
ECE276B: Planning & Learning in Robotics
Lecture 7: Search-Based Motion Planning

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu

Outline

Label Correcting Algorithms

Dijkstra’s Algorithm

A* Algorithm

Jump Point Search

2

Motion Planning as Deterministic Shortest Path

▶ Construct a graph (via cell decomposition, skeletonization, as a lattice, etc.)
and search it for a least-cost path

▶ Assumption: there are no negative cycles in the graph, i.e., J i1:q ≥ 0 for all
i1:q ∈ Pi,i and all i ∈ V

▶ The deterministic shortest path problem can be solved via:
▶ Dynamic Programming: computes shortest paths from all nodes to the goal

▶ Forward Dynamic Programming: computes shortest paths from the start to
all nodes

▶ Label correcting methods: visit only promising nodes

▶ Key ideas of label correcting methods:
▶ Label gi : lowest cost discovered so far from s to node i ∈ V
▶ Label correction: each time gi is reduced, the labels gj of the children of i

can be corrected: gj = gi + cij

▶ OPEN: set of nodes that can potentially be part of the shortest path to τ

3

Label Correcting Algorithm

Algorithm Label Correcting Algorithm

1: OPEN ← {s}, gs = 0, gi =∞ for all i ∈ V \ {s}
2: while OPEN is not empty do
3: Remove i from OPEN
4: for j ∈ Children(i) do
5: if (gi + cij) < gj and (gi + cij) < gτ then ▷ Only when cij ≥ 0 for all i , j ∈ V
6: gj ← (gi + cij)
7: Parent(j) ← i
8: if j ̸= τ then
9: OPEN ← OPEN ∪{j}

Theorem
If there exists at least one finite cost path from s to τ , then the Label Correcting
(LC) algorithm terminates with gτ = dist(s, τ), the shortest path length from s to
τ . Otherwise, the LC algorithm terminates with gτ = ∞.

4

Label Correcting Algorithm

5

Label Correcting Algorithm
▶ Label correcting algorithms update the labels (g -values) of relevant states in

OPEN until they satisfy the Bellman equation in dynamic programming:

gi = min
j∈Parents(i)

gj + cji

▶ Path recovery: once correct g -values are available, the least-cost path
i∗q , . . . , i

∗
1 is a greedy path computed starting from i∗1 = τ and backtracking:

i∗k+1 = argmin
j∈Parents(i∗k)

gj + cj,i∗k until i∗k+1 = s

6

Outline

Label Correcting Algorithms

Dijkstra’s Algorithm

A* Algorithm

Jump Point Search

7

Dijkstra’s Algorithm

▶ Best-first search: label correcting algorithm that removes nodes with
minimum label gi from OPEN (implemented as a priority queue):

i ∈ argmin
j∈OPEN

gj

▶ Node expansion: once removed from OPEN, node i is expanded by
correcting the labels of its children j ∈ Children(i)

▶ Upon termination: gi equals the true cost dist(s, i) of the shortest path
from s to i for all expanded nodes

8

Dijkstra’s Algorithm Properties

▶ When cij ≥ 0
▶ The algorithm expands nodes in the order of distance from s
▶ Each node is expanded at most once
▶ If i ∈ OPEN, its label gi may decrease as we discover new paths to i
▶ gi ≥ dist(s, i) always with equality once i is expanded
▶ Once we remove i from OPEN, its label gi can no longer change because all

other nodes in OPEN have higher g-values. We cannot hope to find a shorter
path to i passing through a node in OPEN.

▶ OPEN is the “search frontier” and separates expanded from unexplored nodes.
Hence, once a node is removed from OPEN, we cannot hope to find a better
path to it. A node will enter OPEN at most once.

▶ Once τ is removed from OPEN, we cannot discover a shorter path to τ : Done!

▶ When cij may be negative but there are no negative cycles and dist(i , τ) ≥ 0
for all i ∈ V
▶ Nodes may be expanded more than once, i.e., may re-enter OPEN
▶ No guarantee that gi ≥ dist(s, i) throughout the execution
▶ The algorithm terminates with gi = dist(s, i)

9

OPEN is the Search Frontier

▶ Dijkstra’s algorithm may be thought of as fluid flow starting from s and
expanding out

▶ The costs cij specify the time for the fluid to traverse edge i → j

▶ When the fluid arrives at a node i , we update the ETA gj of its neighbors j

▶ Some ETA estimates may be too large since the fluid may find shortcuts

▶ The order of node expansions in Dijkstra only considers gi , the cost from s to
i but does not consider how costly the path from i to τ might be. Can this
be estimated and used to improve the search?

10

Outline

Label Correcting Algorithms

Dijkstra’s Algorithm

A* Algorithm

Jump Point Search

11

A* Algorithm

▶ The A* algorithm is a modification of the label correcting algorithm with
cij ≥ 0 in which the requirement for admission to OPEN is strengthened:

from gi + cij < gτ to gi + cij + hj < gτ

where hj is a non-negative lower bound on the optimal cost-to-go from node
j to τ known as a heuristic function:

0 ≤ hj ≤ dist(j , τ)

▶ The more stringent criterion for admission to OPEN can reduce the number
of iterations required by the label correcting algorithm to find an optimal path

▶ The more accurately hj estimates dist(j , τ), the more efficient the A*
algorithm becomes!

12

Heuristic Function

▶ A heuristic function hi is constructed using special knowledge about the
problem

13

Heuristic Function

▶ A heuristic must be admissible for the A* algorithm to work correctly

▶ A heuristic may be consistent to make the A* algorithm more efficient

▶ Admissible: hi ≤ dist(i , τ) for all i ∈ V

▶ Consistent: hτ = 0 and hi ≤ cij + hj for all i ̸= τ and j ∈ Children(i)
▶ h satisfies the triangle inequality, which implies it is also admissible

▶ If h(1) and h(2) are consistent, then h := max{h(1), h(2)} is consistent

▶ If h(1) and h(2) are consistent, then h := h(1) + h(2) is ϵ-consistent (ϵ = 2)

▶ ϵ-Consistent: hτ = 0 and hi ≤ ϵcij + hj for all i ̸= τ , j ∈ Children(i), and
ϵ ≥ 1

▶ A heuristic function h(2) dominates h(1) if both are admissible and
h
(2)
i ≥ h

(1)
i for every node i ∈ V

▶ Extreme cases: hi = 0 and hi = dist(i , τ)

14

Examples of Heuristic Functions
▶ Grid-based planning: let xi ∈ Rd be the position of node i

▶ Euclidean distance: hi := ∥xτ − xi∥2
▶ Manhattan distance: hi := ∥xτ − xi∥1 :=

∑
k |xτ,k − xi,k |

▶ Diagonal distance: hi := ∥xτ − xi∥∞ := maxk |xτ,k − xi,k |
▶ Octile distance: hi := maxk |xτ,k − xi,k |+ (

√
d − 1)mink |xτ,k − xi,k |

▶ Robot arm planning:
▶ End-effector distance: run 2-D Dijkstra for the end effector and use it as a

heuristic in the n-dimensional search for a joint angle path

15

A* Algorithm with an ϵ-consistent Heuristic

Algorithm Weighted A* Algorithm

1: OPEN ← {s}, CLOSED ← {}, ϵ ≥ 1
2: gs = 0, gi =∞ for all i ∈ V \ {s}
3: while τ /∈ CLOSED do ▷ τ not expanded yet
4: Remove i with smallest fi := gi + ϵhi from OPEN ▷ means gi + ϵhi < gτ
5: Insert i into CLOSED
6: for j ∈ Children(i) and j /∈ CLOSED do
7: if gj > (gi + cij) then
8: gj ← (gi + cij)
9: Parent(j) ← i


expand state i :
◦ try to decrease gj using path from s to i

10: if j ∈ OPEN then
11: Update priority of j
12: else
13: OPEN ← OPEN ∪{j}

▶ There are 3 kinds of states:
▶ CLOSED: set of states that have already been expanded
▶ OPEN: set of candidates for expansion (frontier)
▶ Unexplored: the rest of the states

16

Example: A* Algorithm

▶ OPEN = {s}
▶ CLOSED = {}
▶ Next to expand: s

17

Example: A* Algorithm

▶ OPEN = {s}
▶ CLOSED = {}
▶ Next to expand: s

18

Example: A* Algorithm

▶ OPEN = {2}
▶ CLOSED = {s}
▶ Next to expand: 2

19

Example: A* Algorithm

▶ OPEN = {1, 4}
▶ CLOSED = {s, 2}
▶ Next to expand: 1

20

Example: A* Algorithm

▶ OPEN = {4, τ}
▶ CLOSED = {s, 2, 1}
▶ Next to expand: 4

21

Example: A* Algorithm

▶ OPEN = {3, τ}
▶ CLOSED = {s, 2, 1, 4}
▶ Next to expand: τ

22

Example: A* Algorithm

▶ OPEN = {3}
▶ CLOSED = {s, 2, 1, 4, τ}
▶ Done

23

Theoretical Properties of A*

Theorem: Finite Termination

A* terminates in a finite number of iterations if V is finite or if cij ≥ δ > 0 for
i , j ∈ V and the degree of each node i ∈ V is finite.

Lemma: Consistent Heuristic Implies Correct Labels

If cij ≥ 0 for i , j ∈ V and A* uses a consistent heuristic, then:

▶ gi equals the least-cost from s to i for every expanded state i ∈CLOSED

▶ gi is an upper bound on the least-cost from s to i for every i /∈ CLOSED

24

Proof of Lemma

▶ Proceed by induction:

1. Assume all previously expanded states (in CLOSED) have correct g -values

2. Let the next state to expand be i with fi := gi + hi ≤ fj for all j ∈ OPEN

3. Suppose that gi is incorrect, i.e., gi > dist(s, i)

4. Then, there must exist at least one state j on an optimal path from s to i
such that j ∈ OPEN but j /∈ CLOSED so that fj ≥ fi

5. Let j be the shallowest OPEN node on the optimal path from s to i , i.e.,
∃k ∈ CLOSED such that gj = gk + ckj = dist(s, j)

6. However, this leads to a contradiction:

fi = gi + hi > dist(s, i) + hi = gj + dist(j , i) + hi
h is

≥
consistent

gj + hj = fj

25

Theoretical Properties of A*

Theorem: Optimality
▶ If A* uses a consistent heuristic, then it is guaranteed to return an optimal

path to τ (and, in fact, to every expanded node)

▶ If A* uses an admissible but inconsistent heuristic, then it is guaranteed to
return an optimal path as long as closed states are re-opened (i.e., remove
j /∈ CLOSED on Line 6 of the A* algorithm on Slide 16)

▶ If A* uses an ϵ-consistent heuristic, then it is guaranteed to return an
ϵ-suboptimal path with cost dist(s, τ) ≤ gτ ≤ ϵ dist(s, τ) for ϵ ≥ 1

Theorem: Efficiency

A* performs the minimal number of state expansions to guarantee optimality

26

Effect of the Heuristic Function

▶ fi is an estimate of the cost of a least cost path from s to τ via i

▶ Dijkstra: expands states in the order of fi = gi

▶ A*: expands states in the order of fi = gi + hi
▶ all nodes with fi < dist(s, τ) are expanded
▶ some nodes with fi = dist(s, τ) are expanded
▶ no nodes with fi > dist(s, τ) are expanded

▶ Weighted A*: expands states in the order of fi = gi + ϵhi with ϵ > 1, i.e.,
biased towards states closer to the goal

27

Effect of the Heuristic Function: Dijkstra
▶ Dijkstra: expands states in the order of fi = gi

28

Effect of the Heuristic Function: A*

▶ A*: expands states in the order of fi = gi + hi

▶ The closer hi is to dist(i , τ), the fewer expansions needed (fast search)

▶ The closer hi is to 0, the more expansions needed (slow search)

29

Effect of the Heuristic Function: Weighted A*

▶ Weighted A*: expands states in the order of fi = gi + ϵhi with ϵ > 1, i.e.,
biased towards states closer to the goal

▶ Weighted A* is ϵ-suboptimal (gτ ≤ ϵ dist(s, τ)) but trades optimality for
speed. It is orders of magnitude faster than A* in many domains.

▶ The key to finding solutions fast is to have a heuristic function with shallow
local minima!

▶ Is weighted A* guaranteed to expand no more states than A*?

30

Implementation Details

▶ Graph: a hashmap data structure (stores key-value pairs) that maps node i
to its properties: label gi , heuristic hi , parent, etc.
▶ e.g., std::unordered map in C++ or dictionary in Python

▶ Depth-first search: last-in, first-out (LIFO): OPEN is a stack
▶ e.g., std::stack in C++ or collections.deque in Python

▶ Breath-first search: first-in, first-out (FIFO): OPEN is a queue
▶ e.g., std::queue in C++ or collections.deque in Python

▶ Dijkstra and A* search: OPEN is a priority queue based on fi
▶ e.g., boost::heap::d ary heap in C++ or pqdict in Python

31

Time Complexity

▶ Graph: number of nodes |V|, number of edges |E|, maximum node degree ∆
(number of outgoing edges)

▶ Dynamic Programming: O(|V|3):
▶ |V| × |V| entries in the table
▶ Each entry requires ∆ comparisons and in the worst case ∆ = O(|V|)

▶ Dijkstra and A*: O(makequeue + pop × |V|+ update × |E|)
▶ Array and make heap, e.g., std::priority queue in C++:

O(|V|) + O(|V|)|V|+ O(1)|E| = O(|V|2)
▶ Binary heap, e.g., boost::heap::d ary heap in C++:

O(|V|) + O(log |V|)|V|+ O(log |V|)|E| = O((|E|+ |V|) log |V|)
▶ Fibonacci heap, e.g., boost::heap::fibonacci heap in C++:

O(|V|) + O(log |V|)|V|+ O(1)|E| = O(|E|+ |V| log |V|)

Sparse graph: |E| = O(|V|) Dense graph: |E| = O(|V|2)
Array O(|V|2) O(|V|2)
Binary heap O(|V| log |V|) O(|V|2 log |V|)
Fibonacci heap O(|V| log |V|) O(|V|2)

32

Memory Complexity

▶ A* does provably minimum number of expansions, O(|V|), to find the
optimal solution but this might require an infeasible amount of memory

▶ The memory requirements of weighted A* are often but not always better

▶ Depth-first search (without marking expanded states): explore one possible
path at a time and keep only the best path discovered so far in memory:
▶ Complete and optimal (assuming a finite graph)
▶ Memory: O(∆m), where ∆ - max branching factor, m - max pathlength
▶ Time: O(∆m), since it will repeatedly re-expand states

▶ Example: 4-connected 40 by 40 grid with s at the center of the grid
▶ A* expands up to 800 states
▶ Depth-first search may expand over 420 > 1012 states

33

A* Implementation: Node Class

1 class ANode(object):

2 def __init__(self, key, coordinates):

3 self.key = key

4 self.coordinates = coordinates

5 self.g = math.inf

6 self.h = 0.0

7 self.parent = None

8 self.parent_action = None

9 self.is_open = False

10 sefl.is_closed = False

11

12 def __lt__(self, other):

13 return self.g < other.g

34

A* Implementation: Environment Class

1 class Environment:

2 def isGoal(self, node):

3 return True

4

5 def getSuccessors(self, node):

6 return successor_list, cost_list, action_list

7

8 def getHeuristic(self, node):

9 return 0.0

35

A* Implementation

1 from pqdict import pqdict

2 def aStar(start_coordinates, Env, epsilon = 1.0):

3 current = ANode(tuple(start_coordinates), start_coordinates)

4 current.g = 0.0

5 current.h = Env.getHeuristic(current)

6

7 Graph[current.key] = current

8 OPEN = pqdict()

9

10 while True:

11 if Env.isGoal(current.coordinates):

12 return recoverPath(current, Env)

13

14 current.is_closed = True

15 updateData(current, Graph, OPEN, Env, epsilon)

16

17 if not OPEN:

18 return # If OPEN is empty, no path is found

19

20 # remove the element with smallest f value

21 current = OPEN.popitem()[1][1]

36

A* Implementation

1 def updateData(current, Graph, OPEN, Env):

2 successor_list, cost_list, action_list = Env.getSuccessors(current)

3 for s_coord, s_cost, s_action in zip(successor_list, cost_list, action_list):

4 s_key = tuple(s_coord)

5 if s_key not in Graph:

6 Graph[s_key] = ANode(s_key, s_coord)

7 Graph[s_key].h = Env.getHeuristic(s_coord)

8 child = Graph[s_key]

9

10 tentative_g = current.g + s_cost

11 if(tentative_g < child.g):

12 child.parent, child.parent_action = current, s_action

13 child.g = tentative_g # Correct label

14

15 fval = tentative_g + epsilon*child.h

16 if child.is_open: # if OPEN, update priority

17 OPEN[s_key] = (fval, child)

18 OPEN.heapify(s_key)

19 elif child.is_closed and reopen_nodes: # if CLOSED, consider reopening

20 OPEN[s_key] = (fval, child)

21 child.is_open, child.is_closed = True, False

22 else: # new node, add to heap

23 OPEN[s_key] = (fval, child)

24 child.is_open = True

37

Outline

Label Correcting Algorithms

Dijkstra’s Algorithm

A* Algorithm

Jump Point Search

38

Jump Point Search

▶ In a large open space, there are many equal length
shortest paths

▶ A* adds a node’s immediate neighbors to the OPEN
priority queue, only to pop them soon after

▶ What if we could look ahead and skip nodes that are
not valuable, e.g., lead to symmetric paths?

▶ Assumption: undirected uniform-cost grid, i.e., the same move costs the
same amount in every node i

▶ 2-D case:
▶ each node has ≤ 8 neighbors
▶ straight moves cost 1
▶ diagonal moves cost

√
2

39

Straight Moves

Consider horizontal/vertical movement from node i . We can
ignore the node we are coming from (parent p(i)) since we
already visited it

We can assume the two nodes diagonally behind us have been
reached via p(i) since those are shorter paths than going
through i

We can assume that the nodes above and below have also
been reached via diagonal moves from p(i), which cost

√
2

rather than going through i for a cost of 2

The nodes diagonally in front of us can be reached via the
neighbors above and below

40

Forced Neighbors for Straight Moves

This leaves only a single natural neighbor to consider and
that is the main idea – as long as the way is clear we can
jump ahead to the right without adding any nodes to OPEN.

If the way is blocked as we jump to the right, we can safely
disregard the entire jump because the paths above and below
will be handled via other nodes.

But what happens if one of these neighbors that we assume
will cover other paths is blocked? We are forced to con-
sider the node that would have otherwise been considered by
the blocked path. Such a neighbor is called a forced neigh-
bor. When we reach a node with a forced neighbor, we stop
jumping right and add the node to the OPEN list for further
examination.

41

Diagonal Moves

Consider diagonal movement from node i . As before, we
can ignore the parent p(i) since we already visited it. We
can also ignore the left and below neighbors since they can
be reached optimally from p(i) via a straight move.

The nodes up and to the left and down and to the right can
also be reached more optimally via the neighbors to the left
and below.

This leaves three natural neighbors: two above and to the
right, and one diagonally in the original direction of travel.

Two of the natural neighbors require straight moves and
since we already know how to jump straight we can look
there first for forced neighbors. If neither finds any, we move
one more step diagonally and repeat.

42

Forced Neighbors for Diagonal Moves

Simiar to forced neighbors during straight movement, when
an obstacle is present to our left or below, then the neigh-
bors diagonally up-and-left and down-and-right cannot be
reached in any other way but through i . These are forced
neighbors for diagonal moves. When we reach a node with
a forced neighbor, we stop jumping diagonally and add the
node to OPEN for further examination.

The straight-line jumps initiated from the two natural neigh-
bors might also reach a forced neighbor. In that case, we
also need to add the current node i to the OPEN set and
continue with the next A* iteration.

43

Formal Definitions
▶ Let i be the current node under evaluation and p(i) be its parent

▶ Natural neighbor: a node j ∈ Neib(i) is a natural neighbor if
▶ (Straight Move): cp(i),i + ci,j < cp(i),k + ck,j for all k ∈ Neib(i), including

k = j in which case cj,j = 0. In other words, j is a natural neighbor of i if the
shortest path from p(i) to j has to go through i .

▶ (Diagonal Move): cp(i),i + ci,j ≤ cp(i),k + ck,j for all k ∈ Neib(i), including
k = j in which case cj,j = 0. In other words, j is a natural neighbor of i if a
shortest path from p(i) to j has to go through i .

▶ Forced neighbor: a node j ∈ Neib(i) is a forced neighbor if both:
1. j is not a natural neighbor of i
2. cp(i),k + ck,j > cp(i),i + ci,j for all k ∈ Neib(i)

▶ Jump point: node j with coordinates xj is a jump point from node i in
direction d , if xj minimizes λ ∈ N such that xj = xi + λd and one of the
following holds:
1. Node j is the goal node τ
2. Node j has at least one forced neighbor
3. ∥d∥1 = 2 (diagonal move) and ∃k ∈ V which lies λi ∈ N steps in a straight

direction di ∈ {d1, d2}, i.e., xk = xj + λidi , and k is a jump point from j by
condition 1 or 2 above.

44

Putting It All Together

▶ We apply the A* algorithm as usual, except that when we are expanding a
node i from the OPEN list we:

1. Look at its parent p(i) to determine the direction of travel.

2. Jump as far as possible (straight first, then diagonally), skipping intermediate
nodes using the simplifying rules until we encounter a jump point j

3. We treat j as if it were an immediate child of i : try to decrease its g -value and
then insert it into OPEN

▶ Main takeaway: accessing the contents of many points on a grid in a few
iterations of A* is more efficient than maintaining a priority queue over many
iterations of A*

45

2-D Jump Point Search

Algorithm 2-D Jump Point Search

1: function getSuccessors(i , τ)
2: Successors(i) ← ∅ ▷ Keep all neighbors of the start node s
3: Neighbors(i) ← prune(i ,Neighbors(i)) ▷ Keep only natural and forced neighbors
4: for all j ∈ Neighbors(i) do
5: j ← jump(i ,direction(i ,j),τ)
6: add j to Successors(i)

7: return Successors(i)

8:
9: function jump(i , d , τ)

10: j ← step(i , d)
11: if j is an obstacle or outside the grid then
12: return null
13: if j = τ or ∃k ∈ Neighbors(j) such that k is forced then
14: return j

15: if ∥d∥1 = 2 (diagonal) then
16: for k ∈ {1, 2} do
17: if jump(j , dk , τ) is not null then
18: return j

19: return jump(j , d , τ)

46

Example: 2-D JPS

Starting from the green node in OPEN we jump hor-
izontally, then vertically, then diagonally until a jump
finds a node (blue) with a forced neighbor (purple). We
add the yellow node to OPEN.

We expand the yellow node. Checking diagonally leads
to the edge of the map so no new jump points are
added. The jump point (blue) is added to the OPEN
list.

We expand the yellow node from OPEN. Since we were
moving diagonally, we first explore the horizontal (leads
to map edge) and vertical (blocked) directions and then
jump diagonally.

We encounter a node with a forced neighbor (the goal)
and add it to OPEN. Expanding this last node reaches
the goal.

47

2-D JPS Pruning Rules and Optimality

Theorem: Optimality of JPS (Harabor and Grastien, AAAI 2011)

Jump point search in a 2-D undirected uniform-cost grid returns the cost of an
optimal path from s to τ if a feasible path exists and ∞ otherwise.

▶ D. Harabor and A. Grastien, “Online Graph Pruning for Pathfinding on Grid
Maps,” AAAI, 2011

48

3-D JPS Pruning Rules

49

	Label Correcting Algorithms
	Dijkstra's Algorithm
	A* Algorithm
	Jump Point Search

