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Markov Decision Processes



Markov Chain

Stochastic process defined by a tuple (X, po, pr):
> X is a discrete or continuous space
> po(-) is a prior pdf defined on X

> pr(- | x) is a conditional pdf defined on X for given x € X that specifies the
stochastic process transitions

> When the state space is finite X := {1,..., N}:
» the prior pdf po is represented by an N x 1 vector with elements:

Po,i == P(x0 = i) = po(i)
» the transition pdf pr is represented by an N x N matrix with elements:

Py = P(xer = J | xe = 1) = pr(j | xe = )



Example: Student Markov Chain

@ Sleep
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Markov Reward Process

Markov Reward Process
Markov chain with transition costs defined by a tuple (X, po, pf, T, ¢, q,7):

> X is a discrete or continuous space

»> po(:) is a prior pdf defined on X

v

pr(- | x) is a conditional pdf defined on X’ for given x € X that specifies the
stochastic process transitions

v

T is a finite/infinite time horizon

v

£(x) is stage cost of state x € X

v

q(x) is terminal cost of being in state x at time T

v

v € [0,1] is a discount factor




Example: Student Markov Reward Process

Sleep




MRP Value Function

» Value function: the expected cumulative cost of an MRP starting from
state x € X at time t

> Finite-horizon MRP: trajectories terminate at fixed T < oo

T-1

Vi(x) :=E |q(x7) + Z 0(x;) | x = x

T=t

» Infinite-horizon MRP:

> First-exit MRP: trajectories terminate at the first passage time
T = min{t € N|x; € T} to a terminal state x; € T C X
> Discounted MRP: trajectories continue forever but stage costs are discounted
by discount factor v € [0,1):
> ~ close to 0 leads to myopic/greedy evaluation

»> ~ close to 1 leads to nonmyopic/far-sighted evaluation
» Mathematically convenient since discounting avoids infinite costs as T — oo

> Average-cost MRP: trajectories continue forever and the value function is the
expected average stage cost



Example: Student MRP Value Function

V(s) fory =0




Example: Student MRP Value Function

Vis) fory =1




Example: Student MRP Value Function

V(s) for y =0.9

10



Markov Decision Process

Markov Decision Process

Markov Reward Process with controlled transitions defined by a tuple
(X7ua Po; Pf T7 Z7 q, ’Y)
> X is a discrete or continuous state space

» U is a discrete or continuous control space

v

po(+) is a prior pdf defined on X

v

pr(- | x¢,uy) is a conditional pdf defined on X for given x; € X’ and u; € U
(matrices P with elements P} := pr(j | xt = i, ux = u) in finite-dim case)

v

T is a finite or infinite time horizon

> /(x,u) is stage cost of applying control u € i in state x € X

v

q(x) is terminal cost of being in state x at time T

v

v € [0,1] is a discount factor
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Example: Markov Decision Process

» A control u; applied in state x; determines the next state x;y; and the stage
cost £(x, uy)

1
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Example: Student Markov Decision Process

Facebook
r=-1

Quit Facebook
r=
Study

r=+10

Study
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MDP Control Policy and Value Function

» Control policy: a function 7 that maps a time step t € N and a state x € X
to a feasible control input u € U

» Value function: expected cumulative cost of a policy 7 applied to an MDP
with initial state x € X at time t:

> Finite-horizon MDP: trajectories terminate at fixed T < oo:

VIi(x) :=E |q(x7) + z_: Uxr, mr (%)) | Xe = X

T=t

» Infinite-horizon MDP: as T — oo, optimal policies become stationary, i.e.,
T =T =T1 ="""

> First-exit MDP: trajectories terminate at the first passage time
T = min{t € N|x, € T} to a terminal state x, € T C X

> Discounted MDP: trajectories continue forever but stage costs are discounted
by a factor v € [0, 1)

> Average-cost MDP: trajectories continue forever and the value function is the
expected average stage cost
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Example: Value Function of Student MDP

Facebook
r=-1

V(s) for m(s,a)=0.5, y =1

Facebook
r=-1

Quit
r=
Study

Study r=+I0
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Alternative Cost Formulations
> Noise-dependent costs: stage costs ¢/ depend on motion noise w;:

-
Ve (%) = ey r [ Z (xe, me(xe), We) [ X0 = x

t=0

> Using the pdf p, (- | x¢, us) of wy, this is equivalent to our formulation:

E(Xhut) = IE':fwt|xf,ut [el(xtyutth)] = /E(xbuhwt)pw(wt | X¢, Ut)th

The expectation can be computed if p,, is known or approximated.

> Joint cost-state pdf: allow random costs ¢’ with joint pdf p(x’, ¢ | x,u).
This is equivalent to our formulation as follows:

pr(x' | x,u) := /p(x’,ﬁ’ | x,u)d?
{(x,u) :=E[l' | x,u] = //f’p(x’,ﬁ’ [,x,u)dx'dl

16



Alternative Motion-Model Formulations

» Time-lag motion model: x; 1 = f;(X¢, X¢—1, Ur, U1, W;)
» Can be converted to the standard form via state augmentation

> Let y; :=x;_1 and s; := u;_1 and define the augmented dynamics:

Xt4+1 fe(xt, Yt, Ut, St, Wr) .
Xt41 = (Y1 | = Xt = ft(xtautawt)
St+1 u;

» This procedure works for an arbitrary number of time lags but the dimension
of the state space grows and increases the computational burden
exponentially (“curse of dimensionality”)
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Alternative Motion-Model Formulations

System dynamics: Xeq1 = fir(Xe, Ug, Wy)

Correlated Disturbance: w; correlated across time (colored noise):

Yer1 = Arye + &,
w: = Gyl

where A;, C; are known and &, are independent random variables

Augmented state: X; := (x,y;) with dynamics:

xt+1] _ {ft(xt,ut, ClAYe+ €| . 75, ue e,

X =
e [Yt+1 Aryr + &,

State estimator: y; must be observed at time t, which can be done using a

state estimator
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MDP Notation and Terminology (Summary)

te{0,...,T}
xe X
ueld

Po(x)
pr(x" | x,u)

discrete time
discrete/continuous state
discrete/continuous control

prior probability density function defined on X
transition/motion model

stage cost of choosing control u in state x
terminal cost at state x

control policy: function from state x at time t to control u
value function: expected cumulative cost of starting at state x

at time t and acting according to 7

optimal control policy
optimal value function
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MDP Finite-horizon Optimal Control (Summary)

Finite-horizon Optimal Control

The finite-horizon optimal control problem in an MDP (X, U, po, pr, T, ¢, q,7)
with initial state x at time t is:
Xt = x‘|

Te:T—1

T-1
min Vtﬂ—(x) = EXH—I:T |:VT_tq(XT) + Z ,YT_tg(x‘ﬂ 7T“F(X‘I'))

T=t
sit. Xrq1 ~ pr(c | Xry T (X7)), T=t,...,T -1
X, €X, m(x;) €U
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Outline

Open-Loop vs Closed-Loop Control
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Open-Loop vs Closed-Loop Control

>

Open-loop policy: control inputs ug.7_1 are determined at once at time 0
as a function of xg and do not change online depending on x;

Closed-loop policy: control inputs are determined “just-in-time" as a
function 7; of the current state x;

Open-loop control is a special case of closed-loop control that disregards the
state x; and, hence, never gives better performance

In the absence of motion noise and in a special linear quadratic Gaussian
(LQG) case, open-loop and closed-loop control have the same performance

Open-loop control is computationally much cheaper than closed-loop control.
Consider a discrete-space example with |X'| = 10 states, |U/| = 10 control
inputs, planning horizon T = 4, and given xp:

> There are [U|" = 10* open-loop strategies

> There are [U|(JU)*)T 1 = [u|!¥IT=D+1 = 103 closed-loop strategies

Open-loop feedback control (OLFC) recomputes a new open-loop
sequence u;.7_1 online, whenever a new state x; is available. OLFC is
guaranteed to perform better than open-loop control and is computationally
more efficient than closed-loop control.
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Example: Chess Strategy Optimization

» Objective: come up with a strategy that maximizes the chances of winning a
2 game chess match

» Possible outcomes:
> Win/Lose: 1 point for the winner, 0 for the loser
» Draw: 0.5 points for each player

> If the score is equal after 2 games, the players continue playing until one wins
(sudden death)

» Playing styles:
> Timid: draw with probability ps and lose with probability (1 — pq)
> Bold: win with probability p, and lose with probability (1 — pw)
> Assumption: py > pw
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Chess Match Model

>

>

State x;: 2-D vector with our and the opponent’s score after the t-th game
Control u; € U = {timid, bold}
Noise w;: score of the next game

Since timid play does not make sense during the sudden death stage, the
planning horizon is T = 2

We can construct a time-dependent motion model P, for t € {0,1}
(shown on the next slide)

1
Cost: minimize loss probability: —Pyin = Ey,, [q(xQ) + Zé(xt, ut)‘| , Where
t=0

-1 ifx=(3,3) or(2,0)
Ux,u)=0 and q(x)=4¢—p, ifx=(11)
0 ifx=(3,3) or (0,2
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Chess Transition Probabilities

Timid Play Bold Play

Game 1:

Timid Play

Game 2:

o
s

1—pa
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Open-Loop Chess Strategy

» There are 4 possible open-loop policies:
1. timid-timid: Puin = p3pw
2. bold-bold: Puin = p2 + puw(l — puw)pw + (1 — Pu)PuPw = P2(3 — 2pw)
3. bold-timid: Puwin = pwpd + pw(l — pa)pw
4. timid-bold: Puin = papw + (1 — pd)pf‘,

» Since p3pw < papw < Papw + (1 — pa)pZ, timid-timid is not optimal
» The best achievable winning probability is:

bold-bold 3. or 4.

*

o = max{pZ (3 — 2pu), PapPw + (1 — pa)p>}
= PG, + Pw(l — puw) max{2pw, pa}

> If p, <0.5, then P}, < 0.5
» For p, = 0.45 and py = 0.9, P;;,, = 0.43
» For pw =0.5 and ps = 1.0, P:/fn =0.5

» If py > 2p,,, bold-timid and timid-bold are optimal open-loop policies;
otherwise bold-bold is optimal
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Closed-Loop Chess Strategy

» There are 16 closed-loop policies

» Consider one option: play timid if
and only if ahead (it will turn out
that this is optimal)

» The probability of winning is:
Puin = Pdpw + Pu((1 = pa)Pw + Pu(l — pu)) = P& (2 — Pw) + Pw(1l — pu)pa
» In the closed-loop case, we can achieve P,,;, larger than 0.5 even when p,, is
less than 0.5:

» For p, = 0.45 and py = 0.9, Puin = 0.5
» For p, = 0.5 and py = 1.0, Puin = 0.625
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Outline

Partially Observable Models
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Hidden Markov Model

Hidden Markov Model

Markov Chain with partially observable states defined by tuple (X, Z, po, pr, ps)

> X is a discrete or continuous state space
» Z is a discrete or continuous observation space
» po(-) is a prior pdf defined on X

> pr(- | x¢) is a conditional pdf defined on X for given x; € X
(matrix P with Pjj = p¢(j | x; = i) in finite-dim case)

» pp(- | x¢) is a conditional pdf defined on Z for given x; € X
(matrix O with Oy := pu(j | x¢ = i) in finite-dim case)
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Partially Observable Markov Decision Process

Partially Observable Markov Decision Process

Markov Decision Process with partially observable states defined by tuple
(XU, Z, po, pr, pn, T+ 4,49,7)
> X is a discrete or continuous state space
U is a discrete or continuous control space
Z is a discrete or continuous observation space
po(-) is a prior pdf defined on X

vVvyyvyy

pr(- | x¢,u;) is a conditional pdf defined on X for given x; € X and u; € U
(matrices P* with elements P = ps(j | xc = i, ur = u) in finite-dim case)

v

ph(- | X¢) is a conditional pdf defined on Z for given x; € X
(matrix O with Oy := pp(j | x¢ = i) in finite-dim case)

T is a finite/infinite time horizon

£(x,u) is stage cost of applying control u € U in state x € X
q(x) is terminal cost of being in state x at time T

vVvyVvyy

v € [0,1] is a discount factor
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Comparison of Markov Models

observed partially observed
uncontrolled | Markov Chain/MRP HMM
controlled MDP POMDP

» Markov Chain + Partial Observability = HMM

» Markov Chain + Control = MDP

» Markov Chain + Partial Observability + Control = HMM + Control = MDP
+ Partial Observability = POMDP
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Bayes Filter

» A probabilistic inference technique for summarizing information
ir := (20:t,Up.r—1) about a partially observable state x;

Pt\t(xt) = P(Xt ‘ FART uO:t—l)

» The Bayes filter keeps track of:
Pt+1|t(xt+1) = P(Xt+1 | ZO:t7UO:t)

» Derived using total probability, conditional probability, and Bayes rule based
on the motion and observation models of the system

> Motion model: x;1="7(x;, ur,w;) ~ pr(- | x¢, uy)
> Observation model: z; = h(x;,v;) ~ pu(- | x¢)
» Bayes filter: consists of predict and update steps:

Predict: piq)¢(Xe+1)

1

X =
pt+1|t+1( Hl) p(zt-&-l‘ZO:tvuO:t)

Pr(Zes1 | Xt+1)/Pf(Xt+1 ‘ Xt7ut)Pt\t(xt)dXt

Update
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Bayes Filter Example

Sensor. x =3.1377 y =3.4790

# 2 Taaet

x10°

05

P(A|B)

Ei=

Bayes Filter: x=50333 y = 49333

0 &0 100 1580 200

0 50 100 150 200
Sensor measure: k=7
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https://www.youtube.com/watch?v=Ry2PXkkMCmg

Equivalence of POMDPs and MDPs

» A POMDP (X,U, Z, po, pr, pn, T,¥,4,7) is equivalent to an MDP
(P(X),U, po, py, T, 1, q,7) such that:
> State space: P(X) is the continuous space of pdfs over X
> If X is continuous, then P(X) := {p: X = Rxo | [ p(x)dx =1}
> If |X| = N, then P(X) :={pc[0,1]V|1Tp=1}

> Initial state: py € P(X)

> Motion model: the Bayes filter p.;1j:11 = 9(pye, Ur, Ze11) acts as a motion
model for py; with motion noise given by the observations z:y1 with density:

n(z | peje, ue) == //Ph(z | Xe41)Pr(Xer1 | Xe, Ue) prje(Xe) dXedXesn

» Cost: the equivalent MDP stage and terminal cost functions are the expected
values of the POMDP stage and terminal costs:

ipu) =[x el (p)i= [ a(xplx)dx
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POMDP Finite-horizon Optimal Control
» POMDP (X»uaZaPOanaPh» Tvgaqa’}/):

T-1
7Ta(xr) + Z Y%, Ut)]

t=0

min E
T0:T—1

sit. Xepr1 ~ pr(c | Xe, ue), t=0,...,T—1

Zt_|,1’\‘ph("xt)7 t:0,,T—1
Ut’\-"/Tt('|it), t:07,T—1
xo ~ po(-)

> Equivalent MDP (P(X),U, po, py, T, Z,,7) with state py;:

T-1
’YTEI(PT\T) + Z ’YtZ(Pﬂta Ut)]
t=0

min Vg (po) =E

T0:T—1

s.t. Pt1jt41 = w(pﬂta utazt+l)7 t= 07 R T-1
zi11 ~ (- | peje, ue), t=0,...,T—-1
UtN7Tt(‘|Pt\t); tZO,,T—l

» Due to the equivalence between POMDPs and MDPs, we will focus

exclusively on MDPs
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