
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Example: Rubik’s Cube

» Invented in 1974 by Ern6é Rubik
» Model:
> State space size: ~ 4.33 x 10*°
» Control space size: 12
» Cost: 1 for each time step

» Deterministic, fully observable

» The cube can be solved in 20 or fewer moves
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Example: Cart-Pole Problem

» Move a cart left, right to keep a pole balanced

> Model:
» State space: 4-D continuous (X,X,G,é)
» Control space: {—N, N}

» Cost:

» 0 when in the goal region
» 1 when outside the goal region
» 100 when outside the feasible region

» Deterministic, fully observable

25



Example: Chess

» Model:

> State space size: ~ 10%
» Control space size: from 0 to 218

» Cost: 0 each step, {—1,0,1} at the end of the
game

» Deterministic, opponent-dependent state
transitions (can be modeled as a game)

» The game tree size (all possible policies) is 10?3

L T N - T -
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Example: Grid World Navigation

» Navigate to a goal without crashing into obstacles

> Model:
> State space: 2-D robot position

> Control space: U = {left, right, up, down}

» Cost: 1 until the goal is reached, oo if an obstacles
is hit

» Can be deterministic or stochastic; fully or partially
observable

27
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