ECE276B: Planning & Learning in Robotics Lecture 1: Introduction

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Logistics

Course Topics Overview

Optimal Control Problem

What Is This Class About?

- ECE276A: sensing and estimation in robotics:
 - how to model robot motion and observations
 - how to estimate (the distribution of) a robot/environment state x_t from the history of observations z_{0:t} and control inputs u_{0:t-1}
- **ECE276B**: planning and decision making in robotics:
 - how to select control inputs u_{0:t-1} to accomplish a task

References (optional):

- Dynamic Programming and Optimal Control: Bertsekas
- Planning Algorithms: LaValle (https://lavalle.pl/planning/)
- Reinforcement Learning: Sutton & Barto (http://incompleteideas.net/book/the-book.html)
- Calculus of Variations and Optimal Control Theory: Liberzon (http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)

Website, Assignments, Grading

- Course website: https://natanaso.github.io/ece276b
- Includes links to:
 - Canvas: lecture recordings
 - Piazza: course announcement, Q&A, discussion check Piazza regularly
 - Gradescope: homework submission and grades
- Assignments:
 - 3 theoretical homeworks (16% of grade)
 - 3 programming assignments in python + project report:
 - Project 1: Dynamic Programming (18% of grade)
 - Project 2: Motion Planning (18% of grade)
 - Project 3: Optimal Control (18% of grade)
 - Final exam (30% of grade)
- Grading:
 - standard grade scale (93%+ = A) plus curve based on class performance (e.g., if the top students have grades in the 86% - 89% range, then this will correspond to letter grade A)
 - no late submissions: work submitted past the deadline receives 0 credit

Prerequisites

- Probability theory: random variables, probability density function, expectation, covariance, total probability, conditional probability, Bayes rule
- Linear algebra and systems: eigenvalues, symmetric positive definite matrices, linear equations, linear systems of ODEs, matrix exponential
- Optimization: unconstrained optimization, gradient descent
- Programming: extensive experience with at least one language (python/C++/Matlab), classes/objects, data structures (e.g., queue, list), data input/output processing, plotting
- It is up to you to judge if you are ready for this course!
 - Consult with your classmates who took ECE276A
 - Take a look at the material from last year: https://natanaso.github.io/ece276b2023
 - If the first assignment seems hard, the rest will be hard as well

Syllabus (Tentative)

Date	Lecture	Materials	Assignments
Apr 01	Introduction		
Apr 03	Markov Chains	Grinstead-Snell Ch 11	
Apr 08	Markov Decision Processes]	Bertsekas 1.1-1.2	
Apr 10	Dynamic Programming	Bertsekas 1.3-1.4	HW1, PR1
Apr 15	Deterministic Shortest Path	Bertsekas 2.1-2.3	
Apr 17	Catch-up		
Apr 22	Configuration Space	LaValle 4.3, 6.2-6.3	
Apr 24	Search-based Planning	LaValle 2.1-2.3, JPS	
Apr 29	Catch-up		
May 01	Anytime Incremental Search	RTAA*, ARA*, AD*, Anytime Search	HW2, PR2
May 06	Sampling-based Planning	LaValle 5.5-5.6	
May 08	Infinite-Horizon Optimal Control	Bertsekas 7.1-7.3, Sutton-Barto Ch 4	
May 13	Infinite-Horizon Optimal Control	Bertsekas 7.1-7.3, Sutton-Barto Ch 4	
May 15	Catch-up		
May 20	Model-Free Prediction	Sutton-Barto 6.1-6.3	
May 22	Model-Free Control	Sutton-Barto 6.4-6.7	HW3, PR3
May 27	Value Function Approximation	Sutton-Barto Ch.9	
May 29	Catch-up		
Jun 03	Linear Quadratic Control	Bertsekas 4.1	
Jun 05	Continuous-time Optimal Control	Bertsekas Ch. 3, Liberzon Ch. 2.4 and Ch. 4	
Jun 14	Final Exam		

Check website for updates: https://natanaso.github.io/ece276b

Outline

Logistics

Course Topics Overview

Optimal Control Problem

Markov Chain and Markov Decision Process

- Markov Chain: probabilistic model representing the evolution of a stochastic system
 - The state x_t can be discrete or continuous
 - The state transitions are random, determined by a transition matrix or a transition kernel
- Markov Decision Process: Markov chain whose transition probabilities are decided by control inputs u_t
- Motion planning, optimal control, and reinforcement learning problems are formalized using a Markov decision process

 $P = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \\ 0.0 & 0.3 & 0.7 \end{bmatrix}$ $P_{ij} = \mathbb{P}(x_{t+1} = j \mid x_t = i)$

Motion Planning

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

A* Search

- Developed by Hart, Nilsson and Raphael of Stanford Research Institute in 1968 for the Shakey robot
- MDP with deterministic transitions, i.e., directed graph
- Minimize cumulative transition costs subject to a goal constraint
- Graph search using a specific node visitation rule
- Video: https://youtu.be/ qXdn6ynwpiI?t=3m55s

Search-Based Motion Planning

- CMU's autonomous car used search-based motion planning in the DARPA Urban Challenge in 2007
- Video: https://www.youtube.com/watch?v=4hFh100i8KI
- Video: https://www.youtube.com/watch?v=qXZt-B7iUyw
- Paper: Likhachev and Ferguson, "Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles," IJRR, 2009, http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

Sampling-Based Motion Planning

- RRT* algorithm on a high-fidelity car model 270 degree turn
- Video: https://www.youtube.com/watch?v=p3nZHnOWhrg
- Video: https://www.youtube.com/watch?v=LKL5qRBiJaM
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR, 2011, http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Sampling-Based Motion Planning

- RRT algorithm on the PR2 planning with both arms (12 DOF)
- Video: https://www.youtube.com/watch?v=vW74bC-Ygb4
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR, 2011, http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Optimal Control using Dynamic Programming

Video: https://www.youtube.com/watch?v=tCQSSkBH2NI

Tassa, Mansard and Todorov, "Control-limited Differential Dynamic Programming," ICRA, 2014, http://ieeexplore.ieee.org/document/6907001/

Model-Free Reinforcement Learning

- ► A robot learns to flip pancakes
- Video: https://www.youtube.com/watch?v=W_gxLKSsSIE
- Kormushev, Calinon and Caldwell, "Robot Motor Skill Coordination with EM-based Reinforcement Learning," IROS, 2010, http://www.dx.doi.org/10.1109/IROS.2010.5649089

Applications of Optimal Control & Reinforcement Learning

(a) Autonomous Driving

(b) Marketing

(c) Computational Biology

(f) Robotics

(d) Games

(e) Character Animation

Outline

Logistics

Course Topics Overview

Optimal Control Problem

Model

- discrete time $t \in \{0, ..., T\}$ with finite or infinite horizon T
- **•** state $\mathbf{x}_t \in \mathcal{X}$ and state space \mathcal{X}
- control $\mathbf{u}_t \in \mathcal{U}$ and control space \mathcal{U}
- motion noise \mathbf{w}_t : random vector with known probability density function (pdf), independent of \mathbf{w}_{τ} for $\tau \neq t$ conditioned on \mathbf{x}_t and \mathbf{u}_t
- motion model: a function f or equivalently a pdf p_f describing the change in the state x_t when a control input u_t is applied:

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t)$$
 or $\mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$

Markov assumption: x_{t+1} conditioned on u_t and x_t is independent of all other variables

Control Policy

- Control policy: function π_t : X → U that maps state x at time t to control input u
- A policy defines fully at any time t and any state x which control u to apply
- A policy can be:
 - ▶ stationary $(\pi_0 \equiv \pi_1 \equiv \cdots)$ or non-stationary $(\pi_0 \neq \pi_1 \neq \cdots)$
 - deterministic $(\mathbf{u}_t = \pi_t(\mathbf{x}_t))$ or stochastic $(\mathbf{u}_t \sim \pi_t(\cdot \mid \mathbf{x}_t))$
 - open-loop (\mathbf{u}_t is selected independent of \mathbf{x}_t) or closed-loop ($\mathbf{u}_t = \pi_t(\mathbf{x}_t)$ depends on \mathbf{x}_t)
- A control policy induces a transition from state x_t at time t with control input u_t = π_t(x_t) to state x_{t+1} ~ p_f(· | x_t, u_t) according to the motion model p_f(· | x_t, u_t)

Optimal Control Problem

- **stage cost** $\ell(\mathbf{x}, \mathbf{u})$ measures the cost of applying control \mathbf{u} in state \mathbf{x}
- terminal cost q(x) measures the cost of terminating at state x
- value function V^π_t(x) of policy π is the expected long-term cost of starting at state x at time t and following transitions induced by π_t, π_{t+1},..., π_{T-1}:

$$V_t^{\pi}(\mathbf{x}) := \mathbb{E}_{\mathbf{x}_{t+1:T}} \left[\underbrace{\mathfrak{q}(\mathbf{x}_T)}_{\text{terminal cost}} + \sum_{\tau=t}^{T-1} \underbrace{\ell(\mathbf{x}_{\tau}, \pi_{\tau}(\mathbf{x}_{\tau}))}_{\text{stage cost}} \middle| \mathbf{x}_t = \mathbf{x} \right]$$

- optimal control problem: given initial state x at time t, determine a policy that minimizes the value function $V_t^{\pi}(\mathbf{x})$:
 - optimal value: $V_t^*(\mathbf{x}) = \min_{\pi} V_t^{\pi}(\mathbf{x})$
 - optimal policy: $\pi^*(\mathbf{x}) \in \arg\min V_t^{\pi}(\mathbf{x})$

Optimal Control Problem Types

- deterministic (no motion noise) vs stochastic (with motion noise)
- ▶ fully observable $(z_t = x_t)$ vs partially observable $(z_t \sim p_h(\cdot|x_t))$
 - Markov Decision Process (MDP) vs Partially Observable Markov Decision Process (POMDP)
- **•** stationary vs non-stationary (time-dependent motion $p_{f,t}$ and cost ℓ_t)
- discrete vs continuous state space X
 - tabular approach vs function approximation
- discrete vs continuous control space U:
 - tabular approach vs optimization
- discrete vs continuous time t
- finite vs infinite horizon T
- reinforcement learning (p_f, l, q are unknown):
 - Model-based RL: explicitly approximate the models p̂_f, l̂, q̂ from data and apply optimal control algorithms
 - Model-free RL: directly approximate V^{*}_t and π^{*}_t without approximating the motion or cost models

Naming Conventions

- The problem is called:
 - Motion planning (MP): when the motion model p_f is known and deterministic and the cost functions l, q are known
 - Optimal control (OC): when the motion model p_f is known but may be stochastic and the cost functions l, q are known
 - **Reinforcement learning** (RL): when the motion model p_f and cost functions ℓ , \mathfrak{q} are unknown but samples \mathbf{x}_t , $\ell(\mathbf{x}_t, \mathbf{u}_t)$, $\mathfrak{q}(\mathbf{x}_t)$ can be obtained from them
- Naming conventions differ:
 - OC: minimization, cost, state x, control u, policy µ
 - **RL**: maximization, reward, state **s**, action **a**, policy π
 - **ECE276B**: minimization, cost, state \mathbf{x} , control \mathbf{u} , policy π

Example: Inventory Control

- Consider keeping an item stocked in a warehouse:
 - If there is too little, we may run out (not preferred)
 - If there is too much, the storage cost will be high (not preferred)

Model:

- ▶ $x_t \in \mathbb{R}$: available stock at the beginning of time period t
- u_t ∈ ℝ_{≥0}: stock ordered and immediately delivered at the beginning of time period t (supply)
- w_t: random demand during time period t with known pdf. Assume excess demand is back-logged, i.e., corresponds to negative stock x_t.
- Motion model: $x_{t+1} = f(x_t, u_t, w_t) := x_t + u_t w_t$
- **Cost function**: $\mathbb{E}\left[q(x_T) + \sum_{t=0}^{T-1} (r(x_t) + cu_t pw_t)\right]$ where
 - *pwt*: revenue
 - cut: cost of items
 - r(x_t): penalizes too much stock or negative stock
 - q(x_T): remaining items we cannot sell or demand that we cannot meet

Example: Rubik's Cube

Invented in 1974 by Ernő Rubik

- Model:
 - State space size: $\sim 4.33 \times 10^{19}$
 - Control space size: 12
 - Cost: 1 for each time step
 - Deterministic, fully observable
- The cube can be solved in 20 or fewer moves

Example: Cart-Pole Problem

Move a cart left, right to keep a pole balanced

- Model:
 - State space: 4-D continuous $(x, \dot{x}, \theta, \dot{\theta})$
 - ► Control space: {−N, N}
 - Cost:
 - 0 when in the goal region
 - 1 when outside the goal region
 - 100 when outside the feasible region
 - Deterministic, fully observable

Example: Chess

Model:

- State space size: $\sim 10^{47}$
- Control space size: from 0 to 218
- Cost: 0 each step, {-1,0,1} at the end of the game
- Deterministic, opponent-dependent state transitions (can be modeled as a game)
- ▶ The game tree size (all possible policies) is 10¹²³

Example: Grid World Navigation

Navigate to a goal without crashing into obstacles

- Model:
 - State space: 2-D robot position
 - ▶ Control space: $U = \{left, right, up, down\}$
 - \blacktriangleright Cost: 1 until the goal is reached, ∞ if an obstacles is hit
 - Can be deterministic or stochastic; fully or partially observable

