
ECE276B: Planning & Learning in Robotics
Lecture 4: The Dynamic Programming Algorithm

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu

Outline

Dynamic Programming Algorithm

Example: Chess

Example: Nonlinear System Control

2

Dynamic Programming Algorithm

▶ MDP: (X ,U , p0, pf ,T , ℓ, q, γ)

▶ Control policy: a function π that maps a time step t ∈ N and a state x ∈ X
to a feasible control input u ∈ U

▶ Value function V π
t (x): expected long-term cost starting in state x at time t

and following policy π

▶ Optimal control problem:

V ∗
0 (x0) = min

π
V π
0 (x0) π∗ ∈ argmin

π
V π
0 (x0)

▶ Dynamic programming: an algorithm for computing the optimal value
function V ∗

0 (x0) and an optimal policy π∗

▶ Idea: compute the value function and policy backwards in time
▶ Generality: handles non-linear non-convex problems
▶ Complexity: polynomial in the number of states |X | and number of actions |U|
▶ Efficiency: much more efficient than a brute-force approach evaluating all

possible policies

3

Principle of Optimality

▶ Let π∗
0 , . . . π

∗
T−1 be an optimal control policy

▶ Consider a subproblem starting at time t instead of time 0:

V π
t (x) = Ext+1:T

[
γT−tq(xT) +

T−1∑
τ=t

γτ−tℓ(xτ , πτ (xτ))

∣∣∣∣ xt = x

]
▶ Principle of optimality: the truncated control policy π∗

t:T−1 is optimal for
the subproblem minπ V

π
t (x) at time t

▶ Intuition: Suppose π∗
t:T−1 were not optimal for the subproblem. Then, there

would exist a policy yielding a lower cost on at least some portion of the
state space.

4

Example: Deterministic Scheduling Problem

▶ Consider a deterministic scheduling problem where 4 operations A, B, C, D
are used to produce a product

▶ Rules: Operation A must occur before B, and C before D

▶ Cost: there is a transition cost between each two operations:

5

Example: Deterministic Scheduling Problem

▶ Dynamic programming is applied backwards in time. First, construct an
optimal solution at the last stage and then work backwards.

▶ The optimal value function at each state of the scheduling problem is
denoted with red text below the state:

6

The Dynamic Programming Algorithm

Algorithm Dynamic Programming

1: Input: MDP (X ,U , p0, pf ,T , ℓ, q, γ)
2:

3: VT (x) = q(x), ∀x ∈ X
4: for t = (T − 1) . . . 0 do
5: Qt(x,u) = ℓ(x,u) + γEx′∼pf (·|x,u) [Vt+1(x′)] , ∀x ∈ X ,u ∈ U(x)
6: Vt(x) = min

u∈U(x)
Qt(x,u), ∀x ∈ X

7: πt(x) = argmin
u∈U(x)

Qt(x,u), ∀x ∈ X

8: return policy π0:T−1 and value function V0

▶ The expected value function at x′ ∼ pf (·|x,u) is:
▶ Discrete X : Ex′∼pf (·|x,u)

[
Vt+1(x

′)
]
=

∑
x′∈X

Vt+1(x
′)pf (x

′ | x, u)

▶ Continuous X : Ex′∼pf (·|x,u)
[
Vt+1(x

′)
]
=

∫
Vt+1(x

′)pf (x
′ | x, u)dx′

7

The Dynamic Programming Algorithm

▶ At each step, all possible states x ∈ X are considered because we do not
know a priori which states need to be visited

▶ This point-wise optimization at each x ∈ X is what gives us a policy πt(x),
i.e., a function specifying a control input for every state x ∈ X

▶ Consider a problem with |X | = 10 states, |U| = 10 control inputs, planning
horizon T = 4, and given x0:
▶ There are |U|T = 104 open-loop policies

▶ There are |U||X|(T−1)+1 = 1031 closed-loop policies

▶ For each t and each state x, the DP algorithm compares |U| control inputs to
determine the optimal input. In total, there are |U||X |(T − 1) + |U| = 310
such operations.

8

Dynamic Programming Optimality

Theorem
The policy π0:T−1 and value function V0 returned by the Dynamic Programming
algorithm are optimal for the finite-horizon optimal control problem.

▶ Proof:
▶ Let V ∗

t (x) be the optimal cost for the problem with planning horizon (T − t)
that starts at time t in state x

▶ Proceed by induction

▶ Base-case: V ∗
T (x) = q(x) = VT (x)

▶ Hypothesis: Assume that for t + 1, V ∗
t+1(x) = Vt+1(x) for all x ∈ X

▶ Induction: Show that V ∗
t (x) = Vt(x) for all x ∈ X

9

Proof of Dynamic Programming Optimality

V ∗
t (xt) = min

πt:T−1

Ext+1:T |xt

[
γT−tq(xT) +

T−1∑
τ=t

γτ−tℓ(xτ , πτ (xτ))

]

= min
πt:T−1

Ext+1:T |xt

[
ℓ(xt , πt(xt)) + γT−tq(xT) +

T−1∑
τ=t+1

γτ−tℓ(xτ , πτ (xτ))

]
(1)
=== min

πt:T−1

ℓ(xt , πt(xt)) + Ext+1:T |xt

[
γT−tq(xT) +

T−1∑
τ=t+1

γτ−tℓ(xτ , πτ (xτ))

]
(2)
=== min

πt:T−1

ℓ(xt , πt(xt)) + γExt+1|xt

[
Ext+2:T |xt+1

[
γT−t−1q(xT) +

T−1∑
τ=t+1

γτ−t−1ℓ(xτ , πτ (xτ))

]]
(3)
=== min

πt

{
ℓ(xt , πt(xt)) + γExt+1|xt

[
min

πt+1:T−1

Ext+2:T |xt+1

[
γT−t−1q(xT) +

T−1∑
τ=t+1

γτ−t−1ℓ(xτ , πτ (xτ))

]]}
(4)
=== min

πt

{
ℓ(xt , πt(xt)) + γExt+1∼pf (·|xt ,πt(xt))

[
V ∗
t+1(xt+1)

]}
(5)
=== min

ut∈U(xt)

{
ℓ(xt ,ut) + γExt+1∼pf (·|xt ,ut) [Vt+1(xt+1)]

}
= Vt(xt), ∀xt ∈ X

10

Proof of Dynamic Programming Optimality

(1) Since ℓ(xt , πt(xt)) is not a function of xt+1:T

(2) Using conditional probability p(xt+1:T |xt) = p(xt+2:T |xt+1, xt)p(xt+1|xt) and
the Markov assumption

(3) The minimization can be split since the term ℓ(xt , πt(xt)) does not depend
on πt+1:T−1. The expectation Ext+1|xt and minπt+1:T

can be exchanged since
the functions πt+1:T−1 make the cost small for all initial conditions, i.e.,
independently of xt+1.

▶ (1)-(3) is the principle of optimality

(4) By definition of V ∗
t+1(·) and the motion model xt+1 ∼ pf (· | xt ,ut)

(5) By the induction hypothesis

11

Outline

Dynamic Programming Algorithm

Example: Chess

Example: Nonlinear System Control

12

Example: Chess Strategy Optimization

▶ State: xt ∈ X := {−2,−1, 0, 1, 2} – the difference between our and the
opponent’s score at the end of game t

▶ Input: ut ∈ U := {timid , bold}

▶ Motion model: with pd > pw :

pf (xt+1 = xt | ut = timid , xt) = pd

pf (xt+1 = xt − 1 | ut = timid , xt) = 1− pd

pf (xt+1 = xt + 1 | ut = bold , xt) = pw

pf (xt+1 = xt − 1 | ut = bold , xt) = 1− pw

▶ Cost: Vt(xt) = E

q(x2) +∑1
τ=t ℓ(xτ , uτ)︸ ︷︷ ︸

=0

 with q(x) =

−1 if x > 0

−pw if x = 0

0 if x < 0

13

Example: Chess Strategy Optimization

▶ Initialize: V2(x2) =

−1 if x2 > 0

−pw if x2 = 0

0 if x2 < 0

▶ Recursion: for all xt ∈ X and t = 1, 0:

Vt(xt) = min
ut∈U

{
ℓ(xt , ut) + Ext+1|xt ,ut [Vt+1(xt+1)]

}
= min

pdVt+1(xt) + (1− pd)Vt+1(xt − 1)︸ ︷︷ ︸
timid

, pwVt+1(xt + 1) + (1− pw)Vt+1(xt − 1)︸ ︷︷ ︸
bold

14

Example: Chess Strategy Optimization

▶ x1 = 1:

V1(1) = −max {pd + (1− pd)pw , pw + (1− pw)pw}
since

=====
pd>pw

= −pd − (1− pd)pw

π∗
1 (1) = timid

▶ x1 = 0:

V1(0) = −max {pdpw + (1− pd)0, pw + (1− pw)0} = −pw

π∗
1 (0) = bold

▶ x1 = −1:

V1(−1) = −max {pd0 + (1− pd)0, pwpw + (1− pw)0} = −p2w
π∗
1 (−1) = bold

15

Example: Chess Strategy Optimization

▶ x0 = 0:

V0(0) = −max {pdV1(0) + (1− pd)V1(−1), pwV1(1) + (1− pw)V1(−1)}
= −max

{
pdpw + (1− pd)p

2
w , pw (pd + (1− pd)pw) + (1− pw)p

2
w

}
= −pdpw − (1− pd)p

2
w − (1− pw)p

2
w

π∗
0 (0) = bold

▶ Optimal policy: play timid if and only if ahead in the score

16

Outline

Dynamic Programming Algorithm

Example: Chess

Example: Nonlinear System Control

17

Example: Deterministic Nonlinear System

▶ Consider a deterministic system with state xt ∈ R, control
ut := [at , bt] ∈ R2 and motion model:

xt+1 = f (xt ,ut) = atxt + bt

▶ Calculate the optimal value function V ∗
0 (x) at time t = 0 and an optimal

policy π∗
t (x) for t ∈ {0, 1}, that minimize the total cost:

x2 + a21 + a20 + b21 + b20

▶ Planning horizon: T = 2

▶ Terminal cost: q(x) = x

▶ Stage cost: ℓ(x ,u) = ∥u∥22 = a2 + b2

▶ Discount factor: γ = 1

18

Example: Deterministic Nonlinear System

▶ Dynamic programming algorithm at t = T = 2:

V ∗
2 (x2) = q(x2) = x2, ∀x2 ∈ R

▶ At t = 1:

V ∗
1 (x1) = min

u1
{ℓ(x1,u1) + V ∗

2 (f (x1,u1))} = min
a1,b1

{
a21 + b21 + a1x1 + b1

}
▶ Obtain minimum by setting gradient with respect to u1 to zero:

∂

∂a1

(
a21 + b2

1 + a1x1 + b1
)
= 2a1 + x1 = 0

∂

∂b1

(
a21 + b2

1 + a1x1 + b1
)
= 2b1 + 1 = 0

leading to a∗1 = − 1
2
x1 and b∗

1 = − 1
2

▶ To confirm this is a minimizer, check that Hessian matrix

[
2 0
0 2

]
is positive

definite

19

Example: Deterministic Nonlinear System

▶ At t = 1:

▶ Optimal policy at t = 1: π∗
1 (x1) = −1

2

[
x1
1

]
▶ Substituting the optimal policy into the value function:

V ∗
1 (x1) =

(
−1

2
x1

)2

+

(
−1

2

)2

+

(
−1

2
x1

)
x1 +

(
−1

2

)
= −1

4
x2
1 − 1

4

▶ At t = 0:

V ∗
0 (x0) = min

u0
{ℓ(x0,u0) + V ∗

1 (f (x0,u0))}

= min
a0,b0

{
a20 + b20 −

1

4
(a0x0 + b0)

2 − 1

4

}
= min

a0,b0

{(
1− 1

4
x20

)
a20 +

3

4
b20 −

1

2
a0b0x0 −

1

4

}

20

Example: Deterministic Nonlinear System

▶ At t = 0:
▶ Obtain minimum by setting gradient with respect to u0 to zero:

∂

∂a0

((
1− 1

4
x2
0

)
a20 +

3

4
b2
0 −

1

2
a0b0x0 −

1

4

)
= 2a0 −

1

2
a0x

2
0 − 1

2
b0x0 = 0

∂

∂b0

((
1− 1

4
x2
0

)
a20 +

3

4
b2
0 −

1

2
a0b0x0 −

1

4

)
=

3

2
b0 −

1

2
a0x0 = 0

⇒ 1

2

[
4− x2

0 −x0
−x0 3

] [
a0
b0

]
=

[
0
0

]
▶ For x0 ̸= ±

√
3, the Hessian matrix 1

2

[
4− x2

0 −x0
−x0 3

]
is positive definite and

a∗0 = b∗
0 = 0.

▶ For x0 = ±
√
3, a∗0 = ±

√
3b∗

0 . Hence we can still choose b∗
0 = a∗0 = 0.

▶ Optimal policy at t = 0: π∗
0 (x0) =

[
0
0

]
▶ Substituting the optimal policy into the value function: V ∗

0 (x0) = −1

4

21

	Dynamic Programming Algorithm
	Example: Chess
	Example: Nonlinear System Control

