ECE276B: Planning & Learning in Robotics Lecture 9: Sampling-Based Motion Planning

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

[Search-Based vs Sampling-Based Planning](#page-1-0)

[Probabilistic Roadmap](#page-6-0)

[Rapidly Exploring Random Tree](#page-11-0)

[RRT*](#page-46-0)

Motion Planning Problem

- ▶ Configuration space: C; Obstacle space: C_{obs} ; Free space: C_{free}
- ▶ Start state: $\mathbf{x}_s \in \mathcal{C}_{free}$; Goal state: $\mathbf{x}_{\tau} \in \mathcal{C}_{free}$
- **▶ Path: continuous function** ρ : [0, 1] \rightarrow C; Set of all paths: \mathcal{P}
- ► Feasible path: continuous function $\rho : [0, 1] \to C_{\text{free}}$ such that $\rho(0) = \mathbf{x}_s$ and $\rho(1) = \mathbf{x}_{\tau}$; Set of all feasible paths: $\mathcal{P}_{s,\tau}$
- \triangleright Motion planning problem: Given free space C_{free} , obstacle space C_{obs} , start state $x_s \in C_{free}$, goal state $x_\tau \in C_{free}$, and cost function $J: \mathcal{P} \to \mathbb{R}_{\geq 0}$, find a feasible path ρ^* such that:

$$
J(\rho^*) = \min_{\rho \in \mathcal{P}_{s,\tau}} J(\rho)
$$

or report failure if no such path exists.

Search-Based Planning

- \triangleright Generates a graph by systematic discretization of C_{free}
- ▶ Searches the graph for a feasible path, guaranteeing to find one if it exists (resolution complete)
- ▶ Provides finite-time suboptimality bounds on the solution
- ▶ Can interleave graph construction and search, i.e., nodes added only when necessary
- \triangleright Computationally expensive in high dimensions

Sampling-Based Planning

- \triangleright Generates a graph by random sampling in C_{free}
- ▶ Searches the graph for a path, guaranteeing that the probability of finding one, if it exists, approaches 1 as the number of iterations $\rightarrow \infty$ (probabilistically complete)
- ▶ Provides asymptotic suboptimality bounds on the solution
- ▶ Can interleave graph construction and search, i.e., samples added only when necessary
- ▶ Requires less memory than search-based planning in high dimensions

Primitive Procedures for Sampling-Based Motion Planning

- \triangleright SAMPLE: returns iid samples from C
- \triangleright SAMPLEFREE: returns iid samples from C_{free}
- ▶ NEAREST: given a graph $G = (V, E)$ with $V \subset C$ and a point $x \in C$, returns a vertex $v \in V$ that is closest to x:

$$
\mathrm{NEAREST}\big((V,E),\mathbf{x}\big):=\underset{\mathbf{v}\in V}{\arg\min}\left\|\mathbf{x}-\mathbf{v}\right\|
$$

▶ NEAR: given a graph $G = (V, E)$ with $V \subset C$, a point $x \in C$, and $r > 0$, returns the vertices in V that are within a distance r from x :

$$
\mathrm{NEAR}((V,E),\mathbf{x},r):=\{\mathbf{v}\in V\mid \|\mathbf{x}-\mathbf{v}\|\leq r\}
$$

▶ STEER_{ϵ}: given points $x, y \in C$ and $\epsilon > 0$, returns a point $z \in C$ that minimizes $||z - y||$ while remaining within ϵ from x:

$$
\text{STEER}_\epsilon(\bm{x},\bm{y}):=\underset{\bm{z}: \|\bm{z}-\bm{x}\|\leq \epsilon}{\text{arg min}}\|\bm{z}-\bm{y}\|
$$

▶ COLLISIONFREE: given points $\mathbf{x}, \mathbf{y} \in C$, returns TRUE if the line segment between x and y lies in C_{free} and FALSE otherwise.

Outline

[Search-Based vs Sampling-Based Planning](#page-1-0)

[Probabilistic Roadmap](#page-6-0)

[Rapidly Exploring Random Tree](#page-11-0)

[RRT*](#page-46-0)

Probabilistic Roadmap

- Step 1: **Construction Phase**: Build a graph G (roadmap) aiming to make it accessible from any point in C_{free}
	- ▶ Nodes: randomly sampled valid configurations in C_{free}
	- Edges: added between samples that are easy to connect with simple local control (e.g., follow straight line)

Step 2: Query Phase: Given start $x_s \in C_{free}$ and goal $x_\tau \in C_{free}$, connect them to the graph G and search G for a shortest path from x_s to x_τ

▶ Pros and Cons:

- \triangleright Simple and effective in high dimensions
- Difficulties with narrow passages
- Can result in suboptimal paths; only asymptotic guarantees on optimality
- ▶ Enables multi-query planning: different start and goal configurations in the same environment

Step 1: Construction Phase

Step 1: Construction Phase

 \blacktriangleright G.same_component(\mathbf{x}_{rand} , \mathbf{x})

- **EXECUTE:** ensures that **x** and \mathbf{x}_{rand} are in different connected components of G
- \triangleright every connection decreases the number of connected components in G
- \blacktriangleright efficient implementation using a union-find algorithm
- **may** be replaced by G.vertex degree(x) $\lt K$ for some fixed K (e.g., $K = 15$) if it is important to generate multiple alternative paths

Asymptotically Optimal Probabilistic Roadmap

 \triangleright To achieve an asymptotically optimal PRM, the connection radius r should decrease such that the average number of connections attempted from a roadmap vertex is proportional to $log(n)$:

$$
r^* > 2\left(1 + \frac{1}{d}\right)^{1/d} \left(\frac{Vol(C_{free})}{Vol(Unit d-ball)}\right)^{1/d} \left(\frac{\log(n)}{n}\right)^{1/d}
$$

▶ S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," IJRR, 2010

Algorithm PRM* (construction phase)

1: $V \leftarrow {\mathbf{x}_s} \cup {\text{SAMPLEFree}}({\mathbf{x}_i}^n)$ $i = 1; E \leftarrow \emptyset$ 2: for $v \in V$ do 3: for $x \in \text{NeAR}((V, E), v, r^*) \setminus \{v\}$ do 4: if COLLISIONFREE(v, x) then 5: $E \leftarrow E \cup \{(\mathbf{v}, \mathbf{x}), (\mathbf{x}, \mathbf{v})\}$ 6: return $G = (V, E)$

Outline

[Search-Based vs Sampling-Based Planning](#page-1-0)

[Probabilistic Roadmap](#page-6-0)

[Rapidly Exploring Random Tree](#page-11-0)

[RRT*](#page-46-0)

▶ Rapidly Exploring Random Tree (RRT):

- ▶ Introduced by Steven LaValle in 1998
- \triangleright One of the most popular planning techniques
- ▶ Many, many, many extensions and variants (articulated robots, kinematics, dynamics, differential constraints)
- ▶ There exist incremental versions of RRTs that reuse a previously constructed tree when replanning in response to map updates

▶ PRM:

- ▶ graph constructed from random samples that can be searched for a path whenever a start node x_s and goal node x_{τ} are specified
- \triangleright well-suited for repeated planning between different pairs of x_s and x_{τ} (multi-query planning)

▶ RRT:

- **Example 1** tree constructed from random samples with root x_s and grown until x_τ is contained
- \triangleright well-suited for single-shot planning between a fixed pair of x_s and x_{τ} (single-query planning)

▶ Construction Phase: sample a new configuration $x_{rand} \in C_{free}$, find the nearest neighbor $\mathbf{x}_{nearest}$ in G , connect them if straight line is collision-free:
 $\frac{\mathbf{x}_{near}}{x_{near}}$

 \triangleright (Variant) if $x_{nearest}$ lies on an existing edge, then split the edge:

▶ (Variant) if there is an obstacle, travel up to the obstacle boundary as far as allowed by a collision detection algorithm

 \triangleright Starting with an initial configuration x_s build a tree until the goal configuration x_{τ} is part of it

▶ RRT with $\epsilon = \infty$ (called Rapidly Exploring Dense Tree (RDT)):

- \blacktriangleright What about the goal?
	- \triangleright occasionally (e.g., every 100 iterations) choose the goal x_{τ} as a sample and check if it can be connected to the tree
- \blacktriangleright RRT implementation details:
	- \triangleright Need distance function to find the nearest configurations in C (e.g., distance along the surface of a torus for a 2 link manipulator)
	- ▶ A controller to track a line in C-space might be hard to design. We do not have to connect the configurations all the way. Instead, a local steering function with small step size ϵ can be used to get closer to the second configuration.
	- \blacktriangleright To avoid constructing the obstacle space C_{obs} explicitly, we need to do collision checking for the robot body.

- \blacktriangleright Start node x_s
- \blacktriangleright Goal node x_{τ}
- ▶ Gray obstacles

- ▶ Sample $\mathbf{x}_{rand} \in \mathcal{C}_{free}$
- ▶ Steer from x_s towards x_{rand} by a fixed distance ϵ to get x_1
- If the segment from x_s to x_1 is collision-free, insert x_1 into the tree

- ▶ Sample $\mathbf{x}_{rand} \in \mathcal{C}_{free}$
- \blacktriangleright Find the closest node $\mathbf{x}_{nearest}$ to \mathbf{x}_{rand}
- ▶ Steer from $\mathbf{x}_{nearest}$ towards \mathbf{x}_{rand} by a fixed distance ϵ to get \mathbf{x}_2
- If the segment from $x_{nearest}$ to x_2 is collision-free, insert x_2 into the tree

- ▶ Sample $\mathbf{x}_{rand} \in \mathcal{C}_{free}$
- \blacktriangleright Find the closest node $\mathbf{x}_{nearest}$ to \mathbf{x}_{rand}
- ▶ Steer from $x_{nearest}$ towards x_{rand} by a fixed distance ϵ to get x_3
- If the segment from $x_{nearest}$ to x_3 is collision-free, insert x_3 into the tree

- ▶ Sample $\mathbf{x}_{rand} \in \mathcal{C}_{free}$
- \blacktriangleright Find the closest node $\mathbf{x}_{nearest}$ to \mathbf{x}_{rand}
- ▶ Steer from $\mathbf{x}_{nearest}$ towards \mathbf{x}_{rand} by a fixed distance ϵ to get \mathbf{x}_3
- If the segment from $x_{nearest}$ to x_3 is collision-free, insert x_3 into the tree

- ▶ Continue until a node that is a distance ϵ from the goal is generated
- ▶ Either terminate the algorithm or search for additional feasible paths

Sampling in RRTs

▶ The vanilla RRT algorithm provides uniform coverage of space

▶ Alternatively, the growth may be biased by the largest Voronoi region

Sampling in RRTs

▶ Goal-biased sampling: with probability $(1 - p_g)$, \mathbf{x}_{rand} is chosen as a uniform sample in C_{free} and with probability p_g , $\mathbf{x}_{rand} = \mathbf{x}_{\tau}$

(a) $p_g = 0$ (b) $p_g = 0.1$ (c) $p_g = 0.5$

Handling Robot Dynamics with Steer $_{\epsilon}$ ()

- \triangleright STEER_{ϵ}() extends the tree towards a given random sample \mathbf{x}_{rand}
- ▶ Consider a car-like robot with non-holonomic constraints (no sideways motion) in $SE(2)$. Obtaining a feasible path from $\mathbf{x}_{rand} = (0, 0, 90^{\circ})$ to $\mathbf{x}_{nearest} = (1, 0, 90^{\circ})$ is as challenging as the original planning problem
- ▶ STEER_{ϵ}() resolves this by not requiring the motion to get all the way to x_{rand} . Instead, apply the best control input for a fixed duration to obtain x_{new} and a dynamically feasible trajectory to it
- ▶ See: Y. Li, Z. Littlefield, K. Bekris, "Asymptotically optimal sampling-based kinodynamic planning," The International Journal of Robotics Research, 2016.

Example: 5 DOF Kinodynamic Planning for a Car

Bug Traps

▶ Growing two trees, one from start and one for goal, often has better performance in practice

Bi-Directional RRT

Algorithm Bi-Directional RRT

1: $V_2 \leftarrow \{x_s\}$; $E_2 \leftarrow \emptyset$; $V_b \leftarrow \{x_{\tau}\}$; $E_b \leftarrow \emptyset$ 2: for $i = 1 \ldots n$ do $3: x_{\text{rand}} \leftarrow \text{SAMPLEFREE}()$ 4: $\mathbf{x}_{nearest} \leftarrow \text{NEAREST}((V_a, E_a), \mathbf{x}_{rand})$
5: $\mathbf{x}_{new} \leftarrow \text{STEER}(\mathbf{x}_{nearest}, \mathbf{x}_{rand})$ 5: $\mathbf{x}_{new} \leftarrow \text{STEER}(\mathbf{x}_{nearest}, \mathbf{x}_{rand})$
6: **if** $\mathbf{x}_{new} \neq \mathbf{x}_{nearest}$ then if $x_{new} \neq x_{nearest}$ then 7: $V_a \leftarrow V_a \cup \{ \mathbf{x}_{new} \}; E_a \leftarrow \{ (\mathbf{x}_{nearest}, \mathbf{x}_{new}), (\mathbf{x}_{new}, \mathbf{x}_{nearest}) \}$ $8:$ $\gamma_{\text{nearest}}' \leftarrow \text{Nearest}((V_b, \hat{E_b}), \mathsf{x}_{\text{new}})$ $9:$ $\gamma'_{\text{new}} \leftarrow \text{STEER}(\mathbf{x}'_{\text{nearest}}, \mathbf{x}_{\text{new}})$ 10: if $x'_{new} \neq x'_{nearest}$ then 11: $V_b \leftarrow V_b \cup \{ \mathbf{x}'_{new} \}; E_b \leftarrow \{ (\mathbf{x}'_{nearest}, \mathbf{x}'_{new}), (\mathbf{x}'_{new}, \mathbf{x}'_{nearest}) \}$ 12: **if** $x'_{new} = x_{new}$ then return SOLUTION 13: if $|V_b| < |V_a|$ then $\text{SWAP}((V_a, E_a), (V_b, E_b))$ 14: return FAILURE

RRT-Connect (J. Kuffner and S. LaValle, ICRA, 2000)

 \triangleright Bi-directional tree $+$ attempts to connect the two trees at every iteration

Algorithm RRT-Connect

1: $V_a \leftarrow \{x_s\}$; $E_a \leftarrow \emptyset$; $V_b \leftarrow \{x_{\tau}\}$; $E_b \leftarrow \emptyset$ 2: for $i = 1 \ldots n$ do 3: $\mathbf{x}_{rand} \leftarrow \text{SAMPLEFREE}()$
4: **if not** EXTEND $((V, F_2))$ if not $\text{EXTEND}((V_a, E_a), x_{rand}) = \text{Trapped then}$ 5: if CONNECT $((V_b, E_b), x_{new})$ = Reached then $\triangleright x_{new}$ was just added to (V_a, E_a) 6: return $\text{PATH}((V_a, E_a), (V_b, E_b))$ 7: $SWAP((V_a, E_a), (V_b, E_b))$ 8: return Failure 9: function $\text{EXTEND}((V, E), x)$ 10: $\mathbf{x}_{nearest} \leftarrow \text{NEAREST}((V, E), \mathbf{x})$ 11: $\mathbf{x}_{new} \leftarrow \text{STER}_{\epsilon}(\mathbf{x}_{nearest}, \mathbf{x})$ 12: if COLLISIONFREE($\mathbf{x}_{nearest}$, \mathbf{x}_{new}) then
13: $V \leftarrow {\mathbf{x}_{new}}$: $E \leftarrow {\mathbf{x}_{new}}$ $V \leftarrow {\mathbf{x}_{new}}$; $E \leftarrow {\mathbf{x}_{nearest}, \mathbf{x}_{new}, (\mathbf{x}_{new}, \mathbf{x}_{nearest})}$ 14: if $x_{new} = x$ then return Reached else return Advanced 15: return Trapped 16: function CONNECT $((V, E), x)$ 17: repeat status \leftarrow EXTEND($(V, E), x$) until status \neq Advanced 18: return status

▶ One tree is grown to a random target

▶ The new node becomes a target for the other tree

▶ Determine the nearest node to the target

▶ If successful, keep extending the branch

▶ If successful, keep extending the branch

 \blacktriangleright If successful, keep extending the branch

▶ If the branch reaches all the way to the target, a feasible path is found!

▶ If the branch reaches all the way to the target, a feasible path is found!

Example: RRT-Connect

Example: RRT-Connect

Example: RRT-Connect

Why Are RRTs So Popular?

▶ The algorithm is very simple once the main subroutines are implemented:

- ▶ Random sample generator
- ▶ Nearest neighbor search
- \blacktriangleright Collision checker
- \blacktriangleright Steer function

▶ Pros:

- ▶ A sparse graph requires little memory and computation
- \triangleright RRTs find feasible paths quickly in practice
- ▶ Can add heuristic function, e.g., bias the sampling towards the goal (see Gammell et al., BIT*, IJRR, 2020)

\triangleright Cons:

- ▶ Paths may be suboptimal and require smoothing as a post-processing step
- \triangleright Finding a path in highly constrained environments (e.g., maze) is challenging

Path Smoothing

- \triangleright Start with $x_1 = x_s$
- ▶ Make connections to subsequent points on the path x_2, x_3, x_4, \cdots
- \triangleright When a connection collides with obstacles, add the previous point to the smoothed path
- ▶ Continue smoothing from this point on

Search-Based vs Sampling-Based Planning

- \triangleright RRT:
	- ▶ A sparse graph requires little memory and computation
	- \triangleright Computed paths may be suboptimal and require smoothing
- \blacktriangleright Weighted A*:
	- ▶ Systematic exploration may require a lot of memory and computation
	- \blacktriangleright Returns a path with (sub)optimality guarantees

Outline

[Search-Based vs Sampling-Based Planning](#page-1-0)

[Probabilistic Roadmap](#page-6-0)

[Rapidly Exploring Random Tree](#page-11-0)

[RRT*](#page-46-0)

RRT: Probabilistic Completeness but No Optimality

▶ RRT and RRT-Connect are **probabilistically complete**: the probability that a feasible path will be found, if one exists, approaches 1 exponentially as the number of samples approaches infinity

▶ Assuming C_{free} is connected, bounded, and open, for any $x \in C_{free}$, $\lim\limits_{N\to\infty}\mathbb{P}(\|\mathbf{x}-\mathbf{x}_{nearest}\|<\epsilon)=1,$ where $\mathbf{x}_{nearest}$ is the closest node to \mathbf{x} in G

- \triangleright RRT is **not optimal**: the probability that RRT converges to an optimal solution, as the number of samples approaches infinity, is zero under reasonable technical assumptions (S. Karaman, E. Frazzoli, RSS'10)
- ▶ Problem with RRT: once we build a tree, we never modify it
- ▶ RRT* (S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," IJRR, 2010)
	- \triangleright RRT + rewiring of the tree to ensure asymptotic optimality
	- ▶ Contains two steps: extend (similar to RRT) and rewire (new)

RRT*: Extend Step

- \triangleright Generate a new potential node \mathbf{x}_{new} identically to RRT
- ▶ Instead of finding the closest node in the tree, find all nodes within a neighborhood $\cal N$ of radius min $\{r^*,\epsilon\}$ where

$$
r^* > 2\left(1+\frac{1}{d}\right)^{1/d} \left(\frac{Vol(\mathcal{C}_{free})}{Vol(\text{Unit d-ball})}\right)^{1/d} \left(\frac{\log |V|}{|V|}\right)^{(1/d)}
$$

In Let $\mathbf{x}_{nearest} = \arg \min g(\mathbf{x}_{near}) + c(\mathbf{x}_{near}, \mathbf{x}_{new})$ be the node in N on the $x_{\text{near}} \in \mathcal{N}$ currently known shortest path from x_s to x_{new}

 $\blacktriangleright \bigvee \leftarrow \bigvee \cup \{x_{new}\}\$ \blacktriangleright $E \leftarrow E \cup \{(\mathbf{x}_{nearest}, \mathbf{x}_{new})\}$ \triangleright Set the label of x_{new} to: $g(\mathbf{x}_{new}) = g(\mathbf{x}_{nearest}) + c(\mathbf{x}_{nearest}, \mathbf{x}_{new})$

RRT*: Rewire Step

- ▶ Check all nodes $\mathbf{x}_{near} \in \mathcal{N}$ to see if re-routing through \mathbf{x}_{new} reduces the path length (label correcting!)
- If $g(\mathbf{x}_{new}) + c(\mathbf{x}_{new}, \mathbf{x}_{near}) < g(\mathbf{x}_{near})$, then remove the edge between \mathbf{x}_{near} and its parent and add a new edge between x_{near} and x_{new}

RRT*

Algorithm RRT*

1: $V \leftarrow \{x_s\}$: $E \leftarrow \emptyset$ 2: for $i = 1 \ldots n$ do 3: $\mathbf{x}_{rand} \leftarrow \text{SampleFree}()$
4: $\mathbf{x}_{nearest} \leftarrow \text{NEABEST}(V)$ 4: $x_{nearest} \leftarrow \text{NEAREST}((V, E), x_{rand})$
5: $x_{new} \leftarrow \text{STEER}(x_{nearest}, x_{rand})$ 5: $\mathbf{x}_{new} \leftarrow \text{STER}(\mathbf{x}_{nearest}, \mathbf{x}_{rand})$
6: **if** COLLISIONFREE($\mathbf{x}_{nearest}, \mathbf{x}_{new}$ if COLLISIONFREE($\mathbf{x}_{nearest}$, \mathbf{x}_{new}) then 7: $X_{near} \leftarrow \text{NEAR}((V, E), \mathbf{x}_{new}, \min\{r^*, \epsilon\})$ 8: $V \leftarrow V \cup \{x_{new}\}$
9: $C_{min} \leftarrow \text{COST}(x_{new})$ 9: $c_{min} \leftarrow \text{COST}(\mathbf{x}_{nearest}) + \text{COST}(\text{Line}(\mathbf{x}_{nearest}, \mathbf{x}_{new}))$
10: **for** $\mathbf{x}_{next} \in \mathbf{X}_{next}$ **do** $▶$ Extend along a minimum-cost path 11: **if** COLLISIONFREE(\mathbf{x}_{near} , \mathbf{x}_{new}) then 12: **if** $\text{COST}(\mathbf{x}_{near}) + \text{COST}(\text{Line}(\mathbf{x}_{near}, \mathbf{x}_{new})) < c_{min}$ then
13: $\mathbf{x}_{min} \leftarrow \mathbf{x}_{near}$ $X_{min} \leftarrow X_{near}$ 14: $c_{min} \leftarrow \text{COST}(\mathbf{x}_{near}) + \text{COST}(\text{Line}(\mathbf{x}_{near}, \mathbf{x}_{new}))$ 15: $E \leftarrow E \cup \{(\mathbf{x}_{min}, \mathbf{x}_{new}\})$
16: for $\mathbf{x}_{next} \in X_{next}$ do \mathbf{f} for $\mathbf{x}_{\text{near}} \in X_{\text{near}}$ do \triangleright Rewire the tree 17: **if** COLLISIONFREE(\mathbf{x}_{new} , \mathbf{x}_{near}) then 18: if $\text{Cosr}(\mathbf{x}_{new}) + \text{Cosr}(\text{Line}(\mathbf{x}_{new}, \mathbf{x}_{near})) < \text{Cosr}(\mathbf{x}_{near})$ then 19: $x_{parent} \leftarrow \text{PARENT}(x_{near})$

20: $E \leftarrow (E \setminus \{(x_{parent}, x_{near})$ $E \leftarrow (E \setminus \{(\mathbf{x}_{parent}, \mathbf{x}_{near})\}) \cup \{(\mathbf{x}_{new}, \mathbf{x}_{near})\}$ 21: return $G = (V, E)$

RRT vs RRT*

▶ Same nodes in the tree, only the edge connections are different. Notice how RRT* edges are almost straight lines (optimal paths).

RRT vs RRT*

▶ Same nodes in the tree, only the edge connections are different. Notice how RRT* edges are almost straight lines (optimal paths).