
ECE276B: Planning & Learning in Robotics
Lecture 1: Introduction

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu


Outline

Logistics

Course Topics Overview

Optimal Control Problem

2



What Is This Class About?

▶ ECE276A: sensing and estimation in robotics:
▶ how to model robot motion and observations
▶ how to estimate (the distribution of) a robot/environment state xt from the

history of observations z0:t and control inputs u0:t−1

▶ ECE276B: planning and decision making in robotics:
▶ how to select control inputs u0:t−1 to accomplish a task

▶ References (optional):
▶ Dynamic Programming and Optimal Control: Bertsekas

▶ Planning Algorithms: LaValle (https://lavalle.pl/planning/)

▶ Reinforcement Learning: Sutton & Barto
(http://incompleteideas.net/book/the-book.html)

▶ Calculus of Variations and Optimal Control Theory: Liberzon
(http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)
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Website, Assignments, Grading

▶ Course website: https://natanaso.github.io/ece276b

▶ Includes links to:
▶ Canvas: lecture recordings

▶ Piazza: course announcement, Q&A, discussion – check Piazza regularly

▶ Gradescope: homework submission and grades

▶ Assignments:
▶ 3 theoretical homeworks (16% of grade)
▶ 3 programming assignments in python + project report:

▶ Project 1: Dynamic Programming (18% of grade)
▶ Project 2: Motion Planning (18% of grade)
▶ Project 3: Optimal Control (18% of grade)

▶ Final exam (30% of grade)

▶ Grading:
▶ standard grade scale (93%+ = A) plus curve based on class performance

(e.g., if the top students have grades in the 86% - 89% range, then this will
correspond to letter grade A)

▶ no late submissions: work submitted past the deadline receives 0 credit
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Prerequisites

▶ Probability theory: random variables, probability density function,
expectation, covariance, total probability, conditional probability, Bayes rule

▶ Linear algebra and systems: eigenvalues, symmetric positive definite
matrices, linear equations, linear systems of ODEs, matrix exponential

▶ Optimization: unconstrained optimization, gradient descent

▶ Programming: extensive experience with at least one language
(python/C++/Matlab), classes/objects, data structures (e.g., queue, list),
data input/output processing, plotting

▶ It is up to you to judge if you are ready for this course!
▶ Consult with your classmates who took ECE276A

▶ Take a look at the material from last year:
https://natanaso.github.io/ece276b2023

▶ If the first assignment seems hard, the rest will be hard as well
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Syllabus (Tentative)

▶ Check website for updates: https://natanaso.github.io/ece276b
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Markov Chain and Markov Decision Process

▶ Markov Chain: probabilistic model
representing the evolution of a stochastic
system
▶ The state xt can be discrete or continuous

▶ The state transitions are random,
determined by a transition matrix or a
transition kernel

▶ Markov Decision Process: Markov chain
whose transition probabilities are decided by
control inputs ut

▶ Motion planning, optimal control, and
reinforcement learning problems are
formalized using a Markov decision process

P =

0.6 0.2 0.2
0.3 0.4 0.3
0.0 0.3 0.7


Pij = P(xt+1 = j | xt = i)
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Motion Planning

9



A* Search

▶ Developed by Hart, Nilsson and
Raphael of Stanford Research
Institute in 1968 for the Shakey
robot

▶ MDP with deterministic transitions,
i.e., directed graph

▶ Minimize cumulative transition
costs subject to a goal constraint

▶ Graph search using a specific node
visitation rule

▶ Video: https://youtu.be/
qXdn6ynwpiI?t=3m55s
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Search-Based Motion Planning

▶ CMU’s autonomous car used search-based motion planning in the DARPA
Urban Challenge in 2007

▶ Video: https://www.youtube.com/watch?v=4hFhl0Oi8KI

▶ Video: https://www.youtube.com/watch?v=qXZt-B7iUyw

▶ Paper: Likhachev and Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,” IJRR, 2009,
http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445
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Sampling-Based Motion Planning

▶ RRT* algorithm on a high-fidelity car model – 270 degree turn

▶ Video: https://www.youtube.com/watch?v=p3nZHnOWhrg

▶ Video: https://www.youtube.com/watch?v=LKL5qRBiJaM

▶ Karaman and Frazzoli, “Sampling-based algorithms for optimal motion
planning,” IJRR, 2011,
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761
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Sampling-Based Motion Planning

▶ RRT algorithm on the PR2 – planning with both arms (12 DOF)

▶ Video: https://www.youtube.com/watch?v=vW74bC-Ygb4

▶ Karaman and Frazzoli, “Sampling-based algorithms for optimal motion
planning,” IJRR, 2011,
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761
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Optimal Control using Dynamic Programming

▶ Video: https://www.youtube.com/watch?v=tCQSSkBH2NI

▶ Tassa, Mansard and Todorov, “Control-limited Differential Dynamic
Programming,” ICRA, 2014,
http://ieeexplore.ieee.org/document/6907001/
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Model-Free Reinforcement Learning

▶ A robot learns to flip pancakes

▶ Video: https://www.youtube.com/watch?v=W_gxLKSsSIE

▶ Kormushev, Calinon and Caldwell, “Robot Motor Skill Coordination with
EM-based Reinforcement Learning,” IROS, 2010,
http://www.dx.doi.org/10.1109/IROS.2010.5649089
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Applications of Optimal Control & Reinforcement Learning

(a) Autonomous Driving (b) Marketing (c) Computational Biology

(d) Games (e) Character Animation (f) Robotics
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Model

▶ discrete time t ∈ {0, . . . ,T} with finite or infinite horizon T

▶ state xt ∈ X and state space X

▶ control ut ∈ U and control space U

▶ motion noise wt : random vector with known probability density function
(pdf), independent of wτ for τ ̸= t conditioned on xt and ut

▶ motion model: a function f or equivalently a pdf pf describing the change
in the state xt when a control input ut is applied:

xt+1 = f (xt ,ut ,wt) or xt+1 ∼ pf (· | xt ,ut)

▶ Markov assumption: xt+1 conditioned on ut and xt is independent of all other
variables
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Control Policy

▶ control policy: function πt : X 7→ U that maps state x at time t to control
input u

▶ A policy defines fully at any time t and any state x which control u to apply

▶ A policy can be:
▶ stationary (π0 ≡ π1 ≡ · · · ) or non-stationary (π0 ̸≡ π1 ̸≡ · · · )
▶ deterministic (ut = πt(xt)) or stochastic (ut ∼ πt(· | xt))
▶ open-loop (ut is selected independent of xt) or closed-loop (ut = πt(xt)

depends on xt)

▶ A control policy induces a transition from state xt at time t with control
input ut = πt(xt) to state xt+1 ∼ pf (· | xt ,ut) according to the motion
model pf (· | xt ,ut)
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Optimal Control Problem

▶ stage cost ℓ(x,u) measures the cost of applying control u in state x

▶ terminal cost q(x) measures the cost of terminating at state x

▶ value function V π
t (x) of policy π is the expected long-term cost of starting

at state x at time t and following transitions induced by πt , πt+1, . . . , πT−1:

V π
t (x) := Ext+1:T

[
q(xT )︸ ︷︷ ︸

terminal cost

+
T−1∑
τ=t

ℓ(xτ , πτ (xτ ))︸ ︷︷ ︸
stage cost

∣∣∣∣ xt = x

]

▶ optimal control problem: given initial state x at time t, determine a policy
that minimizes the value function V π

t (x):

▶ optimal value: V ∗
t (x) = minπ V π

t (x)

▶ optimal policy: π∗(x) ∈ argmin
π

V π
t (x)
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Optimal Control Problem Types

▶ deterministic (no motion noise) vs stochastic (with motion noise)

▶ fully observable (zt = xt) vs partially observable (zt ∼ ph(·|xt))
▶ Markov Decision Process (MDP) vs Partially Observable Markov Decision

Process (POMDP)

▶ stationary vs non–stationary (time-dependent motion pf ,t and cost ℓt)

▶ discrete vs continuous state space X
▶ tabular approach vs function approximation

▶ discrete vs continuous control space U :
▶ tabular approach vs optimization

▶ discrete vs continuous time t

▶ finite vs infinite horizon T

▶ reinforcement learning (pf , ℓ, q are unknown):
▶ Model-based RL: explicitly approximate the models p̂f , ℓ̂, q̂ from data and

apply optimal control algorithms

▶ Model-free RL: directly approximate V ∗
t and π∗

t without approximating the
motion or cost models
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Naming Conventions

▶ The problem is called:
▶ Motion planning (MP): when the motion model pf is known and

deterministic and the cost functions ℓ, q are known

▶ Optimal control (OC): when the motion model pf is known but may be
stochastic and the cost functions ℓ, q are known

▶ Reinforcement learning (RL): when the motion model pf and cost functions
ℓ, q are unknown but samples xt , ℓ(xt , ut), q(xt) can be obtained from them

▶ Naming conventions differ:
▶ OC: minimization, cost, state x, control u, policy µ

▶ RL: maximization, reward, state s, action a, policy π

▶ ECE276B: minimization, cost, state x, control u, policy π
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Example: Inventory Control

▶ Consider keeping an item stocked in a warehouse:
▶ If there is too little, we may run out (not preferred)
▶ If there is too much, the storage cost will be high (not preferred)

▶ Model:
▶ xt ∈ R: available stock at the beginning of time period t

▶ ut ∈ R≥0: stock ordered and immediately delivered at the beginning of time
period t (supply)

▶ wt : random demand during time period t with known pdf. Assume excess
demand is back-logged, i.e., corresponds to negative stock xt .

▶ Motion model: xt+1 = f (xt , ut ,wt) := xt + ut − wt

▶ Cost function: E
[
q(xT ) +

∑T−1
t=0 (r(xt) + cut − pwt)

]
where

▶ pwt : revenue

▶ cut : cost of items

▶ r(xt): penalizes too much stock or negative stock

▶ q(xT ): remaining items we cannot sell or demand that we cannot meet
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Example: Rubik’s Cube

▶ Invented in 1974 by Ernõ Rubik

▶ Model:
▶ State space size: ∼ 4.33× 1019

▶ Control space size: 12

▶ Cost: 1 for each time step

▶ Deterministic, fully observable

▶ The cube can be solved in 20 or fewer moves
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Example: Cart-Pole Problem

▶ Move a cart left, right to keep a pole balanced

▶ Model:
▶ State space: 4-D continuous (x , ẋ , θ, θ̇)

▶ Control space: {−N,N}
▶ Cost:

▶ 0 when in the goal region
▶ 1 when outside the goal region
▶ 100 when outside the feasible region

▶ Deterministic, fully observable
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Example: Chess

▶ Model:
▶ State space size: ∼ 1047

▶ Control space size: from 0 to 218

▶ Cost: 0 each step, {−1, 0, 1} at the end of the
game

▶ Deterministic, opponent-dependent state
transitions (can be modeled as a game)

▶ The game tree size (all possible policies) is 10123
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Example: Grid World Navigation

▶ Navigate to a goal without crashing into obstacles

▶ Model:
▶ State space: 2-D robot position

▶ Control space: U = {left, right, up, down}
▶ Cost: 1 until the goal is reached, ∞ if an obstacles

is hit

▶ Can be deterministic or stochastic; fully or partially
observable
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