ECE276B: Planning & Learning in Robotics Lecture 3: Markov Decision Processes

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

[Markov Decision Processes](#page-1-0)

[Open-Loop vs Closed-Loop Control](#page-20-0)

[Partially Observable Models](#page-27-0)

Markov Chain

Markov Chain

Stochastic process defined by a tuple (\mathcal{X}, p_0, p_f) :

- \triangleright X is a discrete or continuous space
- \blacktriangleright $p_0(\cdot)$ is a prior pdf defined on X
- ▶ $p_f(\cdot | \mathbf{x})$ is a conditional pdf defined on X for given $\mathbf{x} \in \mathcal{X}$ that specifies the stochastic process transitions
- ▶ When the state space is finite $\mathcal{X} := \{1, \ldots, N\}$:
	- \blacktriangleright the prior pdf p_0 is represented by an $N \times 1$ vector with elements:

$$
\mathbf{p}_{0,i} := \mathbb{P}(x_0 = i) = p_0(i)
$$

 \blacktriangleright the transition pdf p_f is represented by an $N \times N$ matrix with elements:

$$
P_{ij} := \mathbb{P}(x_{t+1} = j \mid x_t = i) = p_f(j \mid x_t = i)
$$

Example: Student Markov Chain

Markov Reward Process

Markov Reward Process

Markov chain with transition costs defined by a tuple $(\mathcal{X}, p_0, p_f, \mathcal{T}, \ell, \mathfrak{q}, \gamma)$:

- \triangleright X is a discrete or continuous space
- \blacktriangleright $p_0(\cdot)$ is a prior pdf defined on X

▶ $p_f(\cdot | \mathbf{x})$ is a conditional pdf defined on X for given $\mathbf{x} \in \mathcal{X}$ that specifies the stochastic process transitions

- \blacktriangleright T is a finite/infinite time horizon
- ▶ $\ell(\mathbf{x})$ is stage cost of state $\mathbf{x} \in \mathcal{X}$
- \blacktriangleright q(x) is terminal cost of being in state x at time T
- $\blacktriangleright \ \gamma \in [0,1]$ is a discount factor

Example: Student Markov Reward Process

MRP Value Function

- ▶ Value function: the expected cumulative cost of an MRP starting from state $\mathbf{x} \in \mathcal{X}$ at time t
- ▶ Finite-horizon MRP: trajectories terminate at fixed $T < \infty$

$$
V_t(\mathbf{x}) := \mathbb{E}\left[q(\mathbf{x}_T) + \sum_{\tau=t}^{T-1} \ell(\mathbf{x}_\tau) \mid \mathbf{x}_t = \mathbf{x}\right]
$$

\blacktriangleright Infinite-horizon MRP

- ▶ First-exit MRP: trajectories terminate at the first passage time $T = \min \{t \in \mathbb{N} | \mathbf{x}_t \in \mathcal{T} \}$ to a terminal state $\mathbf{x}_t \in \mathcal{T} \subseteq \mathcal{X}$
- ▶ Discounted MRP: trajectories continue forever but stage costs are discounted by discount factor $\gamma \in [0,1)$:
	- \blacktriangleright γ close to 0 leads to myopic/greedy evaluation
	- \blacktriangleright γ close to 1 leads to nonmyopic/far-sighted evaluation
	- ▶ Mathematically convenient since discounting avoids infinite costs as $T \rightarrow \infty$

 \triangleright Average-cost MRP: trajectories continue forever and the value function is the expected average stage cost

Example: Student MRP Value Function

Example: Student MRP Value Function

Example: Student MRP Value Function

Markov Decision Process

Markov Decision Process

Markov Reward Process with controlled transitions defined by a tuple $(\mathcal{X}, \mathcal{U}, p_0, p_f, \mathcal{T}, \ell, \mathfrak{q}, \gamma)$

- \triangleright X is a discrete or continuous state space
- \triangleright U is a discrete or continuous control space
- \rightharpoonup $p_0(\cdot)$ is a prior pdf defined on X
- ▶ $p_f(\cdot | \mathbf{x}_t, \mathbf{u}_t)$ is a conditional pdf defined on \mathcal{X} for given $\mathbf{x}_t \in \mathcal{X}$ and $\mathbf{u}_t \in \mathcal{U}$ (matrices P^u with elements $P^u_{ij} := p_f (j \mid x_t = i, u_t = u)$ in finite-dim case)
- \blacktriangleright T is a finite or infinite time horizon
- ▶ $\ell(x, u)$ is stage cost of applying control $u \in \mathcal{U}$ in state $x \in \mathcal{X}$
- \blacktriangleright q(x) is terminal cost of being in state x at time T
- $\blacktriangleright \gamma \in [0,1]$ is a discount factor

Example: Markov Decision Process

A control \mathbf{u}_t applied in state \mathbf{x}_t determines the next state \mathbf{x}_{t+1} and the stage cost $\ell(\mathsf{x}_t,\mathsf{u}_t)$

Example: Student Markov Decision Process

MDP Control Policy and Value Function

- ▶ Control policy: a function π that maps a time step $t \in \mathbb{N}$ and a state $x \in \mathcal{X}$ to a feasible control input $\mathbf{u} \in \mathcal{U}$
- **Value function**: expected cumulative cost of a policy π applied to an MDP with initial state $\mathbf{x} \in \mathcal{X}$ at time t:
- **► Finite-horizon MDP**: trajectories terminate at fixed $T < \infty$:

$$
V_t^{\pi}(\mathbf{x}) := \mathbb{E}\left[\mathfrak{q}(\mathbf{x}_\mathcal{T}) + \sum_{\tau=t}^{T-1} \ell(\mathbf{x}_\tau, \pi_\tau(\mathbf{x}_\tau)) \mid \mathbf{x}_t = \mathbf{x}\right]
$$

► Infinite-horizon MDP: as $T \rightarrow \infty$, optimal policies become stationary, i.e., $\pi := \pi_0 \equiv \pi_1 \equiv \cdots$

- ▶ First-exit MDP: trajectories terminate at the first passage time $\mathcal{T} = \min \{ t \in \mathbb{N} | \mathbf{x}_t \in \mathcal{T} \}$ to a terminal state $\mathbf{x}_t \in \mathcal{T} \subseteq \mathcal{X}$
- ▶ Discounted MDP: trajectories continue forever but stage costs are discounted by a factor $\gamma \in [0,1)$
- ▶ Average-cost MDP: trajectories continue forever and the value function is the expected average stage cost

Example: Value Function of Student MDP

Alternative Cost Formulations

▶ Noise-dependent costs: stage costs ℓ' depend on motion noise w_t :

$$
V_0^{\pi}(\mathbf{x}) := \mathbb{E}_{\mathbf{w}_{0:T}, \mathbf{x}_{1:T}}\left[q(\mathbf{x}_T) + \sum_{t=0}^{T-1} \ell'(\mathbf{x}_t, \pi_t(\mathbf{x}_t), \mathbf{w}_t) \mid \mathbf{x}_0 = \mathbf{x}\right]
$$

 \blacktriangleright Using the pdf $p_w(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$ of \mathbf{w}_t , this is equivalent to our formulation:

$$
\ell(\mathbf{x}_t, \mathbf{u}_t) := \mathbb{E}_{\mathbf{w}_t|\mathbf{x}_t, \mathbf{u}_t} \left[\ell'(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \right] = \int \ell(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \rho_w(\mathbf{w}_t | \mathbf{x}_t, \mathbf{u}_t) d\mathbf{w}_t
$$

The expectation can be computed if p_w is known or approximated.

• Joint cost-state pdf: allow random costs ℓ' with joint pdf $p(x', \ell' | x, u)$. This is equivalent to our formulation as follows:

$$
p_f(\mathbf{x}' | \mathbf{x}, \mathbf{u}) := \int p(\mathbf{x}', \ell' | \mathbf{x}, \mathbf{u}) d\ell'
$$

$$
\ell(\mathbf{x}, \mathbf{u}) := \mathbb{E}[\ell' | \mathbf{x}, \mathbf{u}] = \int \int \ell' p(\mathbf{x}', \ell' |, \mathbf{x}, \mathbf{u}) d\mathbf{x}' d\ell'
$$

Alternative Motion-Model Formulations

- ▶ Time-lag motion model: $x_{t+1} = f_t(x_t, x_{t-1}, u_t, u_{t-1}, w_t)$
- ▶ Can be converted to the standard form via state augmentation

► Let $y_t := x_{t-1}$ and $s_t := u_{t-1}$ and define the augmented dynamics:

$$
\tilde{\mathbf{x}}_{t+1} := \begin{bmatrix} \mathbf{x}_{t+1} \\ \mathbf{y}_{t+1} \\ \mathbf{s}_{t+1} \end{bmatrix} = \begin{bmatrix} f_t(\mathbf{x}_t, \mathbf{y}_t, \mathbf{u}_t, \mathbf{s}_t, \mathbf{w}_t) \\ \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} =: \tilde{f}_t(\tilde{\mathbf{x}}_t, \mathbf{u}_t, \mathbf{w}_t)
$$

▶ This procedure works for an arbitrary number of time lags but the dimension of the state space grows and increases the computational burden exponentially ("curse of dimensionality")

Alternative Motion-Model Formulations

$$
\blacktriangleright \text{ System dynamics: } \mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t)
$$

▶ Correlated Disturbance: w_t correlated across time (colored noise):

$$
\mathbf{y}_{t+1} = A_t \mathbf{y}_t + \boldsymbol{\xi}_t
$$

$$
\mathbf{w}_t = C_t \mathbf{y}_{t+1}
$$

where A_t , C_t are known and $\boldsymbol{\xi}_t$ are independent random variables

Augmented state: $\tilde{\mathbf{x}}_t := (\mathbf{x}_t, \mathbf{y}_t)$ with dynamics:

$$
\tilde{\mathbf{x}}_{t+1} = \begin{bmatrix} \mathbf{x}_{t+1} \\ \mathbf{y}_{t+1} \end{bmatrix} = \begin{bmatrix} f_t(\mathbf{x}_t, \mathbf{u}_t, C_t(A_t \mathbf{y}_t + \boldsymbol{\xi}_t)) \\ A_t \mathbf{y}_t + \boldsymbol{\xi}_t \end{bmatrix} =: \tilde{f}_t(\tilde{\mathbf{x}}_t, \mathbf{u}_t, \boldsymbol{\xi}_t)
$$

▶ State estimator: y_t must be observed at time t, which can be done using a state estimator

MDP Notation and Terminology (Summary)

MDP Finite-horizon Optimal Control (Summary)

Finite-horizon Optimal Control

The finite-horizon optimal control problem in an MDP $(\mathcal{X}, \mathcal{U}, p_0, p_f, T, \ell, \mathfrak{q}, \gamma)$ with initial state x at time t is:

$$
\min_{\pi_{t:T-1}} V_t^{\pi}(\mathbf{x}) := \mathbb{E}_{\mathbf{x}_{t+1:T}} \left[\gamma^{T-t} \mathfrak{q}(\mathbf{x}_T) + \sum_{\tau=t}^{T-1} \gamma^{\tau-t} \ell(\mathbf{x}_{\tau}, \pi_{\tau}(\mathbf{x}_{\tau})) \middle| \mathbf{x}_t = \mathbf{x} \right]
$$
\n
$$
\text{s.t. } \mathbf{x}_{\tau+1} \sim p_f(\cdot \mid \mathbf{x}_{\tau}, \pi_{\tau}(\mathbf{x}_{\tau})), \qquad \tau = t, \dots, T-1
$$
\n
$$
\mathbf{x}_{\tau} \in \mathcal{X}, \ \pi_{\tau}(\mathbf{x}_{\tau}) \in \mathcal{U}
$$

Outline

[Markov Decision Processes](#page-1-0)

[Open-Loop vs Closed-Loop Control](#page-20-0)

[Partially Observable Models](#page-27-0)

Open-Loop vs Closed-Loop Control

- **► Open-loop policy**: control inputs $\mathbf{u}_{0:T-1}$ are determined at once at time 0 as a function of x_0 and do not change online depending on x_t
- ▶ Closed-loop policy: control inputs are determined "just-in-time" as a function π_t of the current state x_t
- ▶ Open-loop control is a special case of closed-loop control that disregards the state x_t and, hence, never gives better performance
- ▶ In the absence of motion noise and in a special linear quadratic Gaussian (LQG) case, open-loop and closed-loop control have the same performance
- ▶ Open-loop control is computationally much cheaper than closed-loop control. Consider a discrete-space example with $|\mathcal{X}| = 10$ states, $|\mathcal{U}| = 10$ control inputs, planning horizon $T = 4$, and given x_0 :
	- There are $|\mathcal{U}|^T = 10^4$ open-loop strategies
	- ▶ There are $|U|(|U|^{|\mathcal{X}|})^{T-1} = |U|^{|\mathcal{X}|(T-1)+1} = 10^{31}$ closed-loop strategies
- ▶ Open-loop feedback control (OLFC) recomputes a new open-loop sequence $\textbf{u}_{t:\mathcal{T}-1}$ online, whenever a new state \textbf{x}_t is available. OLFC is guaranteed to perform better than open-loop control and is computationally more efficient than closed-loop control.

Example: Chess Strategy Optimization

- **Objective:** come up with a strategy that maximizes the chances of winning a 2 game chess match
- ▶ Possible outcomes:
	- \triangleright Win/Lose: 1 point for the winner, 0 for the loser
	- ▶ Draw: 0.5 points for each player
	- \blacktriangleright If the score is equal after 2 games, the players continue playing until one wins (sudden death)
- ▶ Playing styles:
	- ▶ Timid: draw with probability p_d and lose with probability $(1 p_d)$
	- ▶ Bold: win with probability p_w and lose with probability $(1 p_w)$
	- ▶ Assumption: $p_d > p_w$

Chess Match Model

- State x_t : 2-D vector with our and the opponent's score after the t-th game
- ▶ Control $u_t \in \mathcal{U} = \{$ timid, bold $\}$
- \blacktriangleright **Noise** w_t : score of the next game
- ▶ Since timid play does not make sense during the sudden death stage, the planning horizon is $T = 2$
- ▶ We can construct a **time-dependent motion model** P_{ijt}^u for $t \in \{0,1\}$ (shown on the next slide)

• **Cost**: minimize loss probability:
$$
-P_{win} = \mathbb{E}_{\mathbf{x}_{1:2}}\left[q(\mathbf{x}_2) + \sum_{t=0}^{1} \ell(\mathbf{x}_t, u_t)\right]
$$
, where

$$
\ell(\mathbf{x}, u) = 0 \text{ and } \mathfrak{q}(\mathbf{x}) = \begin{cases} -1 & \text{if } \mathbf{x} = (\frac{3}{2}, \frac{1}{2}) \text{ or } (2, 0) \\ -p_w & \text{if } \mathbf{x} = (1, 1) \\ 0 & \text{if } \mathbf{x} = (\frac{1}{2}, \frac{3}{2}) \text{ or } (0, 2) \end{cases}
$$

Chess Transition Probabilities

Timid Play

Bold Play

Open-Loop Chess Strategy

 \blacktriangleright There are 4 possible open-loop policies:

- 1. timid-timid: $P_{win} = p_d^2 p_w$ 2. bold-bold: $P_{win} = p_w^2 + p_w(1 - p_w)p_w + (1 - p_w)p_wp_w = p_w^2(3 - 2p_w)$ 3. bold-timid: $P_{win} = p_w p_d + p_w (1 - p_d) p_w$
- 4. timid-bold: $P_{win} = p_d p_w + (1 p_d) p_w^2$

▶ Since $p_d^2 p_w \leq p_d p_w \leq p_d p_w + (1 - p_d) p_w^2$, timid-timid is not optimal

 \blacktriangleright The best achievable winning probability is:

$$
P_{win}^{*} = \max\{p_{w}^{2}(3-2p_{w}), p_{d}p_{w} + (1-p_{d})p_{w}^{2}\}\
$$

= $p_{w}^{2} + p_{w}(1-p_{w}) \max\{2p_{w}, p_{d}\}$

► If
$$
p_w \le 0.5
$$
, then $P_{win}^* \le 0.5$
\n► For $p_w = 0.45$ and $p_d = 0.9$, $P_{win}^* = 0.43$
\n► For $p_w = 0.5$ and $p_d = 1.0$, $P_{win}^* = 0.5$

If $p_d > 2p_w$, bold-timid and timid-bold are optimal open-loop policies; otherwise bold-bold is optimal

Closed-Loop Chess Strategy

- \blacktriangleright There are 16 closed-loop policies
- ▶ Consider one option: play timid if and only if ahead (it will turn out that this is optimal)

The probability of winning is:
\n
$$
P_{win} = p_d p_w + p_w((1 - p_d)p_w + p_w(1 - p_w)) = p_w^2(2 - p_w) + p_w(1 - p_w)p_d
$$

- In the closed-loop case, we can achieve P_{win} larger than 0.5 even when p_w is less than 0.5:
	- ▶ For $p_w = 0.45$ and $p_d = 0.9$, $P_{win} = 0.5$
	- ▶ For $p_w = 0.5$ and $p_d = 1.0$, $P_{win} = 0.625$

Outline

[Markov Decision Processes](#page-1-0)

[Open-Loop vs Closed-Loop Control](#page-20-0)

[Partially Observable Models](#page-27-0)

Hidden Markov Model

Hidden Markov Model

Markov Chain with partially observable states defined by tuple $(\mathcal{X}, \mathcal{Z}, p_0, p_f, p_h)$

- \triangleright X is a discrete or continuous state space
- \triangleright $\mathcal Z$ is a discrete or continuous observation space
- \blacktriangleright $p_0(\cdot)$ is a prior pdf defined on X
- ▶ $p_f(\cdot | \mathbf{x}_t)$ is a conditional pdf defined on X for given $\mathbf{x}_t \in \mathcal{X}$ (matrix P with $P_{ij} = p_f (j | x_t = i)$ in finite-dim case)
- ▶ $p_h(\cdot | \mathbf{x}_t)$ is a conditional pdf defined on \mathcal{Z} for given $\mathbf{x}_t \in \mathcal{X}$ (matrix O with $O_{ij} := p_h(j \mid x_t = i)$ in finite-dim case)

Partially Observable Markov Decision Process

Partially Observable Markov Decision Process

Markov Decision Process with partially observable states defined by tuple $(\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_0, p_f, p_h, \mathcal{T}, \ell, \mathfrak{q}, \gamma)$

- \triangleright X is a discrete or continuous state space
- \triangleright U is a discrete or continuous control space
- \triangleright $\mathcal Z$ is a discrete or continuous observation space
- \blacktriangleright $p_0(\cdot)$ is a prior pdf defined on X
- ▶ $p_f(\cdot | \mathbf{x}_t, \mathbf{u}_t)$ is a conditional pdf defined on \mathcal{X} for given $\mathbf{x}_t \in \mathcal{X}$ and $\mathbf{u}_t \in \mathcal{U}$ (matrices P^u with elements $P^u_{ij} = p_f (j \mid x_t = i, u_t = u)$ in finite-dim case)
- ▶ $p_h(\cdot | \mathbf{x}_t)$ is a conditional pdf defined on \mathcal{Z} for given $\mathbf{x}_t \in \mathcal{X}$ (matrix O with $O_{ii} := p_h(i | x_t = i)$ in finite-dim case)
- \blacktriangleright T is a finite/infinite time horizon
- ▶ $\ell(x, u)$ is stage cost of applying control $u \in \mathcal{U}$ in state $x \in \mathcal{X}$
- \bullet q(x) is terminal cost of being in state x at time T
- $\blacktriangleright \gamma \in [0,1]$ is a discount factor

Comparison of Markov Models

- \blacktriangleright Markov Chain + Partial Observability = HMM
- \blacktriangleright Markov Chain + Control = MDP
- \triangleright Markov Chain + Partial Observability + Control = HMM + Control = MDP $+$ Partial Observability = POMDP

Bayes Filter

- \triangleright A probabilistic inference technique for summarizing information $\boldsymbol{\mathsf{i}}_t := (\mathsf{z}_{0:t}, \mathsf{u}_{0:t-1})$ about a partially observable state $\boldsymbol{\mathsf{x}}_t$
- \blacktriangleright The Bayes filter keeps track of: $\rho_{t\mid t}(\mathsf{x}_{t}) := \rho(\mathsf{x}_{t} \mid \mathsf{z}_{0:t}, \mathsf{u}_{0:t-1})$ $p_{t+1|t}(\mathbf{x}_{t+1}) := p(\mathbf{x}_{t+1} | \mathbf{z}_{0:t}, \mathbf{u}_{0:t})$
- ▶ Derived using total probability, conditional probability, and Bayes rule based on the motion and observation models of the system
- ▶ Motion model: $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \sim p_f(\cdot | \mathbf{x}_t, \mathbf{u}_t)$
- ▶ Observation model: $z_t = h(x_t, v_t) \sim p_h(\cdot | x_t)$
- **Bayes filter:** consists of **predict** and **update** steps:

$$
p_{t+1|t+1}(\mathbf{x}_{t+1}) = \underbrace{\frac{1}{p(\mathbf{z}_{t+1}|\mathbf{z}_{0:t}, \mathbf{u}_{0:t})} p_h(\mathbf{z}_{t+1} | \mathbf{x}_{t+1}) \int p_f(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t) p_{t|t}(\mathbf{x}_t) d\mathbf{x}_t}_{\text{Update}}
$$

Bayes Filter Example

Equivalence of POMDPs and MDPs

- A POMDP $(\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_0, p_f, p_h, T, \ell, q, \gamma)$ is equivalent to an MDP $(\mathcal{P}(\mathcal{X}), \mathcal{U}, p_0, p_{\psi}, \mathcal{T}, \bar{\ell}, \bar{\mathfrak{q}}, \gamma)$ such that:
	- ▶ State space: $\mathcal{P}(\mathcal{X})$ is the continuous space of pdfs over \mathcal{X}
		- ▶ If $\mathcal X$ is continuous, then $\mathcal P(\mathcal X):=\big\{\rho: \mathcal X\to \mathbb R_{\geq 0} \mid \int \rho(\mathbf x) d\mathbf x=1\big\}$

$$
\blacktriangleright \ \text{If}\ |\mathcal{X}|=N\ \text{, then}\ \mathcal{P}(\mathcal{X}):=\{\mathbf{p}\in [0,1]^N\ |\ \mathbf{1}^\top\mathbf{p}=1\}
$$

- ▶ Initial state: $p_0 \in \mathcal{P}(\mathcal{X})$
- **Motion model:** the Bayes filter $p_{t+1|t+1} = \psi(p_{t|t}, \mathbf{u}_t, \mathbf{z}_{t+1})$ acts as a motion model for $p_{t|t}$ with motion noise given by the observations z_{t+1} with density:

$$
\eta(\mathbf{z} \mid p_{t|t}, \mathbf{u}_t) := \int \int p_h(\mathbf{z} \mid \mathbf{x}_{t+1}) p_f(\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{u}_t) p_{t|t}(\mathbf{x}_t) d\mathbf{x}_t d\mathbf{x}_{t+1}
$$

Cost: the equivalent MDP stage and terminal cost functions are the expected values of the POMDP stage and terminal costs:

$$
\bar{\ell}(p, \mathbf{u}) := \int \ell(\mathbf{x}, \mathbf{u}) p(\mathbf{x}) d\mathbf{x} \qquad \bar{\mathfrak{q}}(p) := \int \mathfrak{q}(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}
$$

POMDP Finite-horizon Optimal Control

 \blacktriangleright POMDP $(\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_0, p_f, p_h, \mathcal{T}, \ell, q, \gamma)$:

$$
\min_{\pi_{0:T-1}} \mathbb{E}\left[\gamma^T \mathfrak{q}(\mathbf{x}_{\tau}) + \sum_{t=0}^{T-1} \gamma^t \ell(\mathbf{x}_t, \mathbf{u}_t)\right]
$$
\n
$$
\text{s.t. } \mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t), \qquad t = 0, \dots, T-1
$$
\n
$$
\mathbf{z}_{t+1} \sim p_h(\cdot \mid \mathbf{x}_t), \qquad t = 0, \dots, T-1
$$
\n
$$
\mathbf{u}_t \sim \pi_t(\cdot \mid \mathbf{i}_t), \qquad t = 0, \dots, T-1
$$
\n
$$
\mathbf{x}_0 \sim p_0(\cdot)
$$

Equivalent MDP $(\mathcal{P}(\mathcal{X}), \mathcal{U}, p_0, p_{\psi}, \mathcal{T}, \bar{\ell}, \bar{q}, \gamma)$ with state $p_{t|t}$:

$$
\min_{\pi_{0:T-1}} V_0^{\pi}(p_0) = \mathbb{E}\left[\gamma^{\mathsf{T}}\overline{\mathfrak{q}}(p_{\mathsf{T}|\mathsf{T}}) + \sum_{t=0}^{\mathsf{T}-1} \gamma^t \overline{\ell}(p_{t|t}, \mathbf{u}_t)\right]
$$
\n
$$
\text{s.t. } p_{t+1|t+1} = \psi(p_{t|t}, \mathbf{u}_t, \mathbf{z}_{t+1}), \ t = 0, \dots, \mathsf{T} - 1
$$
\n
$$
\mathbf{z}_{t+1} \sim \eta(\cdot \mid p_{t|t}, \mathbf{u}_t), \qquad t = 0, \dots, \mathsf{T} - 1
$$
\n
$$
u_t \sim \pi_t(\cdot \mid p_{t|t}), \qquad t = 0, \dots, \mathsf{T} - 1
$$

▶ Due to the equivalence between POMDPs and MDPs, we will focus exclusively on MDPs