
ECE276B: Planning & Learning in Robotics
Lecture 9: Sampling-Based Motion Planning

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu

Outline

Search-Based vs Sampling-Based Planning

Probabilistic Roadmap

Rapidly Exploring Random Tree

RRT*

2

Motion Planning Problem

▶ Configuration space: C ; Obstacle space: Cobs ; Free space: Cfree

▶ Start state: xs ∈ Cfree ; Goal state: xτ ∈ Cfree

▶ Path: continuous function ρ : [0, 1]→ C ; Set of all paths: P

▶ Feasible path: continuous function ρ : [0, 1]→ Cfree such that ρ(0) = xs and
ρ(1) = xτ ; Set of all feasible paths: Ps,τ

▶ Motion planning problem: Given free space Cfree , obstacle space Cobs , start
state xs ∈ Cfree , goal state xτ ∈ Cfree , and cost function J : P → R≥0, find a
feasible path ρ∗ such that:

J(ρ∗) = min
ρ∈Ps,τ

J(ρ)

or report failure if no such path exists.

3

Search-Based Planning
▶ Generates a graph by systematic discretization of Cfree

▶ Searches the graph for a feasible path, guaranteeing to find one if it exists
(resolution complete)

▶ Provides finite-time suboptimality bounds on the solution

▶ Can interleave graph construction and search, i.e., nodes added only when
necessary

▶ Computationally expensive in high dimensions

4

Sampling-Based Planning
▶ Generates a graph by random sampling in Cfree

▶ Searches the graph for a path, guaranteeing that the probability of finding
one, if it exists, approaches 1 as the number of iterations →∞
(probabilistically complete)

▶ Provides asymptotic suboptimality bounds on the solution

▶ Can interleave graph construction and search, i.e., samples added only when
necessary

▶ Requires less memory than search-based planning in high dimensions

5

Primitive Procedures for Sampling-Based Motion Planning
▶ Sample: returns iid samples from C

▶ SampleFree: returns iid samples from Cfree

▶ Nearest: given a graph G = (V ,E) with V ⊂ C and a point x ∈ C ,
returns a vertex v ∈ V that is closest to x:

Nearest((V ,E), x) := argmin
v∈V

∥x− v∥

▶ Near: given a graph G = (V ,E) with V ⊂ C , a point x ∈ C , and r > 0,
returns the vertices in V that are within a distance r from x:

Near((V ,E), x, r) := {v ∈ V | ∥x− v∥ ≤ r}

▶ Steerϵ: given points x, y ∈ C and ϵ > 0, returns a point z ∈ C that
minimizes ∥z− y∥ while remaining within ϵ from x:

Steerϵ(x, y) := argmin
z:∥z−x∥≤ϵ

∥z− y∥

▶ CollisionFree: given points x, y ∈ C , returns True if the line segment
between x and y lies in Cfree and False otherwise.

6

Outline

Search-Based vs Sampling-Based Planning

Probabilistic Roadmap

Rapidly Exploring Random Tree

RRT*

7

Probabilistic Roadmap

Step 1: Construction Phase: Build a graph G
(roadmap) aiming to make it accessible
from any point in Cfree

▶ Nodes: randomly sampled valid
configurations in Cfree

▶ Edges: added between samples that are
easy to connect with simple local control
(e.g., follow straight line)

Step 2: Query Phase: Given start xs ∈ Cfree and goal xτ ∈ Cfree , connect them
to the graph G and search G for a shortest path from xs to xτ

▶ Pros and Cons:
▶ Simple and effective in high dimensions

▶ Difficulties with narrow passages

▶ Can result in suboptimal paths; only asymptotic guarantees on optimality

▶ Enables multi-query planning: different start and goal configurations in
the same environment

8

Step 1: Construction Phase

9

Step 1: Construction Phase

Algorithm PRM (construction phase)

1: V ← ∅; E ← ∅
2: for i = 1, . . . , n do
3: xrand ← SampleFree()
4: V ← V ∪ {xrand}
5: for x ∈ Near((V ,E), xrand , r) do ▷ May use k nearest nodes
6: if (not G .same component(xrand , x)) and CollisionFree(xrand , x) then
7: E ← E ∪ {(xrand , x), (x, xrand)}
8: return G = (V ,E)

▶ G .same component(xrand , x)
▶ ensures that x and xrand are in different connected components of G
▶ every connection decreases the number of connected components in G
▶ efficient implementation using a union-find algorithm
▶ may be replaced by G .vertex degree(x) < K for some fixed K (e.g., K = 15) if

it is important to generate multiple alternative paths

10

Asymptotically Optimal Probabilistic Roadmap

▶ To achieve an asymptotically optimal PRM, the connection radius r should
decrease such that the average number of connections attempted from a
roadmap vertex is proportional to log(n):

r∗ > 2

(
1 +

1

d

)1/d (
Vol(Cfree)

Vol(Unit d-ball)

)1/d (
log(n)

n

)1/d

▶ S. Karaman and E. Frazzoli, “Incremental Sampling-based Algorithms for
Optimal Motion Planning,” IJRR, 2010

Algorithm PRM* (construction phase)

1: V ← {xs} ∪ {SampleFree()}ni=1; E ← ∅
2: for v ∈ V do
3: for x ∈ Near((V ,E), v, r∗) \ {v} do
4: if CollisionFree(v, x) then
5: E ← E ∪ {(v, x), (x, v)}
6: return G = (V ,E)

11

Outline

Search-Based vs Sampling-Based Planning

Probabilistic Roadmap

Rapidly Exploring Random Tree

RRT*

12

Rapidly Exploring Random Tree (RRT)

▶ Rapidly Exploring Random Tree (RRT):
▶ Introduced by Steven LaValle in 1998
▶ One of the most popular planning techniques
▶ Many, many, many extensions and variants (articulated robots, kinematics,

dynamics, differential constraints)
▶ There exist incremental versions of RRTs that reuse a previously constructed

tree when replanning in response to map updates

▶ PRM:
▶ graph constructed from random samples that can be searched for a path

whenever a start node xs and goal node xτ are specified
▶ well-suited for repeated planning between different pairs of xs and xτ

(multi-query planning)

▶ RRT:
▶ tree constructed from random samples with root xs and grown until xτ is

contained
▶ well-suited for single-shot planning between a fixed pair of xs and xτ

(single-query planning)

13

Rapidly Exploring Random Tree (RRT)
▶ Construction Phase: sample a new configuration xrand ∈ Cfree , find the

nearest neighbor xnearest in G , connect them if straight line is collision-free:

▶ (Variant) if xnearest lies on an existing edge, then split the edge:

▶ (Variant) if there is an obstacle, travel up to the obstacle boundary as far as
allowed by a collision detection algorithm

14

Rapidly Exploring Random Tree (RRT)

▶ Starting with an initial configuration xs build a tree until the goal
configuration xτ is part of it

Algorithm RRT

1: V ← {xs}; E ← ∅
2: for i = 1 . . . n do
3: xrand ← SampleFree()
4: xnearest ← Nearest((V ,E), xrand)
5: xnew ← Steerϵ(xnearest , xrand)
6: if CollisionFree(xnearest , xnew) then
7: V ← V ∪ {xnew}; E ← E ∪ {(xnearest , xnew)}
8: return G = (V ,E)

15

Rapidly Exploring Random Tree (RRT)
▶ RRT with ϵ =∞ (called Rapidly Exploring Dense Tree (RDT)):

▶ RRT with ϵ <∞

16

Rapidly Exploring Random Tree (RRT)

▶ What about the goal?
▶ occasionally (e.g., every 100 iterations) choose the goal xτ as a sample and

check if it can be connected to the tree

▶ RRT implementation details:
▶ Need distance function to find the nearest configurations in C (e.g., distance

along the surface of a torus for a 2 link manipulator)

▶ A controller to track a line in C-space might be hard to design. We do not
have to connect the configurations all the way. Instead, a local steering
function with small step size ϵ can be used to get closer to the second
configuration.

▶ To avoid constructing the obstacle space Cobs explicitly, we need to do
collision checking for the robot body.

17

Example: RRT Algorithm

▶ Start node xs
▶ Goal node xτ
▶ Gray obstacles

18

Example: RRT Algorithm

▶ Sample xrand ∈ Cfree

▶ Steer from xs towards xrand by a fixed distance ϵ to get x1

▶ If the segment from xs to x1 is collision-free, insert x1 into the tree

19

Example: RRT Algorithm

▶ Sample xrand ∈ Cfree

▶ Find the closest node xnearest to xrand

▶ Steer from xnearest towards xrand by a fixed distance ϵ to get x2

▶ If the segment from xnearest to x2 is collision-free, insert x2 into the tree

20

Example: RRT Algorithm

▶ Sample xrand ∈ Cfree

▶ Find the closest node xnearest to xrand

▶ Steer from xnearest towards xrand by a fixed distance ϵ to get x3

▶ If the segment from xnearest to x3 is collision-free, insert x3 into the tree

21

Example: RRT Algorithm

▶ Sample xrand ∈ Cfree

▶ Find the closest node xnearest to xrand

▶ Steer from xnearest towards xrand by a fixed distance ϵ to get x3

▶ If the segment from xnearest to x3 is collision-free, insert x3 into the tree

22

Example: RRT Algorithm

▶ Continue until a node that is a distance ϵ from the goal is generated

▶ Either terminate the algorithm or search for additional feasible paths

23

Sampling in RRTs
▶ The vanilla RRT algorithm provides uniform coverage of space

▶ Alternatively, the growth may be biased by the largest Voronoi region

24

Sampling in RRTs

▶ Goal-biased sampling: with probability (1− pg), xrand is chosen as a uniform
sample in Cfree and with probability pg , xrand = xτ

(a) pg = 0 (b) pg = 0.1 (c) pg = 0.5

25

Handling Robot Dynamics with Steerϵ()

▶ Steerϵ() extends the tree towards a given random sample xrand

▶ Consider a car-like robot with non-holonomic constraints (no sideways
motion) in SE (2). Obtaining a feasible path from xrand = (0, 0, 90◦) to
xnearest = (1, 0, 90◦) is as challenging as the original planning problem

▶ Steerϵ() resolves this by not requiring the motion to get all the way to
xrand . Instead, apply the best control input for a fixed duration to obtain
xnew and a dynamically feasible trajectory to it

▶ See: Y. Li, Z. Littlefield, K. Bekris, “Asymptotically optimal sampling-based
kinodynamic planning,” The International Journal of Robotics Research,
2016.

26

Example: 5 DOF Kinodynamic Planning for a Car

27

Bug Traps

▶ Growing two trees, one from start and one for goal, often has better
performance in practice

28

Bi-Directional RRT

Algorithm Bi-Directional RRT

1: Va ← {xs}; Ea ← ∅; Vb ← {xτ}; Eb ← ∅
2: for i = 1 . . . n do
3: xrand ← SampleFree()
4: xnearest ← Nearest((Va,Ea), xrand)
5: xnew ← Steer(xnearest , xrand)
6: if xnew ̸= xnearest then
7: Va ← Va ∪ {xnew}; Ea ← {(xnearest , xnew), (xnew , xnearest)}
8: x′nearest ← Nearest((Vb,Eb), xnew)
9: x′new ← Steer(x′nearest , xnew)

10: if x′new ̸= x′nearest then
11: Vb ← Vb ∪ {x′new}; Eb ← {(x′nearest , x′new), (x′new , x′nearest)}
12: if x′new = xnew then return SOLUTION

13: if |Vb| < |Va| then Swap((Va,Ea), (Vb,Eb))

14: return FAILURE

29

RRT-Connect (J. Kuffner and S. LaValle, ICRA, 2000)

▶ Bi-directional tree + attempts to connect the two trees at every iteration

Algorithm RRT-Connect

1: Va ← {xs}; Ea ← ∅; Vb ← {xτ}; Eb ← ∅
2: for i = 1 . . . n do
3: xrand ← SampleFree()
4: if not Extend((Va,Ea), xrand) = Trapped then
5: if Connect((Vb,Eb), xnew) = Reached then ▷ xnew was just added to (Va,Ea)
6: return Path((Va,Ea), (Vb,Eb))

7: Swap((Va,Ea), (Vb,Eb))

8: return Failure
9: function Extend((V ,E), x)

10: xnearest ← Nearest((V ,E), x)
11: xnew ← Steerϵ(xnearest , x)
12: if CollisionFree(xnearest , xnew) then
13: V ← {xnew}; E ← {(xnearest , xnew), (xnew , xnearest)}
14: if xnew = x then return Reached else return Advanced

15: return Trapped

16: function Connect((V ,E), x)
17: repeat status ← Extend((V ,E), x) until status ̸= Advanced
18: return status

30

Example: Single RRT-Connect Iteration

31

Example: Single RRT-Connect Iteration

▶ One tree is grown to a random target

32

Example: Single RRT-Connect Iteration

▶ The new node becomes a target for the other tree

33

Example: Single RRT-Connect Iteration

▶ Determine the nearest node to the target

34

Example: Single RRT-Connect Iteration

▶ Try to add a new collision-free branch

35

Example: Single RRT-Connect Iteration

▶ If successful, keep extending the branch

36

Example: Single RRT-Connect Iteration

▶ If successful, keep extending the branch

37

Example: Single RRT-Connect Iteration

▶ If successful, keep extending the branch

38

Example: Single RRT-Connect Iteration

▶ If the branch reaches all the way to the target, a feasible path is found!

39

Example: Single RRT-Connect Iteration

▶ If the branch reaches all the way to the target, a feasible path is found!

40

Example: RRT-Connect

41

Example: RRT-Connect

42

Example: RRT-Connect

43

Why Are RRTs So Popular?

▶ The algorithm is very simple once the main subroutines are implemented:
▶ Random sample generator
▶ Nearest neighbor search
▶ Collision checker
▶ Steer function

▶ Pros:
▶ A sparse graph requires little memory and computation
▶ RRTs find feasible paths quickly in practice
▶ Can add heuristic function, e.g., bias the sampling towards the goal

(see Gammell et al., BIT*, IJRR, 2020)

▶ Cons:
▶ Paths may be suboptimal and require smoothing as a post-processing step
▶ Finding a path in highly constrained environments (e.g., maze) is challenging

44

Path Smoothing

▶ Start with x1 = xs

▶ Make connections to subsequent points on
the path x2, x3, x4, · · ·

▶ When a connection collides with obstacles,
add the previous point to the smoothed
path

▶ Continue smoothing from this point on

45

Search-Based vs Sampling-Based Planning

▶ RRT:
▶ A sparse graph requires little memory and computation
▶ Computed paths may be suboptimal and require smoothing

▶ Weighted A*:
▶ Systematic exploration may require a lot of memory and computation
▶ Returns a path with (sub)optimality guarantees

46

Outline

Search-Based vs Sampling-Based Planning

Probabilistic Roadmap

Rapidly Exploring Random Tree

RRT*

47

RRT: Probabilistic Completeness but No Optimality

▶ RRT and RRT-Connect are probabilistically complete: the probability that
a feasible path will be found, if one exists, approaches 1 exponentially as the
number of samples approaches infinity

▶ Assuming Cfree is connected, bounded, and open, for any x ∈ Cfree ,
lim

N→∞
P(∥x−xnearest∥< ϵ) = 1, where xnearest is the closest node to x in G

▶ RRT is not optimal: the probability that RRT converges to an optimal
solution, as the number of samples approaches infinity, is zero under
reasonable technical assumptions (S. Karaman, E. Frazzoli, RSS’10)

▶ Problem with RRT: once we build a tree, we never modify it

▶ RRT* (S. Karaman and E. Frazzoli, “Incremental Sampling-based
Algorithms for Optimal Motion Planning,” IJRR, 2010)
▶ RRT + rewiring of the tree to ensure asymptotic optimality

▶ Contains two steps: extend (similar to RRT) and rewire (new)

48

RRT*: Extend Step
▶ Generate a new potential node xnew identically to RRT

▶ Instead of finding the closest node in the tree, find all nodes within a
neighborhood N of radius min{r∗, ϵ} where

r∗ > 2

(
1 +

1

d

)1/d (
Vol(Cfree)

Vol(Unit d-ball)

)1/d (
log |V |
|V |

)(1/d)

▶ Let xnearest = argmin
xnear∈N

g(xnear) + c(xnear , xnew) be the node in N on the

currently known shortest path from xs to xnew

▶ V ← V ∪ {xnew}

▶ E ← E ∪ {(xnearest , xnew)}

▶ Set the label of xnew to:

g(xnew) = g(xnearest) + c(xnearest , xnew)

49

RRT*: Rewire Step

▶ Check all nodes xnear ∈ N to see if re-routing through xnew reduces the path
length (label correcting!)

▶ If g(xnew) + c(xnew , xnear) < g(xnear), then remove the edge between xnear
and its parent and add a new edge between xnear and xnew

50

RRT*

Algorithm RRT*

1: V ← {xs}; E ← ∅
2: for i = 1 . . . n do
3: xrand ← SampleFree()
4: xnearest ← Nearest((V ,E), xrand)
5: xnew ← Steer(xnearest , xrand)
6: if CollisionFree(xnearest , xnew) then
7: Xnear ← Near((V ,E), xnew ,min{r∗, ϵ})
8: V ← V ∪ {xnew}
9: cmin ← Cost(xnearest) + Cost(Line(xnearest , xnew))

10: for xnear ∈ Xnear do ▷ Extend along a minimum-cost path
11: if CollisionFree(xnear , xnew) then
12: if Cost(xnear) + Cost(Line(xnear , xnew)) < cmin then
13: xmin ← xnear
14: cmin ← Cost(xnear) + Cost(Line(xnear , xnew))

15: E ← E ∪ {(xmin, xnew}
16: for xnear ∈ Xnear do ▷ Rewire the tree
17: if CollisionFree(xnew , xnear) then
18: if Cost(xnew) + Cost(Line(xnew , xnear)) < Cost(xnear) then
19: xparent ← Parent(xnear)
20: E ← (E \ {(xparent , xnear)}) ∪ {(xnew , xnear)}
21: return G = (V ,E)

51

RRT vs RRT*

(a) RRT (b) RRT*

▶ Same nodes in the tree, only the edge connections are different. Notice how
RRT* edges are almost straight lines (optimal paths).

52

RRT vs RRT*

(a) RRT (b) RRT*

▶ Same nodes in the tree, only the edge connections are different. Notice how
RRT* edges are almost straight lines (optimal paths).

53

	Search-Based vs Sampling-Based Planning
	Probabilistic Roadmap
	Rapidly Exploring Random Tree
	RRT*

