ECE276B: Planning & Learning in Robotics
Lecture 12: Model-Free Control

Nikolay Atanasov

natanasov@ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu

Outline

Model-Free Policy Iteration

Model-Free Generalized Policy Iteration

» Model-based case: Our main tool for stochastic infinite-horizon problems
over MDPs with known models is Generalized Policy Iteration (GPI):

> Policy Evaluation: Given 7w, compute V™:
VW(X) = é(X, 7'I'(X)) + ryEX’NPf('\X,W(X)) [VW(X/)] , Vxe X
» Policy Improvement: Given V™ obtain a new policy 7’:

7'(x) € argmin {£(x,u) + VEy wp (1w [VT(X)]}, VxEX
ueld

Q™ (x,u)

» Model-free case: Is it still possible to implement the GPI algorithm?

> Policy Evaluation: Given 7, MC or TD learning from Lecture 11 can be used
to estimate V™ or Q™

> Policy Improvement: Computing 7’ based on V™ requires access to £(x, u),
pr(X" | x,u) but based on Q™ can be done without knowing £(x,u), pr(x’,x,u):

7' (x) € arg min Q" (x, u)
uel

Policy Evaluation (Recap)

>

>

Given T, iterate B, to compute V™ or Q™ via Dynamic Programming (DP),
Temporal Difference (TD), or Monte Carlo (MC)

DP needs the models £(x;,u;), pr(Xet1|Xt, ur) while MC and TD are
model-free and use samples x;, u;, £;, X;11 instead

V™ Policy Evaluation:

DP = Br[V](x:) = €(xe, (X)) + VB s o (Ixesm(x)) [V (Xe41)]
TD : B:[V](xt) = V(x:) + a[l(x¢,ue) + YV (xe41) — V(x¢)]

MC : B.[V](x:) = V(x¢) + « >

’ka(xwk’ Ueyk) + WT_tq(XT) - V(Xt)]
k=0

> Q™ Policy Evaluation:

DP : Br[Q](xe,ue) = £(Xe, ue) + VEx, s mpr(-xesue) [Q(Xe1, T(Xe41))]
TD : B[Q](x¢, ur) = Q(x¢,ue) + a[l(xe, ue) + 7 Q(Xex1, up1) — Q(Xe, ug)]

T—t-1
MC : B [Q](x¢, ur) = Q(xs,u:) +

VUi veri) + 77 Fa(xT) — Q(xe, ”t)}
k=0

Model-Free Policy Improvement

> If Q™, instead of V™, is estimated via MC or TD, then the policy
improvement step can be implemented model-free, i.e., can compute
miny Q@™ (x, u) without knowing the motion model pf or the stage cost ¢

» Since Q™(x,u) computed by MC or TD is an approximation to the true Q
function, we might not get an improved policy with respect to the true Q
function:

>

>

picking the “best” control according to the current estimate of @™ might not
be the actual best control

if a deterministic policy 7(x) is used for Evaluation and Improvement, we will
observe returns for only one of the possible controls at each state and might
not visit many states; estimating Q™ will not be possible at those never-visited
states and controls

Example

» There are two doors in front of you

» You open the left door and get reward 0
((left) =0

» You open the right door and get reward +1
((right) = —1

» You open the right door and get reward +3
{(right) = =3

» You open the right door and get reward +2 “Behind one door Is tenure - behind the other
F(rlght) — _2 is flipping burgers at McDonald's.”

» Which door is the best long-term choice?

Model-Free Control

» Two ideas to ensure that we do not commit to wrong controls due to
approximation error in @™ too early and continue exploring the state and
control space:

1. Exploring Starts: in each episode p(k) ~ T, choose initial state-control pairs
randomly with non-zero probability among all possible pairs in X x U

2. e-Soft Policy: a stochastic policy 7(u|x) under which every control has a
non-zero probability of being chosen and hence every reachable state will have
non-zero probability of being encountered

> Deterministic Stationary Policy: function 7 : X — U

> Stochastic Stationary Policy: function 7 : X — P(U), where P(U) is the
set of probability density functions on U:

m(ujx) >0 /u7r(u|x)du =1

Outline

Monte Carlo Policy lteration

First-Visit MC Policy Iteration with Exploring Starts

Algorithm MC Policy Iteration with Exploring Starts
1: Initialize: Q(x,u),w(x) for all x € X and u € U

2: loop

3 Choose (xo,up) € X x U randomly > exploring starts
4: Generate an episode p = Xo, Ug, X1, U1, ...,X7T_1,Us—1,XT from 7w

5: for each x,u in p do

6: L < return following the first occurrence of x,u

7: Q(x,u) + Q(x,u) + a (L — Q(x,u))

8: for each x in p do

9:

m(x) < arg min Q(x, u)

e-Greedy Exploration

>

>

An alternative to exploring starts

To ensure exploration it must be possible to encounter all control U controls
with non-zero probability

Assume |U| < 0o

€

e-Soft Policy: stochastic policy that picks each u with at least i
probability:

m(ulx) =P(us =u | x =x) > Vxe X,ueld

€
|
e-Greedy Policy: an e-soft policy that picks the best control according to

Q@(x, u) in the policy improvement step but ensures that all other controls are

selected with at least ﬁ probability:

l—e+ g if u = argmin Q(x,u’)
m(u|x)=P(us =u|x; =x) = w'eU

] otherwise

10

Bellman Equations with a Stochastic Policy

» Value function of a stochastic policy

V7 (%) := Eugxy u1.50,... [Z Y (xe,u) | X0 = x]
=0

= EuNTr(~|x) [ﬁ(x, u) + 7EX'NPf('\X,u) [VW(X/)”
= Eyor(x) [QT(x,u)]

» Q function of a stochastic policy n:

QT (x,u) ;== L4(x,u) + Ey, .. [Z Y (xe,ue) | X0 = X, ug = u]

t=1
= E(X, U) + ’YEX/NP,'(-‘X,u),u’wﬂ'(~|x/) [Qﬂ(xlv U/)]

11

e-Greedy Policy Improvement

Theorem: e-Greedy Policy Improvement

For any e-soft policy ™ with associated @™, the e-greedy policy 7’ with respect to
Q@™ is an improvement, i.e., V™ (x) < V™ (x) for all x € X

» Proof:

By () [QT(x,0)] = D /(U | x) Q" (x,)

v’ eU
=l ZQ”xu)+(1—e)m|nQ”(xu)
uEU
< ZQ”xu)—i—(l—e)ZWQ”(x,u)
u'eld ueld
Z (u | x)Q™(x,u) = V7 (x)
cu

12

e-Greedy Policy Improvement

» Then, similarity to the policy improvement theorem for deterministic policies,
for all x € X:

V7(x) = Eugorr () [Q7 (X, 10)]
= IEuo~7f'('|x) V(X’ uo) + VExlNPfHXvuO) [Vﬂ(xl)”

> Eygrorn () (X, U0) + YEx mpr (-0 [Buymor (o) [@T (%1, un)]]]
= Eypnrr(x) [€(%; u0) + YExy uy [€(x1, u1) + 7Ex, V™ (x2)]]

xo—x]—V”()

3

v

poNT(l v K(xﬁ U
t=0

13

First-Visit MC Policy lteration with ¢-Greedy Improvement

Algorithm First-Visit MC Policy lteration with e-Greedy Improvement

1: Init: Q(x,u), w(u|x) (e-soft policy) for all x € X and u € U
2: loop
3: Generate an episode p := Xo, Ug, X1, U1, ...,X7T_1,Us—1, X7 from
for each x,u in p do

L < return following the first occurrence of x,u

Q(x,u) + Q(x,u) + a (L — Q(x,u))
for each x in p do

U™ « argminyey Q(x, u)

ﬁ/{;f‘ g fued”

m(ufx) < { E ifugur

Tul

o N o9

©

Outline

Temporal Difference Policy Iteration

15

Temporal-Difference Control

» TD prediction has several advantages over MC prediction:
» works with incomplete episodes

» can perform online updates to Q™ after every transition
» TD estimate of Q™ has lower variance than the MC one
» TD in the policy iteration algorithm:
» use TD for policy evaluation
> can update Q(x,u) after every transition within an episode

> use an e-greedy policy for policy improvement because we still need to trade
off exploration and exploitation

16

TD Policy Iteration with ¢-Greedy Improvement (SARSA)

> SARSA: estimates Q™ using TD updates after every S;, A¢, Ry, Se41, At 41
transition:

Q(x¢,ue) = Q(x¢,ue) + [l(xe, u) + YQ(Xeg1, Upr1) — Q(Xe, U]

» Ensures exploration via an e-greedy policy in the policy improvement step

Algorithm SARSA
1 Init: Q(x,u) for all x € X and all u e U

2: loop

3: 7 < e-greedy policy derived from @

4 Generate episode p := xg, Ug, X1, U1, ..., XT_1,Us_1,XT from 7
5: for (x,u,x’,u’) € p do

6 Q(x,u) + Q(x,u) + a[f(x,u) + yQ(x',u') — Q(x, u)]

17

Convergence of Model-Free Policy Iteration

> Greedy in the Limit with Infinite Exploration (GLIE):

» Number of visits to all state-control pairs approach infinity, i.e., all
state-control pairs are explored infinitely many times: limi_ oo Nk(x,u) = oo

> The e-greedy policy converges to a greedy policy wrt u™ € arg min Q(x, u)
ueld

» Example: e-greedy is GLIE with ¢, = %

]. - + €7k .f — * 1 .f p— *
me(u | x) = g THEH im me(u|x)=4. "4TY
ek if u#u* k—00 0 ifu#u*

Theorem: Convergence of Model-Free Policy Iteration

Both MC Policy Iteration and SARSA converge to the optimal action-value
function, Q(x,u) — Q*(x, u), as the number of episodes k — oo as long as:

> the sequence of e-greedy policies 7 (u | x) is GLIE,

» the sequence of step sizes ay is Robbins-Monro.

18

On-Policy vs Off-Policy Learning

» On-policy prediction: estimate V™ or Q™ using episodes from 7
» Off-policy prediction: estimate V™ or Q™ using episodes from p

» On-policy learning methods:

> evaluate or improve a policy 7 that is used to both make decisions and collect
experience

> require well-designed exploration functions

» empirically successful with function approximation

» Off-policy learning methods:

> evaluate or improve a policy 7 that is different from the policy p used to
generate data

» can use an effective exploration policy p to generate data while learning an

optimal policy 7

can learn from observing other agents

can re-use experience from old policies 71, m2, ..., Tk—1

can learn about multiple policies while following one policy

causes theoretical challenges with function approximation

vVvyyvyy

19

Importance Sampling for Off-Policy Learning

» Off-policy learning: use episodes generated from p to evaluate 7

» The stage costs obtained from p need to be re-weighted according to the
likelihood that the same states would be encountered by 7

> Importance Sampling: estimates the expectation of a function ¢(x) with
respect to a probability density function p(x) by computing a re-weighted
expectation over a different probability density g(x):

v po 6] = [p(:)6(x)dx

= / q(X)ZEi;Z(X)dX = Exvq() [p(x)g(x)}

Requires that g(x) # 0 when p(x) # 0.

20

Importance Sampling for Off-Policy MC Learning

» To use returns generated from p to evaluate 7 via MC, re-weight the
long-term cost L; via importance-sampling corrections along the whole
episode:

pr/m — TUelxe) (uealxes) | m(uroalxra),

‘ p(uelxe) po(uesr|Xet1) plur—1lx7-1)

» This requires that p should not be zero for any of state-control pairs along
the episode from 7

» Update the value estimate towards the corrected long-term cost L?/”:
V™ (xc) ¢ V(%) + (L':/“ - V’T(xt))

» Note: importance sampling in MC can dramatically increase variance

21

Importance Sampling for Off-Policy TD Learning

» To use returns generated from y to evaluate 7 via TD, re-weight the TD
target £(x,u) + yV/(x’) by importance sampling:

V(%) < V7 (xc) + (m (0(xe, ue) + YV (Xes1)) — V“(xt)>

» Importance sampling in TD is much lower variance than in MC and the
policies need to be similar (i.e., p should not be zero when 7 is non-zero)
over a single step only

22

Off-Policy TD Control without Importance Sampling

» Q-Learning (Watkins, 1989): one of the early breakthroughs in
reinforcement learning was the development of an off-policy TD algorithm
that does not use importance sampling

» Q-Learning approximates B.[Q](x, u) directly using samples:

Q(x¢, up) + Q(x¢,ue) + a [£(xe,up) + VIrlnei{‘{ Q(xt11,u) — Q(xt,uy)

» The learned Q function approximates Q* regardless of the policy being
followed!

Theorem: Convergence of Q-Learning

Q-Learning converges almost surely to @* assuming all state-control pairs
continue to be updated and the sequence of step sizes ay is Robbins-Monro.

» C. J. Watkins and P. Dayan. "Q-learning,” Machine learning, 1992.

23

Q-Learning: Off-Policy TD Learning of Q*(x,u)

Algorithm Q-Learning
1: Init: Q(x,u) for all x € X and all u e U

2: loop

3 7 < e-greedy policy derived from @ > m can be arbitrary!
4 Generate episode p := xg, Ug, X1, U1, ..., XT_1,Us_1,XT from 7

5: for (x,u,x’) € p do

6 Q(x,u) < Q(x,u) + a [{(x,u) + v miny Q(X',u") — Q(x,u)]

24

Relationship Between Full and Sample Backups

Full Backups (DP)

Sample Backups (TD)

Policy Evaluation
V(x) < Br[V](x) = U(x, m(x)) + 7Ex [V(X)]

TD Policy Evaluation
V(x) + V(x) + a(f(x,u) + 7V(x') — V(x))

Policy Q-Evaluation
Q(x,u) « B[Q](x,u) = {(x,u) + vEx [Q(X, m(x))]

TD Policy Q-Evaluation (SARSA)
Q(x,u) + Q(x,u) + a(l(x,u) + yQ(X',u’) — Q(x,u))

Value Iteration
V(x) < BLV](x) = min {£(x,u) -+ 71Ex [V(x')]}

N/A

Q-Value lteration
Q(x,u) B.[QI(x, u) = {(x,u) +1Ex [min Q(x', u')]

Q-Learning
Q(x,u) + Q(x,u) + « (((x, u) + 7 rrl1]|,n Q(x',u') — Q(x, u))

25

Outline

Batch Q-Value lteration

26

Batch Sampling-Based Q-Value Iteration

Algorithm Batch Sampling-Based Q-Value Iteration
1. Init: Qp(x,u) for all x € X and allu e U

2: loop

3: 7 + e-greedy policy derived from Q; > 7w can be arbitrary!
4. Generate episodes {pW)}K | from 7

5 for (x,u) € X x U do

(k) k k k k k
Lo B 0l) 1{(x), ul?) = (x,u)}
(k) k k
01, u) = (x, u)}

@

L
Qir1(x,u) = e Z 2
k=1

> Batch sampling-based Q-value iteration behaves like Q;11 = B.[Q;] + noise.
Does it actually converge?

27

Batch Least-Squares Q-Value lteration
P> Qi+1(x,u) = mean {B*[Q,-](x(k) ugk), ﬁ@l) Vk, t such that (xgk)7 (k)) = (x,u)}

> Note that: mean {x(¥)} = argmin Zk:l [x(K) — x||?
X

2
k
](Xt ’ut) EUr)l)_qH

> Qir1(x,u) = arg min Zszl Z(xﬁ”,uﬁ“)—(

2
> Qiv1(-)—argmlnzk 1Zt 0’](Xt ,ub)’ gﬁ-)l) Q(xﬁk’,uﬁk))H

Algorithm Batch Least-Squares Q-Value Iteration

1. Init: Qy(x,u) for all x € X and allu e U

2: loop
3 7 < e-greedy policy derived from Q; > 7w can be arbitrary!
4 Generate episodes {p(F)}K_ from 7
K T“ s
5: Qi+1(' Xt) ut) gi)l) Q(ng)7 uik))H
() k=1 t=0

28

Small Steps in the Backup Direction

>

>

>

Full backup: Q;;1 + B.[Q;] + noise
Partial backup: Q;;1 + aB.[Qi] + (1 — a)Q; + noise

Equivalent to a gradient step on a squared error objective function:

+ noise)
QR=Q;

Behaves like stochastic gradient descent for £(Q) := 3|B.[Qi] — Q|? but the
objective is changing because B.[Q;] is a moving target

Qir1 <+ aB.[Qi] + (1 — @)Q; + noise
= Qi + a(B.[Qj] — @) + noise

1
—Q-—a <2vQ||B*[Q,-] - QIP

Stochastic Approximation Theory: a partial update to ensure contraction
+ appropriate step size a implies convergence to the contraction fixed point:
limj 500 Qi = Q*

T. Jaakkola, M. Jordan, S. Singh, “"On the convergence of stochastic
iterative dynamic programming algorithms,” Neural computation, 1994.

29

Batch Gradient Least-Squares Q-Value lteration

Algorithm Batch Gradient Least-Squares Q-Value lteration
1. Init: Qp(x,u) for all x € X and allu e U

2: loop
3: 7 + e-greedy policy derived from Q; > 7w can be arbitrary!
4. Generate episodes {p()}K_ from
K T®W
5 Qe Q- 5Va | 20D IBLQ1 ul <) o(xi“,ui”)nZ]
k=1 t=0 Q=Q

» Q-learning is a special case with K =1

30

	Model-Free Policy Iteration
	Monte Carlo Policy Iteration
	Temporal Difference Policy Iteration
	Batch Q-Value Iteration

