
ECE276B: Planning & Learning in Robotics
Lecture 5: Deterministic Shortest Path

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu

Outline

Deterministic Shortest Path

Label Correcting Algorithm

2

Deterministic Shortest Path (DSP) Problem

▶ Consider a graph with vertex set V, edge set E ⊆ V × V, and edge weights
C := {cij ∈ R ∪ {∞} | (i , j) ∈ E} where cij denotes the cost of transition
from vertex i to vertex j

▶ Objective: find a shortest path from a start node s to an end node τ

3

Deterministic Shortest Path (DSP) Problem

▶ Path: a sequence i1:q := (i1, i2, . . . , iq) of nodes ik ∈ V

▶ Path length: sum of edge weights along the path: J i1:q =
∑q−1

k=1 cik ,ik+1

▶ All paths from s ∈ V to τ ∈ V: Ps,τ := {i1:q | ik ∈ V, i1 = s, iq = τ}

▶ Objective: find a path that has the min length from node s to node τ :

dist(s, τ) = min
i1:q∈Ps,τ

J i1:q i∗1:q ∈ argmin
i1:q∈Ps,τ

J i1:q

▶ Assumption: There are no negative cycles in the graph, i.e., J i1:q ≥ 0, for all
i1:q ∈ Pi,i and all i ∈ V

▶ Solving DSP problems:
▶ The finite-state DSP problem is equivalent to a finite-horizon finite-state

deterministic optimal control (DOC) problem

▶ Apply dynamic programming or label correcting (variant of a “forward” DPA)
to the equivalent DOC problem

4

Deterministic Optimal Control (DOC) Problem

▶ DOC Problem:
▶ optimal control problem with no disturbances, wt ≡ 0

▶ closed-loop control does not offer any advantage over open-loop control

▶ Given x0 ∈ X , construct an optimal control sequence u0:T−1 such that:

min
u0:T−1

q(xT) +
T−1∑
t=0

ℓ(xt ,ut)

s.t. xt+1 = f (xt ,ut), t = 0, . . . ,T − 1

xt ∈ X , ut ∈ U

▶ The DOC problem can be solved via Dynamic Programming

5

Equivalence of DOC and DSP Problems (DOC to DSP)

▶ Construct a graph representation of the DOC problem

▶ Start node: s := (0, x0) given state x0 ∈ X at time 0

▶ Vertex set: represent every state x ∈ X at time t by node i := (t, x):

V := {s} ∪

(
T⋃
t=1

{(t, x) | x ∈ X}

)
∪ {τ}

▶ End node: an artificial node τ with arc length ci,τ from node i = (t, x) to τ
equal to the terminal cost q(x) of the DOC problem

6

Equivalence of DOC and DSP Problems (DOC to DSP)
▶ The edge weight between two nodes i = (t, x) and j = (t ′, x′) is finite,

cij < ∞, only if t ′ = t + 1 and x′ = f (x,u) for some u ∈ U .

▶ The edge weight between two nodes i = (t, x) and j = (t + 1, x′) is the
smallest stage cost between x and x′:

C :=

c(t,x),(t+1,x′) = min
u∈U(x)

s.t. x′=f (x,u)

ℓ(x,u)

⋃{

c(T ,x),τ = q(x)
}

7

Equivalence of DOC and DSP Problems (DSP to DOC)

▶ Consider a DSP problem with vertices V, edges E , edge weights C, start node
s ∈ V and terminal node τ ∈ V

▶ No negative cycles assumption: an optimal path need not have more than
|V| elements

▶ We can formulate the DSP problem as DOC with T := |V| − 1 stages:
▶ State space X = V and control space: U = V

▶ Motion model: xt+1 = f (xt , ut) :=

{
xt if xt = τ

ut otherwise

▶ Stage cost and terminal cost:

ℓ(x , u) :=

{
0 if x = τ

cx,u otherwise
q(x) :=

{
0 if x = τ

∞ otherwise

8

Dynamic Programming Applied to DSP
▶ Due to the DOC equivalence, a DSP problem can be solved via dynamic

programming

Algorithm Deterministic Shortest Path via Dynamic Programming

1: Input: vertices V, start s ∈ V, goal τ ∈ V, and costs cij for i , j ∈ V
2: T = |V| − 1
3: VT (τ) = VT−1(τ) = . . . = V0(τ) = 0
4: VT (i) =∞, ∀i ∈ V \ {τ}
5: VT−1(i) = ci,τ , ∀i ∈ V \ {τ}
6: πT−1(i) = τ, ∀i ∈ V \ {τ}
7: for t = (T − 2), . . . , 0 do
8: Qt(i , j) = ci,j + Vt+1(j), ∀i ∈ V \ {τ}, j ∈ V
9: Vt(i) = minj∈V Qt(i , j), ∀i ∈ V \ {τ}

10: πt(i) ∈ argmin
j∈V

Qt(i , j), ∀i ∈ V \ {τ}

11: if Vt(i) = Vt+1(i), ∀i ∈ V \ {τ} then
12: break

▶ Vt(i) is the optimal cost-to-go from node i to node τ in at most T − t steps

▶ Upon termination, V0(s) = J i
∗
1:q = dist(s, τ)

▶ The algorithm can be terminated early if Vt(i) = Vt+1(i), ∀i ∈ V \ {τ}
9

Forward Dynamic Programming Applied to DSP

▶ The DSP problem is symmetric: a shortest path from s to τ is also a shortest
path from τ to s with all arc directions flipped

▶ This view leads to a forward dynamic programming algorithm

▶ V F
t (j) is the optimal cost-to-arrive to node j from node s in at most t steps

Algorithm Deterministic Shortest Path via Forward Dynamic Programming

1: Input: vertices V, start s ∈ V, goal τ ∈ V, and costs cij for i , j ∈ V
2: T = |V| − 1
3: V F

0 (s) = V F
1 (s) = . . .V F

T (s) = 0

4: V F
0 (j) =∞, ∀j ∈ V \ {s}

5: V F
1 (j) = cs,j , ∀j ∈ V \ {s}

6: for t = 2, . . . ,T do

7: V F
t (j) = mini∈V

(
ci,j + V F

t−1(i)
)
, ∀j ∈ V \ {s}

8: if V F
t (i) = V F

t−1(i), ∀i ∈ V \ {s} then
9: break

10

Example: Forward DP Algorithm

▶ s = 1 and τ = 5

▶ T = |V| − 1 = 6

1 2 3 4 5 6 7
V F
0 0 ∞ ∞ ∞ ∞ ∞ ∞

V F
1 0 5 3 ∞ ∞ 5 ∞

V F
2 0 5 3 15 13 5 4

V F
3 0 5 3 15 12 5 4

V F
4 0 5 3 15 12 5 4

▶ Since V F
t (i) = V F

t−1(i), ∀i ∈ V at
time t = 4, the algorithm can
terminate early, i.e., without
computing V F

5 (i) and V F
6 (i)

11

Outline

Deterministic Shortest Path

Label Correcting Algorithm

12

Label Correcting Methods for the DSP Problem

▶ The (backward) Dynamic Programming algorithm applied to the DSP
problem computes the shortest paths from all nodes to the goal τ

▶ The forward Dynamic Programming algorithm computes the shortest paths
from the start s to all nodes

▶ Often many nodes are not part of the shortest path from s to τ

▶ Label correcting (LC) algorithms for the DSP problem do not necessarily
visit every node of the graph

▶ LC algorithms prioritize visited nodes i using the cost-to-arrive V F
t (i)

▶ Key ideas in LC algorithms:
▶ Label gi : estimate of optimal cost-to-arrive from s to each visited i ∈ V
▶ Label correction: each time gi is reduced, the labels gj of the children of i

are corrected: gj = gi + cij

▶ OPEN List: set of nodes that can potentially be part of the shortest path to τ

13

Label Correcting Algorithm

Algorithm Label Correcting Algorithm

1: OPEN ← {s}, gs = 0, gi =∞ for all i ∈ V \ {s}
2: while OPEN is not empty do
3: Remove i from OPEN
4: for j ∈ Children(i) do
5: if (gi + cij) < gj and (gi + cij) < gτ then ▷ Only when cij ≥ 0 for all i , j ∈ V
6: gj = gi + cij
7: Parent(j) = i
8: if j ̸= τ then
9: OPEN = OPEN ∪{j}

Theorem
Consider a finite-state deterministic shortest path problem. If there exists at least
one finite cost path from s to τ , then the Label Correcting algorithm terminates
with gτ = dist(s, τ), the shortest path length from s to τ . Otherwise, the
algorithm terminates with gτ = ∞.

14

Label Correcting Algorithm

15

Label Correcting Algorithm Proof

1. Claim: The LC algorithm terminates in a finite number of steps
▶ Each time a node j enters OPEN, its label is decreased and becomes equal to

the length of some path from s to j .

▶ The number of distinct paths from s to j whose length is smaller than any
given number is finite (no negative cycles assumption)

▶ There can only be a finite number of label reductions for each node j

▶ Since the LC algorithm removes nodes from OPEN in line 3, the algorithm will
eventually terminate

2. Claim: The LC algorithm terminates with gτ = ∞ if there is no finite cost
path from s to τ
▶ A node i ∈ V is in OPEN only if there is a finite cost path from s to i

▶ If there is no finite cost path from s to τ , then for any node i in OPEN
ci,τ = ∞; otherwise there would be a finite cost path from s to τ

▶ Since ci,τ = ∞ for every i in OPEN, line 5 ensures that gτ is never updated
and remains ∞

16

Label Correcting Algorithm Proof

3. Claim: Assume cij ≥ 0 (special case). The LC algorithm terminates with
gτ = dist(s, τ) if there is at least one finite cost path from s to τ .
▶ Let i∗1:q ∈ Ps,τ be a shortest path from s to τ with i∗1 = s, i∗q = τ , and length

J i∗1:q = dist(s, τ).

▶ By the principle of optimality, i∗1:m is a shortest path from s to i∗m with length
J i∗1:m = dist(s, i∗m) for any m = 1, . . . , q − 1.

▶ Suppose that gτ > J i∗1:q = dist(s, τ) (proof by contradiction).

▶ Since gτ only decreases in the algorithm and every cost is nonnegative,
gτ > J i∗1:m = dist(s, i∗m) for all m = 2, . . . , q − 1.

▶ Thus, i∗q−1 does not enter OPEN with gi∗q−1
= J i∗1:q−1 = dist(s, i∗q−1) since if it

did, then the next time i∗q−1 is removed from OPEN, gτ would be updated to

J i∗1:q = dist(s, i∗q−1).

▶ Similarly, i∗q−2 does not enter OPEN with gi∗q−2
= J i∗1:q−2 = dist(s, i∗q−2).

▶ Continuing this way, i∗2 will not enter OPEN with gi∗2 = J i∗1:2 = cs,i∗2 but this
happens at the first iteration of the algorithm, which is a contradiction.

17

Example: Deterministic Scheduling Problem

▶ Consider a deterministic scheduling problem where 4 operations A, B, C, D
are used to produce a product

▶ Rules: Operation A must occur before B, and C before D

▶ Cost: there is a transition cost between each two operations:

18

Example: Deterministic Scheduling Problem

▶ The state transition diagram of the scheduling problem can be simplified in
order to reduce the number of nodes

▶ This results in a DOC problem with T = 4 and X = {I.C., A, C, AB, AC,CA,
CD, ABC, ACD or CAD, CAB or ACB, CDA, DONE}

▶ The DOC problem can be converted into a DSP problem

19

Example: Deterministic Scheduling Problem

▶ We can map the DOC
problem to a DSP problem
and apply the LC algorithm

Iteration Remove OPEN gs g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 gτ
0 – s 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 s 1, 2 0 5 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 2 1, 5, 6 0 5 3 ∞ ∞ 7 9 ∞ ∞ ∞ ∞ ∞
3 6 1, 5, 10 0 5 3 ∞ ∞ 7 9 ∞ ∞ ∞ 12 ∞
4 10 1, 5 0 5 3 ∞ ∞ 7 9 ∞ ∞ ∞ 12 14
5 5 1, 8, 9 0 5 3 ∞ ∞ 7 9 ∞ 11 9 12 14
6 9 1, 8 0 5 3 ∞ ∞ 7 9 ∞ 11 9 12 10
7 8 1 0 5 3 ∞ ∞ 7 9 ∞ 11 9 12 10
8 1 3, 4 0 5 3 7 8 7 9 ∞ 11 9 12 10
9 4 3 0 5 3 7 8 7 9 ∞ 11 9 12 10
10 3 – 0 5 3 7 8 7 9 ∞ 11 9 12 10

▶ Keeping track of the parents when a child node is added to OPEN, we can
determine a shortest path (s, 2, 5, 9, τ) with total cost 10, which corresponds
to (C ,CA,CAB,CABD) in the original problem

20

Label Correcting Algorithm Variations

▶ The freedom to select which node to remove from OPEN at each iteration
gives rise to several different label correcting methods:

▶ Breadth-first search (BFS) (Bellman-Ford Algorithm): “first-in, first-out”
policy with OPEN implemented as a queue.

▶ Depth-first search (DFS): ”last-in, first-out” policy with OPEN implemented
as a stack; often saves memory.

▶ Best-first search (Dijkstra’s Algorithm): the node with minimum label
i∗ = argmin

j∈OPEN
gj is removed, which guarantees that a node will enter OPEN at

most once. OPEN is implemented as a priority queue.

▶ D’Esopo-Pape: removes nodes at the top of OPEN. If a node has been in
OPEN before it is inserted at the top; otherwise at the bottom.

▶ Small-label-first (SLF): removes nodes at the top of OPEN. If gi ≤ gTOP

node i is inserted at the top; otherwise at the bottom.

▶ Large-label-last (LLL): the top node is compared with the average of OPEN
and if it is larger, it is placed at the bottom of OPEN; otherwise it is removed.

21

A* Algorithm

▶ The A* algorithm is a modification to the LC algorithm for special case
cij ≥ 0 in which the requirement for admission to OPEN is strengthened:

from gi + cij < gτ to gi + cij + hj < gτ

where hj is a non-negative lower bound on the optimal cost-to-go dist(j , τ)
from node j to τ , known as a heuristic function

▶ The more stringent criterion can reduce the number of iterations required by
the LC algorithm

▶ A heuristic function is constructed using special knowledge about the
problem. The more accurately hj estimates the optimal cost-to-go dist(j , τ)
from j to τ , the more efficient the A* algorithm becomes.

22

	Deterministic Shortest Path
	Label Correcting Algorithm

