ECE276B: Planning & Learning in Robotics Lecture 12: Model-Free Control

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

Model-Free Generalized Policy Iteration

- ▶ **Model-based case**: Our main tool for stochastic infinite-horizon problems over MDPs with known models is Generalized Policy Iteration (GPI):
 - **Policy Evaluation**: Given π , compute V^{π} :

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V^{\pi}(\mathbf{x}') \right], \quad \forall \mathbf{x} \in \mathcal{X}$$

Policy Improvement: Given V^{π} obtain a new policy π' :

$$\pi'(\mathbf{x}) \in \underset{\mathbf{u} \in \mathcal{U}}{\text{arg min}} \underbrace{\left\{\ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}')\right]\right\}}_{Q^{\pi}(\mathbf{x}, \mathbf{u})}, \quad \forall \mathbf{x} \in \mathcal{X}$$

- ▶ Model-free case: Is it still possible to implement the GPI algorithm?
 - **Policy Evaluation**: Given π , MC or TD learning from Lecture 11 can be used to estimate V^{π} or Q^{π}
 - **Policy Improvement**: Computing π' based on V^{π} requires access to $\ell(\mathbf{x}, \mathbf{u})$, $p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u})$ but based on Q^{π} can be done without knowing $\ell(\mathbf{x}, \mathbf{u})$, $p_f(\mathbf{x}', \mathbf{x}, \mathbf{u})$:

$$\pi'(\mathbf{x}) \in \operatorname*{arg\;min}_{\mathbf{u} \in \mathcal{U}} Q^{\pi}(\mathbf{x}, \mathbf{u})$$

Policy Evaluation (Recap)

- Given π , iterate \mathcal{B}_{π} to compute V^{π} or Q^{π} via Dynamic Programming (DP), Temporal Difference (TD), or Monte Carlo (MC)
- ▶ DP needs the models $\ell(\mathbf{x}_t, \mathbf{u}_t)$, $p_f(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t)$ while MC and TD are model-free and use samples $\mathbf{x}_t, \mathbf{u}_t, \ell_t, \mathbf{x}_{t+1}$ instead
- $ightharpoonup V^{\pi}$ Policy Evaluation:

$$\begin{aligned} & DP: \mathcal{B}_{\pi}[V](\mathbf{x}_{t}) = \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) + \gamma \mathbb{E}_{\mathbf{x}_{t+1} \sim p_{f}(\cdot | \mathbf{x}_{t}, \pi(\mathbf{x}_{t}))} \left[V(\mathbf{x}_{t+1}) \right] \\ & TD: \mathcal{B}_{\pi}[V](\mathbf{x}_{t}) \approx V(\mathbf{x}_{t}) + \alpha \left[\ell(\mathbf{x}_{t}, \mathbf{u}_{t}) + \gamma V(\mathbf{x}_{t+1}) - V(\mathbf{x}_{t}) \right] \\ & MC: \mathcal{B}_{\pi}[V](\mathbf{x}_{t}) \approx V(\mathbf{x}_{t}) + \alpha \left[\sum_{k=0}^{T-t-1} \gamma^{k} \ell(\mathbf{x}_{t+k}, \mathbf{u}_{t+k}) + \gamma^{T-t} \mathfrak{q}(\mathbf{x}_{T}) - V(\mathbf{x}_{t}) \right] \end{aligned}$$

 $ightharpoonup Q^{\pi}$ Policy Evaluation:

$$\begin{aligned} & DP: \mathcal{B}_{\pi}[Q](\mathbf{x}_{t}, \mathbf{u}_{t}) = \ell(\mathbf{x}_{t}, \mathbf{u}_{t}) + \gamma \mathbb{E}_{\mathbf{x}_{t+1} \sim p_{f}(\cdot | \mathbf{x}_{t}, \mathbf{u}_{t})} \left[Q(\mathbf{x}_{t+1}, \pi(\mathbf{x}_{t+1})) \right] \\ & TD: \mathcal{B}_{\pi}[Q](\mathbf{x}_{t}, \mathbf{u}_{t}) \approx Q(\mathbf{x}_{t}, \mathbf{u}_{t}) + \alpha \left[\ell(\mathbf{x}_{t}, \mathbf{u}_{t}) + \gamma Q(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}) - Q(\mathbf{x}_{t}, \mathbf{u}_{t}) \right] \\ & MC: \mathcal{B}_{\pi}[Q](\mathbf{x}_{t}, \mathbf{u}_{t}) \approx Q(\mathbf{x}_{t}, \mathbf{u}_{t}) + \alpha \left[\sum_{k=0}^{T-t-1} \gamma^{k} \ell(\mathbf{x}_{t+k}, \mathbf{u}_{t+k}) + \gamma^{T-t} \mathfrak{q}(\mathbf{x}_{T}) - Q(\mathbf{x}_{t}, \mathbf{u}_{t}) \right] \end{aligned}$$

Model-Free Policy Improvement

- ▶ If Q^{π} , instead of V^{π} , is estimated via MC or TD, then the policy improvement step can be implemented model-free, i.e., can compute $\min_{\mathbf{u}} Q^{\pi}(\mathbf{x}, \mathbf{u})$ without knowing the motion model p_f or the stage cost ℓ
- Since $Q^{\pi}(\mathbf{x}, \mathbf{u})$ computed by MC or TD is an approximation to the true Q function, we might not get an improved policy with respect to the true Q function:
 - ightharpoonup picking the "best" control according to the current estimate of Q^π might not be the actual best control
 - if a deterministic policy $\pi(\mathbf{x})$ is used for Evaluation and Improvement, we will observe returns for only one of the possible controls at each state and might not visit many states; estimating Q^{π} will not be possible at those never-visited states and controls

Example

- There are two doors in front of you
- You open the left door and get reward 0 ℓ(left) = 0
- You open the right door and get reward +1 $\ell(right) = -1$
- You open the right door and get reward +3 $\ell(right) = -3$
- You open the right door and get reward +2 $\ell(right) = -2$
- ▶ Which door is the best long-term choice?

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

Model-Free Control

- Two ideas to ensure that we do not commit to wrong controls due to approximation error in Q^{π} too early and continue exploring the state and control space:
 - 1. Exploring Starts: in each episode $\rho^{(k)} \sim \pi$, choose initial state-control pairs randomly with non-zero probability among all possible pairs in $\mathcal{X} \times \mathcal{U}$
 - 2. ϵ -Soft Policy: a stochastic policy $\pi(\mathbf{u}|\mathbf{x})$ under which every control has a non-zero probability of being chosen and hence every reachable state will have non-zero probability of being encountered
- **Deterministic Stationary Policy**: function $\pi: \mathcal{X} \to \mathcal{U}$
- ▶ Stochastic Stationary Policy: function $\pi: \mathcal{X} \to \mathcal{P}(\mathcal{U})$, where $\mathcal{P}(\mathcal{U})$ is the set of probability density functions on \mathcal{U} :

$$\pi(\mathbf{u}|\mathbf{x}) \geq 0$$

$$\int_{\mathcal{U}} \pi(\mathbf{u}|\mathbf{x}) d\mathbf{u} = 1$$

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

First-Visit MC Policy Iteration with Exploring Starts

Algorithm MC Policy Iteration with Exploring Starts

```
1: Initialize: Q(\mathbf{x}, \mathbf{u}), \pi(\mathbf{x}) for all \mathbf{x} \in \mathcal{X} and \mathbf{u} \in \mathcal{U}
2:
     loop
3:
             Choose (\mathbf{x}_0, \mathbf{u}_0) \in \mathcal{X} \times \mathcal{U} randomly
                                                                                                                                         ▷ exploring starts
             Generate an episode \rho = \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{t-1}, \mathbf{x}_T from \pi
4.
            for each x, u in \rho do
5:
                    L \leftarrow return following the first occurrence of x, u
6:
                    Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha (L - Q(\mathbf{x}, \mathbf{u}))
7:
8:
            for each x in \rho do
9:
                    \pi(\mathbf{x}) \leftarrow \arg\min Q(\mathbf{x}, \mathbf{u})
```

ϵ-Greedy Exploration

- ► An alternative to exploring starts
- lackbox To ensure exploration it must be possible to encounter all control $\mathcal U$ controls with non-zero probability
- ▶ Assume $|\mathcal{U}| < \infty$
- ▶ ϵ -**Soft Policy**: stochastic policy that picks each \mathbf{u} with at least $\frac{\epsilon}{|\mathcal{U}|}$ probability:

$$\pi(\mathbf{u}|\mathbf{x}) = \mathbb{P}(\mathbf{u}_t = \mathbf{u} \mid \mathbf{x}_t = \mathbf{x}) \geq \frac{\epsilon}{|\mathcal{U}|} \qquad \forall \mathbf{x} \in \mathcal{X}, \mathbf{u} \in \mathcal{U}$$

▶ ϵ -Greedy Policy: an ϵ -soft policy that picks the best control according to $Q(\mathbf{x}, \mathbf{u})$ in the policy improvement step but ensures that all other controls are selected with at least $\frac{\epsilon}{|\mathcal{U}|}$ probability:

$$\pi(\mathbf{u}\mid\mathbf{x}) = \mathbb{P}(\mathbf{u}_t = \mathbf{u}\mid\mathbf{x}_t = \mathbf{x}) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{U}|} & \text{if } \mathbf{u} = \operatorname*{arg\,min}_{\mathbf{u}' \in \mathcal{U}} Q(\mathbf{x},\mathbf{u}') \\ \frac{\epsilon}{|\mathcal{U}|} & \text{otherwise} \end{cases}$$

Bellman Equations with a Stochastic Policy

Value function of a stochastic policy π :

$$\begin{split} V^{\pi}(\mathbf{x}) &:= \mathbb{E}_{\mathbf{u}_{0}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{x}_{2}, \dots} \left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \mathbf{u}_{t}) \mid \mathbf{x}_{0} = \mathbf{x} \right] \\ &= \mathbb{E}_{\mathbf{u} \sim \pi(\cdot \mid \mathbf{x})} \left[\ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}') \right] \right] \\ &= \mathbb{E}_{\mathbf{u} \sim \pi(\cdot \mid \mathbf{x})} \left[Q^{\pi}(\mathbf{x}, \mathbf{u}) \right] \end{split}$$

Q function of a stochastic policy π:

$$\begin{aligned} Q^{\pi}(\mathbf{x}, \mathbf{u}) &:= \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}_1, \mathbf{u}_1, \dots} \left[\sum_{t=1}^{\infty} \gamma^t \ell(\mathbf{x}_t, \mathbf{u}_t) \mid \mathbf{x}_0 = \mathbf{x}, \mathbf{u}_0 = \mathbf{u} \right] \\ &= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot \mid \mathbf{x}, \mathbf{u}), \mathbf{u}' \sim \pi(\cdot \mid \mathbf{x}')} \left[Q^{\pi}(\mathbf{x}', \mathbf{u}') \right] \end{aligned}$$

*ϵ***-Greedy Policy Improvement**

Theorem: ϵ -Greedy Policy Improvement

For any ϵ -soft policy π with associated Q^{π} , the ϵ -greedy policy π' with respect to Q^{π} is an improvement, i.e., $V^{\pi'}(\mathbf{x}) \leq V^{\pi}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$

► Proof:

$$\begin{split} \mathbb{E}_{\mathbf{u}' \sim \pi'(\cdot | \mathbf{x})} \left[Q^{\pi}(\mathbf{x}, \mathbf{u}') \right] &= \sum_{\mathbf{u}' \in \mathcal{U}} \pi'(\mathbf{u}' \mid \mathbf{x}) Q^{\pi}(\mathbf{x}, \mathbf{u}') \\ &= \frac{\epsilon}{|\mathcal{U}|} \sum_{\mathbf{u}' \in \mathcal{U}} Q^{\pi}(\mathbf{x}, \mathbf{u}') + (1 - \epsilon) \min_{\mathbf{u} \in \mathcal{U}} Q^{\pi}(\mathbf{x}, \mathbf{u}) \\ &\leq \frac{\epsilon}{|\mathcal{U}|} \sum_{\mathbf{u}' \in \mathcal{U}} Q^{\pi}(\mathbf{x}, \mathbf{u}') + (1 - \epsilon) \sum_{\mathbf{u} \in \mathcal{U}} \frac{\pi(\mathbf{u} \mid \mathbf{x}) - \frac{\epsilon}{|\mathcal{U}|}}{1 - \epsilon} Q^{\pi}(\mathbf{x}, \mathbf{u}) \\ &= \sum_{\mathbf{u} \in \mathcal{U}} \pi(\mathbf{u} \mid \mathbf{x}) Q^{\pi}(\mathbf{x}, \mathbf{u}) = V^{\pi}(\mathbf{x}) \end{split}$$

ϵ-Greedy Policy Improvement

▶ Then, similarity to the policy improvement theorem for deterministic policies, for all $\mathbf{x} \in \mathcal{X}$:

$$\begin{split} & V^{\pi}(\mathbf{x}) \geq \mathbb{E}_{\mathbf{u}_{0} \sim \pi'(\cdot | \mathbf{x})} \left[Q^{\pi}(\mathbf{x}, \mathbf{u}_{0}) \right] \\ & = \mathbb{E}_{\mathbf{u}_{0} \sim \pi'(\cdot | \mathbf{x})} \left[\ell(\mathbf{x}, \mathbf{u}_{0}) + \gamma \mathbb{E}_{\mathbf{x}_{1} \sim \rho_{f}(\cdot | \mathbf{x}, \mathbf{u}_{0})} \left[V^{\pi}(\mathbf{x}_{1}) \right] \right] \\ & \geq \mathbb{E}_{\mathbf{u}_{0} \sim \pi'(\cdot | \mathbf{x})} \left[\ell(\mathbf{x}, \mathbf{u}_{0}) + \gamma \mathbb{E}_{\mathbf{x}_{1} \sim \rho_{f}(\cdot | \mathbf{x}, \mathbf{u}_{0})} \left[\mathbb{E}_{\mathbf{u}_{1} \sim \pi'(\cdot | \mathbf{x}_{1})} \left[Q^{\pi}(\mathbf{x}_{1}, \mathbf{u}_{1}) \right] \right] \right] \\ & = \mathbb{E}_{\mathbf{u}_{0} \sim \pi'(\cdot | \mathbf{x})} \left[\ell(\mathbf{x}, \mathbf{u}_{0}) + \gamma \mathbb{E}_{\mathbf{x}_{1}, \mathbf{u}_{1}} \left[\ell(\mathbf{x}_{1}, \mathbf{u}_{1}) + \gamma \mathbb{E}_{\mathbf{x}_{2}} V^{\pi}(\mathbf{x}_{2}) \right] \right] \\ & \geq \cdots \geq \mathbb{E}_{\rho_{0} \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \mathbf{u}_{t}) \middle| \mathbf{x}_{0} = \mathbf{x} \right] = V^{\pi'}(\mathbf{x}) \end{split}$$

First-Visit MC Policy Iteration with ε-Greedy Improvement

Algorithm First-Visit MC Policy Iteration with ϵ -Greedy Improvement

```
1: Init: Q(x, u), \pi(u|x) (\epsilon-soft policy) for all x \in \mathcal{X} and u \in \mathcal{U}
      loop
2:
3:
                Generate an episode \rho := \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{t-1}, \mathbf{x}_T from \pi
                for each x, u in \rho do
4.
5:
                         L \leftarrow return following the first occurrence of x, u
                         Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha (L - Q(\mathbf{x}, \mathbf{u}))
6:
7.
                for each x in \rho do
                                   \mathcal{U}^* \leftarrow \operatorname{arg\,min}_{\mathbf{u} \in \mathcal{U}} Q(\mathbf{x}, \mathbf{u})
8:
                        \pi(\mathbf{u}|\mathbf{x}) \leftarrow \begin{cases} rac{1-\epsilon}{|\mathcal{U}^*|} + rac{\epsilon}{|\mathcal{U}|} & \text{if } \mathbf{u} \in \mathcal{U}^* \\ rac{\epsilon}{|\mathcal{U}|} & \text{if } \mathbf{u} \notin \mathcal{U}^* \end{cases}
9:
```

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

Temporal-Difference Control

- ▶ TD prediction has several advantages over MC prediction:
 - works with incomplete episodes
 - ightharpoonup can perform online updates to Q^{π} after every transition
 - ▶ TD estimate of Q^{π} has lower variance than the MC one
- ▶ TD in the policy iteration algorithm:
 - use TD for policy evaluation
 - ightharpoonup can update $Q(\mathbf{x}, \mathbf{u})$ after every transition within an episode
 - ightharpoonup use an ϵ -greedy policy for policy improvement because we still need to trade off exploration and exploitation

TD Policy Iteration with ϵ -Greedy Improvement (SARSA)

▶ **SARSA**: estimates Q^{π} using TD updates after every S_t , A_t , R_t , S_{t+1} , A_{t+1} transition:

$$Q(\mathbf{x}_t, \mathbf{u}_t) \leftarrow Q(\mathbf{x}_t, \mathbf{u}_t) + \alpha \left[\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma Q(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}) - Q(\mathbf{x}_t, \mathbf{u}_t) \right]$$

lacktriangle Ensures exploration via an ϵ -greedy policy in the policy improvement step

Algorithm SARSA

- 1: **Init**: $Q(\mathbf{x}, \mathbf{u})$ for all $\mathbf{x} \in \mathcal{X}$ and all $\mathbf{u} \in \mathcal{U}$
- 2: **loop**
- 3: $\pi \leftarrow \epsilon$ -greedy policy derived from Q
- 4: Generate episode $\rho := \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{t-1}, \mathbf{x}_T$ from π
- 5: for $(\mathbf{x}, \mathbf{u}, \mathbf{x}', \mathbf{u}') \in \rho$ do
- 6: $Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha \left[\ell(\mathbf{x}, \mathbf{u}) + \gamma Q(\mathbf{x}', \mathbf{u}') Q(\mathbf{x}, \mathbf{u}) \right]$

Convergence of Model-Free Policy Iteration

- Greedy in the Limit with Infinite Exploration (GLIE):
 - Number of visits to all state-control pairs approach infinity, i.e., all state-control pairs are explored infinitely many times: $\lim_{k\to\infty} N_k(\mathbf{x},\mathbf{u}) = \infty$
 - ► The ϵ -greedy policy converges to a greedy policy wrt $\mathbf{u}^* \in \arg\min_{\mathbf{u} \in \mathcal{U}} Q(\mathbf{x}, \mathbf{u})$
- **Example:** ϵ -greedy is GLIE with $\epsilon_k = \frac{1}{k}$

$$\pi_k(\mathbf{u} \mid \mathbf{x}) = \begin{cases} 1 - \epsilon_k + \frac{\epsilon_k}{|\mathcal{U}|} & \text{if } \mathbf{u} = \mathbf{u}^* \\ \frac{\epsilon_k}{|\mathcal{U}|} & \text{if } \mathbf{u} \neq \mathbf{u}^* \end{cases} \qquad \lim_{k \to \infty} \pi_k(\mathbf{u} \mid \mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{u} = \mathbf{u}^* \\ 0 & \text{if } \mathbf{u} \neq \mathbf{u}^* \end{cases}$$

Theorem: Convergence of Model-Free Policy Iteration

Both MC Policy Iteration and SARSA converge to the optimal action-value function, $Q(\mathbf{x}, \mathbf{u}) \to Q^*(\mathbf{x}, \mathbf{u})$, as the number of episodes $k \to \infty$ as long as:

- ▶ the sequence of ϵ -greedy policies $\pi_k(\mathbf{u} \mid \mathbf{x})$ is GLIE,
- the sequence of step sizes α_k is Robbins-Monro.

On-Policy vs Off-Policy Learning

- ▶ On-policy prediction: estimate V^{π} or Q^{π} using episodes from π
- **Off-policy prediction**: estimate V^{π} or Q^{π} using episodes from μ
- On-policy learning methods:
 - ightharpoonup evaluate or improve a policy π that is used to both make decisions and collect experience
 - require well-designed exploration functions
 - empirically successful with function approximation
- Off-policy learning methods:
 - ightharpoonup evaluate or improve a policy π that is different from the policy μ used to generate data
 - \blacktriangleright can use an effective exploration policy μ to generate data while learning an optimal policy π
 - can learn from observing other agents
 - can re-use experience from old policies $\pi_1, \pi_2, \ldots, \pi_{k-1}$
 - can learn about multiple policies while following one policy
 - causes theoretical challenges with function approximation

Importance Sampling for Off-Policy Learning

- lacktriangle Off-policy learning: use episodes generated from μ to evaluate π
- ▶ The stage costs obtained from μ need to be re-weighted according to the likelihood that the same states would be encountered by π
- ▶ **Importance Sampling**: estimates the expectation of a function $\ell(\mathbf{x})$ with respect to a probability density function $p(\mathbf{x})$ by computing a re-weighted expectation over a different probability density $q(\mathbf{x})$:

$$\mathbb{E}_{\mathbf{x} \sim p(\cdot)}[\ell(\mathbf{x})] = \int p(\mathbf{x})\ell(\mathbf{x})d\mathbf{x}$$

$$= \int q(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}\ell(\mathbf{x})d\mathbf{x} = \mathbb{E}_{\mathbf{x} \sim q(\cdot)}\left[\frac{p(\mathbf{x})}{q(\mathbf{x})}\ell(\mathbf{x})\right]$$

Requires that $q(\mathbf{x}) \neq 0$ when $p(\mathbf{x}) \neq 0$.

Importance Sampling for Off-Policy MC Learning

▶ To use returns generated from μ to evaluate π via MC, re-weight the long-term cost L_t via importance-sampling corrections along the whole episode:

$$L_t^{\pi/\mu} = \frac{\pi(\mathbf{u}_t|\mathbf{x}_t)}{\mu(\mathbf{u}_t|\mathbf{x}_t)} \frac{\pi(\mathbf{u}_{t+1}|\mathbf{x}_{t+1})}{\mu(\mathbf{u}_{t+1}|\mathbf{x}_{t+1})} \cdots \frac{\pi(\mathbf{u}_{T-1}|\mathbf{x}_{T-1})}{\mu(\mathbf{u}_{T-1}|\mathbf{x}_{T-1})} L_t$$

- \blacktriangleright This requires that μ should not be zero for any of state-control pairs along the episode from π
- ▶ Update the value estimate towards the corrected long-term cost $L_t^{\pi/\mu}$:

$$V^{\pi}(\mathbf{x}_t) \leftarrow V^{\pi}(\mathbf{x}_t) + \alpha \left(\frac{\mathbf{L}_t^{\pi/\mu}}{t} - V^{\pi}(\mathbf{x}_t) \right)$$

▶ **Note**: importance sampling in MC can dramatically increase variance

Importance Sampling for Off-Policy TD Learning

▶ To use returns generated from μ to evaluate π via TD, re-weight the TD target $\ell(\mathbf{x}, \mathbf{u}) + \gamma V(\mathbf{x}')$ by importance sampling:

$$V^{\pi}(\mathbf{x}_t) \leftarrow V^{\pi}(\mathbf{x}_t) + \alpha \left(\frac{\pi(\mathbf{u}_t \mid \mathbf{x}_t)}{\mu(\mathbf{u}_t \mid \mathbf{x}_t)} \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma V^{\pi}(\mathbf{x}_{t+1}) \right) - V^{\pi}(\mathbf{x}_t) \right)$$

Importance sampling in TD is much lower variance than in MC and the policies need to be similar (i.e., μ should not be zero when π is non-zero) over a single step only

Off-Policy TD Control without Importance Sampling

- ▶ Q-Learning (Watkins, 1989): one of the early breakthroughs in reinforcement learning was the development of an off-policy TD algorithm that does not use importance sampling
- ▶ Q-Learning approximates $\mathcal{B}_*[Q](\mathbf{x}, \mathbf{u})$ directly using samples:

$$Q(\mathbf{x}_t, \mathbf{u}_t) \leftarrow Q(\mathbf{x}_t, \mathbf{u}_t) + \alpha \left[\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \min_{\mathbf{u} \in \mathcal{U}} Q(\mathbf{x}_{t+1}, \mathbf{u}) - Q(\mathbf{x}_t, \mathbf{u}_t) \right]$$

► The learned Q function approximates Q* regardless of the policy being followed!

Theorem: Convergence of Q-Learning

Q-Learning converges almost surely to Q^* assuming all state-control pairs continue to be updated and the sequence of step sizes α_k is Robbins-Monro.

C. J. Watkins and P. Dayan. "Q-learning," Machine learning, 1992.

Q-Learning: Off-Policy TD Learning of $Q^*(x, u)$

Algorithm Q-Learning

- 1: Init: $Q(\mathbf{x}, \mathbf{u})$ for all $\mathbf{x} \in \mathcal{X}$ and all $\mathbf{u} \in \mathcal{U}$
 - loop
- $\pi \leftarrow \epsilon$ -greedy policy derived from Q $\triangleright \pi$ can be arbitrary! 3.
- Generate episode $\rho := \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{t-1}, \mathbf{x}_T$ from π 4:
- for $(x, u, x') \in \rho$ do 5:
- $Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha \left[\ell(\mathbf{x}, \mathbf{u}) + \gamma \min_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}') Q(\mathbf{x}, \mathbf{u}) \right]$ 6:

Relationship Between Full and Sample Backups

Full Backups (DP)	Sample Backups (TD)
Policy Evaluation	TD Policy Evaluation
$V(x) \leftarrow \mathcal{B}_{\pi}[V](x) = \ell(x, \pi(x)) + \gamma \mathbb{E}_{x'}\left[V(x') ight]$	$V(\mathbf{x}) \leftarrow V(\mathbf{x}) + \alpha(\ell(\mathbf{x}, \mathbf{u}) + \gamma V(\mathbf{x}') - V(\mathbf{x}))$
Policy Q-Evaluation	TD Policy Q-Evaluation (SARSA)
$Q(\mathbf{x}, \mathbf{u}) \leftarrow \mathcal{B}_{\pi}[Q](\mathbf{x}, \mathbf{u}) = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}'}\left[Q(\mathbf{x}', \pi(\mathbf{x}'))\right]$	$Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha(\ell(\mathbf{x}, \mathbf{u}) + \gamma Q(\mathbf{x}', \mathbf{u}') - Q(\mathbf{x}, \mathbf{u}))$
Value Iteration	N/A
$V(\mathbf{x}) \leftarrow \mathcal{B}_*[V](\mathbf{x}) = \min_{\mathbf{u}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}'}\left[V(\mathbf{x}')\right] \right\}$	
Q-Value Iteration	Q-Learning
$Q(\mathbf{x}, \mathbf{u}) \leftarrow \mathcal{B}_*[Q](\mathbf{x}, \mathbf{u}) = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}'}\left[\min_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')\right]$	$Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \min_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}') - Q(\mathbf{x}, \mathbf{u}) \right)$

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

Batch Sampling-Based Q-Value Iteration

Algorithm Batch Sampling-Based Q-Value Iteration

- 1: **Init**: $Q_0(\mathbf{x}, \mathbf{u})$ for all $\mathbf{x} \in \mathcal{X}$ and all $\mathbf{u} \in \mathcal{U}$
- 2: **loop**
- 3: $\pi \leftarrow \epsilon$ -greedy policy derived from Q_i $\triangleright \pi$ can be arbitrary!
- 4: Generate episodes $\{\rho^{(k)}\}_{k=1}^K$ from π
- 5: for $(x, u) \in \mathcal{X} \times \mathcal{U}$ do

6:
$$Q_{i+1}(\mathbf{x}, \mathbf{u}) = \frac{1}{K} \sum_{k=1}^{K} \frac{\sum_{t=0}^{T^{(k)}} \mathcal{B}_{*}[Q_{i}](\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}, \mathbf{x}_{t+1}^{(k)}) \mathbb{1}\{(\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}) = (\mathbf{x}, \mathbf{u})\}}{\sum_{t=0}^{T^{(k)}} \mathbb{1}\{(\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}) = (\mathbf{x}, \mathbf{u})\}}$$

▶ Batch sampling-based Q-value iteration behaves like $Q_{i+1} = \mathcal{B}_*[Q_i] + \text{noise}$. Does it actually converge?

Batch Least-Squares Q-Value Iteration

- Note that: $\operatorname{mean}\left\{\mathbf{x}^{(k)}\right\} = \arg\min_{\mathbf{x}} \sum_{k=1}^{K} \|\mathbf{x}^{(k)} \mathbf{x}\|^2$
- $\qquad \qquad \mathbf{Q}_{i+1}(\mathbf{x}, \mathbf{u}) = \arg\min_{a} \sum_{k=1}^{K} \sum_{(\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}) = (\mathbf{x}, \mathbf{u})} \left\| \mathcal{B}_{*}[Q_{i}](\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}, \mathbf{x}_{t+1}^{(k)}) q \right\|^{2}$
- $\qquad \qquad \mathbf{Q}_{i+1}(\cdot, \cdot) = \arg\min_{Q(\cdot, \cdot)} \sum_{k=1}^K \sum_{t=0}^{T^{(k)}} \left\| \mathcal{B}_*[Q_i](\mathbf{x}_t^{(k)}, \mathbf{u}_t^{(k)}, \mathbf{x}_{t+1}^{(k)}) Q(\mathbf{x}_t^{(k)}, \mathbf{u}_t^{(k)}) \right\|^2$

Algorithm Batch Least-Squares Q-Value Iteration

- 1: **Init**: $Q_0(\mathbf{x}, \mathbf{u})$ for all $\mathbf{x} \in \mathcal{X}$ and all $\mathbf{u} \in \mathcal{U}$
- 2: **loop**
- 3: $\pi \leftarrow \epsilon$ -greedy policy derived from Q_i $\triangleright \pi$ can be arbitrary!
- 4: Generate episodes $\{\rho^{(k)}\}_{k=1}^K$ from π

5:
$$Q_{i+1}(\cdot,\cdot) = \arg\min_{Q(\cdot,\cdot)} \sum_{k=1}^{K} \sum_{t=0}^{T^{(k)}} \left\| \mathcal{B}_*[Q_i](\mathbf{x}_t^{(k)},\mathbf{u}_t^{(k)},\mathbf{x}_{t+1}^{(k)}) - Q(\mathbf{x}_t^{(k)},\mathbf{u}_t^{(k)}) \right\|^2$$

Small Steps in the Backup Direction

- ▶ Full backup: $Q_{i+1} \leftarrow \mathcal{B}_*[Q_i] + \text{noise}$
- ▶ Partial backup: $Q_{i+1} \leftarrow \alpha \mathcal{B}_*[Q_i] + (1-\alpha)Q_i + \text{noise}$
- Equivalent to a gradient step on a squared error objective function:

$$\begin{aligned} Q_{i+1} &\leftarrow \alpha \mathcal{B}_*[Q_i] + (1 - \alpha)Q_i + \text{noise} \\ &= Q_i + \alpha \left(\mathcal{B}_*[Q_i] - Q_i \right) + \text{noise} \\ &= Q_i - \alpha \left(\frac{1}{2} \nabla_Q \|\mathcal{B}_*[Q_i] - Q\|^2 \bigg|_{Q = Q_i} + \text{noise} \right) \end{aligned}$$

- ▶ Behaves like stochastic gradient descent for $f(Q) := \frac{1}{2} \|\mathcal{B}_*[Q_i] Q\|^2$ but the objective is changing because $\mathcal{B}_*[Q_i]$ is a moving target
- ▶ Stochastic Approximation Theory: a partial update to ensure contraction + appropriate step size α implies convergence to the contraction fixed point: $\lim_{i \to \infty} Q_i = Q^*$
- T. Jaakkola, M. Jordan, S. Singh, "On the convergence of stochastic iterative dynamic programming algorithms," Neural computation, 1994.

Batch Gradient Least-Squares Q-Value Iteration

Algorithm Batch Gradient Least-Squares Q-Value Iteration

- 1: Init: $Q_0(\mathbf{x}, \mathbf{u})$ for all $\mathbf{x} \in \mathcal{X}$ and all $\mathbf{u} \in \mathcal{U}$
- loop 2:
- $\pi \leftarrow \epsilon$ -greedy policy derived from Q_i $\triangleright \pi$ can be arbitrary! 3:

4: Generate episodes
$$\{\rho^{(k)}\}_{k=1}^{K}$$
 from π
5: $Q_{i+1} \leftarrow Q_i - \frac{\alpha}{2} \nabla_Q \left[\sum_{k=1}^{K} \sum_{t=0}^{T^{(k)}} \|\mathcal{B}_*[Q_i](\mathbf{x}_t^{(k)}, \mathbf{u}_t^{(k)}, \mathbf{x}_{t+1}^{(k)}) - Q(\mathbf{x}_t^{(k)}, \mathbf{u}_t^{(k)}) \|^2 \right]_{Q=Q_i}$

Q-learning is a special case with K=1