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Abstract— To date the design of grasping metrics has largely
focused on finding (and calculating) specific features that are
(potentially) relevant to grouping or characterizing grasps, and
particularly on metrics that might predict success (or failure) of
a grasp. These metrics leverage human knowledge of physical
interaction and are typically relatively quick to compute. One
drawback to them, however, is that they are heterogeneous (eg,
some combination of number of contact points, force vectors,
positional or joint data), often specific to the robotic hand
employed (eg, joint angles) and rarely take the full object shape
into account (often reducing the shape geometry via PCA to
a simple 3-vector). From a machine-learning perspective this
makes it challenging to combine and learn over mixed data
sets. A more subtle challenge is that the metrics (particularly
contact points) are unstable, in that very small movements of
the geometry can result in big changes in the number and
location of contacts.

In this paper we explore an alternative metric which is
hand and object agnostic, and very stable with respect to small
changes in the geometry of the hand or object. Although compu-
tationally more expensive than existing, specialized approaches
(and also higher dimensional), we propose that it may be more
suited to machine learning analysis. At heart, this metric simply
captures the ways in which the object is free to “twist” or move
out of the hand.

I. INTRODUCTION

Robotic grasping is a difficult task, both because of the
complexity of the problem space (a typical robotic hand and
arm can have over 10 degrees of freedom) and because of the
difficulty of representing the possible physical interactions
between the hand and the object, which also varies with
the object’s geometry. Existing approaches to quantifying
these interactions have focused — with good cause —
on manually-designed metrics that capture specific physical
quantities that are likely to be useful such as contact points
and forces, joint angles and torques [1] and on “summary”
measures such as the PCA of the object’s volume, the
wrench metric, and the enclosing volume [1] that reduce
complicated physical interaction or shape properties down to
a few numbers. These metrics have the advantage of reducing
this complicated space down to a (relatively) small set of
metrics that can be calculated fairly quickly, and have shown
some success in predicting grasp success or failure [2].

There are challenges, however, with using these metrics
to learn across multiple hands and objects. First, the data
is heterogeneous — joint angles, forces, contact points, etc
— which makes balancing their contribution (what weights
to apply) more difficult. Second, some data (such as joint
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angles) can’t be transferred from one hand to another. Third,
other data (such as number of, and location of, contact
points) are very unstable. Fourth, object geometry is only
poorly captured with existing approaches.

To address these issues, we propose a grasp metric that
trades off specificity and conciseness for uniformity and
stability. Essentially, this metric records what percentage of
the object intersects the hand as the object is moved out of the
hand. To make this meaningful (and computationally doable)
we define a uniform sampling strategy for transforming the
object that takes into account both rotation and translation.
This creates a vector of numbers that are homogeneous
(intersection volumes), the same for all hands and objects,
changes smoothly as the hand morphology/object shape and
object pose in the hand change, and captures more detailed
aspects of the object geometry.

The limitations of this metric are that it does not directly
capture forces or torques (as the wrench metric does) and
it is computationally more expensive. Preliminary results
show, however, that it is stable under small perturbations
and produces a metric that reflects, in part, human notions
of grasp similarity.

We first define the mathematics behind the method, then
the actual implementation, including normalization for object
volume and hand morphology aimed at ensuring the sam-
pling is as similar as possible. We then discuss the specific
data set we used to test the algorithm with.

II. RELATED WORK

A. Shape analysis

We were inspired, in part, by shape descriptors used
to identify similar shapes and parts of shapes (see review
in [3], and specifically [4]). Unlike grasp metrics — which
have primarily been designed for direct testing of grasp
effectiveness — shape descriptors are used to identify similar
shapes. Our observation is that, given a sufficiently large data
base of successful and unsuccessful grasps, finding a good
grasp can be reduced to finding a grasp that is “similar” to
one that has been shown to be effective.

B. Grasp metrics

Caging, computation of force closure, and related tech-
niques such as contact regions (see eg [5]) are closely
related to the metric presented here. One challenge with these
metrics is that they are based on detecting contact points
— shift the object’s pose slightly (or move the fingers) and
the set of contacts shifts. This makes the metric somewhat
unstable to small perturbations, and if a contact disappears



then the force at that contact point also disappears. Our
metric trades direct, physics-based calculations that provide
specific information about the grasp for regularized sampling
and contact calculation that is more stable.

Our metric is also closely related to Pinto & Gupta’s image
plus hand-movement metric [6]. Both metrics use movement
of the hand as an input; our metric samples movement of the
hand relative to the object, theirs the translation and rotation
of the hand relative to the object bin. They work from image
data, which incorporates shape information for the object
and the hand; we directly use the shape of the object and
the hand. While we have not attempted to use our metric
in grasp optimization/evaluation, their deep neural network
approach should be directly applicable to our metric.

III. METHODS

Our metric calculates the amount of intersection of the
hand and the object as the object is moved out of the hand
in a uniformly sampled set of directions. We record the
intersection volume along each transformation path, until
the object has cleared the hand. The theoretical contribution
of his paper is how to create a uniformly sampled set of
transformation paths (Section III-A). On the more practical
implementation side we also need to define how to calculate
the intersections (Section III-B), how to consistently orient
the hand and object so that the transformation samples
are aligned and how to normalize for object shape and
volume (Section III-C). The latter is primarily to account
for objects where the grasp only encloses a small part of
the shape, such as the spray handle of a bottle. Note that,
for the purposes of comparing two grasps we could just try
all possible starting configurations and take the minimum
distance between the two metrics over all configurations [7]
but that would introduce additional computational cost.

A. Transformations

We have three goals in defining the transformation sam-
pling pattern. The first is to capture what happens as the
object moves out of the grasp, the second is to sample
(as uniformly as possible) the space of all possible rigid
body transformations of the object with respect to the hand,
and the third is to use a regular sampling pattern that is
amenable to hierarchical representation or sub-sampling. To
satisfy the first goal, we need to define a set of transformation
sequences that each move the object (simultaneous rotation
and translation) out of the hand. The union of all of these
paths should cover the space of transformations. An example
of these paths is shown in Figure 1. The second and third
goals are satisfied by defining a regular sampling of the
combined translation and rotation space.

The correct way to generate these paths is to use a
discretized version of exponentiation. Essentially, the path is
defined by a translation direction T (in object space) along
with a simultaneous rotation R (again in object space). To
define the path, we integrate, applying T R to the object at
each time step. This produces the paths shown in Figure 1.
By uniformly sampling the set of translation directions and

rotations, we can generate a uniformly distributed set of
transformation paths. The union of all of the poses along
all of the paths provides a (relatively) uniform sampling of
poses that is denser around the initial pose, but is still regular.
This is in contrast to simply generating random poses [8],
which would satisfy the uniform sampling goal but would
not provide any structured relationship within the sampling
pattern.

More formally, we split up the sampling into a body-frame
translation velocity (Ṫ = (Ṫx, Ṫy, Ṫz), ||Ṫ ||= 1), a body-frame
rotation direction ω = (ψ̇, φ̇ , θ̇), and a rotation speed ||ω||.
Each set of these parameters defines a helical path on SE(3),
where for velocities arranged as

m(T,ω) =


0 −θ̇ φ̇ Ṫx
θ̇ 0 −ψ̇ Ṫy
−φ̇ ψ̇ 0 Ṫz

0 0 0 0

 , (1)

the object pose at time t is

M(T,ω, t) = exp(mt) (2)

=


x

R3×3 y
z

0 0 0 1

 , (3)

where the matrix M is a combined rotation-translation matrix
that results from integrating the translation direction Ṫ and
rotation direction and amount ω in object space.

We sample these trajectories at a set of times 0 ≤ ti ≤ 1,
where for simplicity’s sake we assume that the length of
the paths we want to generate is 1 (we can always scale
the combined hand and object geometry to ensure that a
path length of 1 takes the object out of the hand’s enclosing
volume, see III-C). By construction, sampling evenly along t
produces evenly spaced samples along the path. In this paper
we used 10 steps for each path, but discarded the origin since
it is the same for all paths, for a total of 9 samples.

To sample the rotation and translation directions we used
a spiral phyllotaxis pattern mapped to the sphere [9], which
produces a relatively uniform sampling of points on the
sphere for any given number of points. Moreover, changing
the number of points changes the sample locations in a well-
defined way. This pattern provides the translation direction
(3 degrees of freedom) and the rotation axis (3 degrees of
freedom) with a fourth degree of freedom the amount of
rotation (a quarter or half turn in the positive and negative
directions).

To generate our samples we pick the number of translation
directions Nt , the number of rotation axes Na and the number
of rotation amounts Nr. We combine these in all possible
ways, plus a no-rotation option and a no-translation option,
resulting in 9(Nt ∗Na ∗Nr +Nt +Nr ∗Na) samples.

We experimented with sampling the translations more
than the rotations (Nt = 28, Nr = 7, Na = 2), the rotations
more than the translations (Nt = 10, Nr = 7, Na = 4), and
a balanced amount of each (Nt = 18, Nr = 6, Na = 4). The



Fig. 1. A small number of example paths, colored by time, for a T-shaped
object.

results for the noise test were qualitatively similar for all
three cases (see Figure 6).

B. Intersections

To calculate the intersections we need a reasonably fast
method that is suitable for a range of geometry. Essentially,
we represent the hand geometry as an inside-outside function
and the object as a set of uniformly-sized interior vox-
els/cubes plus a set of surface half-sized cubes/hemispheres.
The volume calculation is then simply a matter of transform-
ing the object cubes and summing up the number of cubes
who’s centers are inside.

This formulation will tend to over-estimate the intersection
volume. We could perform a more exact volume calcula-
tion by, for example, finding the zero-level surface within
the boundary object cubes, however, the extra cost is not
warranted in our method. More specifically, we are looking
for the pattern of intersection volume change, not the exact
volume intersection value. Therefore, as long as the approach
(roughly) over-estimates the value in the same way for all
objects, the inaccuracy will not have a noticeable effect.

We use samples on the object’s surface to account for
thin object geometry (eg, stems of wine glasses). We are
less concerned with thin hand geometry, in part because
robotic hands tend to not have really thin elements, and in
part because we can use relatively high sampling on the hand
geometry. The resolution of the hand grid has a one-time cost
(scanning the geometry), but the inside/outside calculation of
the object cubes depends only on the number of object cubes,
not on the resolution of the hand grid.

More specifically, we use VOXELISE in MATLAB [10]
to convert the hand geometry into an inside/outside func-
tion, and to compute the interior cubes for the object. We
use MeshLab’s Poisson disk re-sampling function [11] to
generate the points on the surface. We chose the number

of samples based on the surface area of the object and the
specified grid resolution for the object, ensuring that the
Poisson disk radius is (approximately) 1/16 of the object’s
grid size.

For the objects in this paper we used a hand grid resolution
of 100 and an object grid resolution of 50.

Let Vo be the volume of an object cube. The intersection
volume calculation is simply the number of object interior
cubes inside of the hand times Vo, plus the number of bound-
ary sample points inside of the hand times (Vo/2×1/16).

We discuss volume normalization in Section III-C.

C. Normalization

Although the descriptor is the same for all hand/object
pairs, there are issues of normalization for different hands:
• Where the paths start with respect to the hand — i.e.,

what is considered the origin?
• The orientation of the paths with respect to the hand —

i.e., what direction do the objects travel in?
• The overall enclosing volume of the hand — i.e., how

far along the path is considered the “same”?
• Accounting for the volume occupied by the hand geom-

etry itself.
We define the coordinate system using the hand’s geome-

try, essentially placing the origin in the center of the hand’s
enclosing volume, using the orientation of the palm to define
the orientation of the coordinate system (“out” of the palm
and “up” from the enclosing finger(s). More specifically,
close the fingers loosely. Let d be the distance from the palm
to the outside of the fingers, as measured along the normal
vector from the palm. We place the origin half-way along
this vector, and scale the system so that d/2 is 1.

Note that the center of the rotation system is NOT defined
by the object’s center.

We also normalize for the hand volume, representing the
intersection as the percentage of hand inside the object over
the volume of the hand. It does not make sense to normalize
for the object’s volume since the object’s size relative to the
hand would swamp the calculations.

IV. EVALUATIONS AND RESULTS

In this section we perform comparisons on an existing
grasp data set in order to evaluate the metric in practice. The
test examines how the metric behaves when noise is added
to the object’s position and orientation within the hand.

A. Noise test

We perform two noise tests that looks at the behavior of
the metric as the object’s position and orientation are varied
slightly in the hand, and as the joint angles of the fingers are
varied slightly.

Figure 2 shows the objects and grasps used for the
noise evaluations. These 6 grasps were chosen somewhat
at random from the 150 available grasps with the goals of
1) choosing grasps that were “different” in that they used a
different number of fingers or different finger configurations;
2) the grasps were located at different positions relative to



the object’s center; 3) the geometry was different; 4) the
geometry was a different size relative to the hand.
Comparison function: We tried both the L2 norm of the
values and the L2 norm of the sequence differences (how
much the intersection values changed along the trajectory).
For the noise tests the L2 norm was more discriminatory so
it was chosen for the majority of figures in this paper. We
show an example of the L2 norm of the differences in the
right hand side of Figure 6.
Object pose: We added noise to the object’s pose by moving
its center by ε of the overall maximum length of the object
and rotating it around its center by an arbitrary axis by π/δ .
We moved each object 6 times for each noise level. We used
two noise levels, ε = 0.0125,δ = 64 and ε = 0.025,δ = 32.
An example of all of the generated positions for one object
is shown in the top of Figure 4. This produces a total of
2× 6× 6 distinct data points. We compare each data point
to all of the others, and classify them as between-object
((6×(6−1))/2×(6×6) = 540 comparisons per noise level)
or within-object (6× (6× (6− 1))/2 = 90 comparisons per
noise level). We compare the within-object noise distribution
versus the between-object noise distribution in the bottom of
Figure 4. For both noise levels the within-object L2 difference
distribution is distinct from the between-object distribution.
Joint angle: For the joint angle test we varied the joint
angles of the fingers for the spray bottle grasp. We randomly
added five levels of noise to the joint angles (1-5% of the
joint range). We generated 20 random perturbations at each
level. Figure 3 compares the distribution of errors for each
percentage level.

In Figure 5 we look at the variation in L2 norms on a
per-object basis. Within-object: We see that the Bottle body
and Box grasps have the highest L2 differences and spreads,
which is because these objects are both large and the center
of noise rotation is outside of the hand. The other four are
similar. As we increase the noise the mean L2 difference
increases as expected. Between-object: Increasing the noise
(top left) increases the standard deviation and mean L2 values
for each object pair slightly; see Figure 2 to see which pairs
are most similar. For comparison’s sake we plot a light gray
line at the maximum L2 value for the within-object, small
noise group, and the minimum L2 value for the between-
object, small noise group.

V. DISCUSSION

The tests here are fairly simplistic, but do show the
metric is discriminatory and relatively insensitive to small
perturbations in position and changes in sampling rates.
More analysis is needed to determine how well the metric
behaves when comparing different hand geometry and what
the best trade-off is between sampling rate and computational
complexity. The current computation time is around 10
seconds (approximately 200 trajectory samples) to a minute
(approximately 600 trajectory samples) with un-optimized
MATLAB code.

VI. CONCLUSION

In conclusion we have shown the feasibility of a geometry-
only metric that is largely hand and object shape agnostic,
and which is amenable to machine-learning approaches.

VII. ACKNOWLEDGMENT

Funded in part by NSF grants CNS 1730126 and
CNS 1659746. We would also like to thank the Saturday
Academy’s ASE program.

APPENDIX

REFERENCES
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Fig. 2. The 6 grasps selected for the noise tests. The green bars on the bottom denote the four most similar grasps under object movement (as measured
by our metric), while the red bars on the top denote the for most dis-similar grasps.
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Fig. 3. Distribution of differences as joint noise levels are increased from 1
to 5 percent. Note increasing error as joint angle noise increases, but overall
differences are still well below between-grasp differences.
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Fig. 4. Top row: Green points are the vertices of the object after noise was
added (six copies total). Bottom row: Distribution of L2 differences for the
copies with noise (orange) and the 6 grasps compared to each other (blue).
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at the same value on all graphs for comparisons between all four graphs (the plots on the right are largely under the dashed gray line on the left).
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Fig. 6. Increasing the number of rotations sampled versus translations
results in error distributions that are qualitatively similar.


