
Exploiting Rigid Body Motion for SLAM in Dynamic Environments

Mina Henein, Gerard Kennedy, Robert Mahony and Viorela Ila

Abstract— The limitations of existing localisation and map-
ping algorithms in handling highly dynamic environments is
a key roadblock in the deployment of autonomous mobile
robotic systems in a range of important real world situations.
In this paper we propose a technique to integrate the motion of
dynamic objects into a Simultaneous Localisation and Mapping
(SLAM) algorithm without the need to know a-priori or model
the geometry of the object, or even to explicitly estimate the
pose of the object. The benefit of this approach lies in a
simplification of the underlying SLAM state and a resulting
simplification of the non-linear least squares optimisation so-
lution. We demonstrate the performance of the algorithm on
two scenarios; SLAM in an urban traffic scenario, and extrinsic
calibration of a multi RGBD camera system observing a moving
object. Our experiments show consistent improvement in robot
localisation and mapping accuracy and demonstrate potential
of the proposed algorithm.

I. INTRODUCTION

The world is a complex and highly dynamic environment,
and thus to allow robotics to be part of our daily lives,
research in autonomous robotics is rapidly departing from
simple, controlled environments to environments that are
more representative of the reality. In order to perform tasks
autonomously in such environments, a robot must be able
to simultaneously build an accurate representation of its sur-
roundings and localise itself. Simultaneous localisation and
mapping (SLAM) algorithms are a core enabling technology
for autonomous mobile robotics.

SLAM is a well researched area in robotics, and while
many efficient solutions to the problem exist, most of the
existing techniques heavily rely on the static world assump-
tion [1]; an assumption that is invalid in highly dynamic
environments. The conventional technique in SLAM for
dealing with dynamics is to either treat them as outliers [2],
[3], [4], [5] or detect and track them separately using
traditional multi-target tracking [6], [7], [8]. In neither case
is the information about the moving points used in the robot
pose estimate within the SLAM algorithm. This means that
in dynamic environments, the resulting SLAM problem can
easily fail due to the lack of reliable static environment
features [9], [10]. Although point representation is the most
commonly used method of representing the environment in
visual SLAM [11], primitives such as lines, planes [12], [13],
[14], [15] and even objects [16], [17] can provide richer map
representations, and are better suited to SLAM in dynamic
environments [18], [19].

The authors are with the Australian Centre of Excellence
for Robotic Vision, Research School of Engineering, The
Australian National University, Canberra ACT 2601, Australia
mina.henein, gerard.kennedy, robert.mahony
and viorela.ila@anu.edu.au

Existing object SLAM algorithms require a two stage
approach; initially the objects are segmented, tracked and
their poses are estimated (the ‘front end’), and then this
information is used to estimate the state in a probabilistic
framework (the ‘back end’) [11]. The problem of object
detection and segmentation seems to have achieved accurate
solutions at almost real time [20], [21]. However, to the
best of our knowledge, the problem of 3D pose estimation
still remains a challenge to learning techniques [22], [23]
that are incorporated into state of the art SLAM front-
ends. Existing object or primitive structure-based SLAM
algorithms suffer from the inability of the front end to
provide reliable pose/structure information, even though the
segmentation, that associates pixels to objects, is highly
reliable [20], [21].

In this paper, we propose a feature-based algorithm that
exploits data segmentation to integrate rigid body motion of
objects into a SLAM framework, without the need to estimate
the object pose or to have prior knowledge of the object’s
3D model. We use constant motion to model the motion
of dynamic objects in the environment. We incorporate this
information into the SLAM framework by a simple change of
variables that relies on the rigidity assumption of the moving
objects in the scene. We evaluate our algorithm on two
applications; driving in an urban environment, and extrinsic
calibration (estimation of relative camera poses) of a multi
RGBD camera system. In highly dynamics environments our
algorithm produces consistently better results compared to
accepted algorithms that exclude moving features from the
robot pose SLAM estimation. In addition, the algorithm is
directly applicable to the problem of multi-camera extrinsic
calibration, even in the case where the cameras have non-
overlapping views, as long as there is an observed object
that moves with constant motion (for example circling the
camera array) that is seen by all cameras.

The remainder of this paper is structured as follows, in
the following section we discuss the related work. In section
III we describe the proposed approach for incorporating
dynamics of the scene. In section IV we introduce the
experimental setup, followed by the experimental results and
evaluations in section V. We summarise and offer concluding
remarks in section VI.

II. RELATED WORK

The earliest work on SLAM was based on the extended
Kalman filter (EKF) approach [24], [25]. However, it has
been shown that filtering is inconsistent when applied to the
inherently non-linear SLAM problem [26]. One intuitive way
of formulating SLAM is to use a graph representation [27]

with nodes corresponding to the random variables (robot
poses and/or landmarks in the environment) and edges repre-
senting functions of those variables (typically measurement
functions). Once such a graph is constructed, the goal is to
find a configuration of the nodes that is maximally consistent
with the measurements [28]. Approaching SLAM as a non-
linear optimisation on graphs has been shown to offer very
efficient solutions to SLAM applications [29], [30], [31].

In SLAM algorithms, information associated with sta-
tionary objects is considered positive, while moving objects
are seen to degrade the performance, and are either treated
as outliers [2], [3], [4], [5] or tracked separately using
multi-target tracking [6], [7], [8]. Conversely, measurements
belonging to moving objects are required for moving object
tracking algorithms, while stationary points and objects are
considered background and filtered out. However, establish-
ing the spatial and temporal relationships between a robot,
stationary objects, and moving objects in a scene serves as
a basis for scene understanding [18]. Simultaneous locali-
sation, mapping and moving object tracking are therefore
mutually beneficial.

One of the earliest work in the area of SLAM in dy-
namic environments is presented by Hahnel et al. [3] who
use an Expectation-Maximisation (EM) algorithm to update
the probabilistic estimate about which measurements corre-
sponded to a static/dynamic object and remove them from
the estimation when they correspond to a dynamic object.
Bibby and Reid’s SLAMIDE [32] also estimates the state
of 3D features (stationary or dynamic) with a generalised
EM algorithm where they use reversible data association to
include dynamic objects into a single framework SLAM.
Wang et al. [18] developed a theory for performing SLAM
with Moving Objects Tracking (SLAMMOT). They first
presented a SLAM algorithm with generalised objects, which
computes the joint posterior over all objects and the robot, an
approach that is computationally demanding and generally
infeasible as stated by the authors. They also developed
a SLAM algorithm with detection and tracking of moving
objects, in which the estimation problem is decomposed
into two separate estimators, for the stationary and moving
objects, which results in a much lower dimensionality and
makes it feasible to update both filters in real time. Our
algorithm, described in the next section, exploits rigid body
motion in a single graph-SLAM framework.

III. ACCOUNTING FOR DYNAMIC OBJECTS IN SLAM
A. Notation

We use factor graphs [33] to model the SLAM with
dynamic objects estimation problem. Camera/robot poses are
parameterised by x = {x0...xnx}, with xk ∈ se(3), and nx is
the number of time steps. That is, the pose of the robot at
time step k is exp(xk) ∈ SE(3). The sequence of 3D point
features are denoted by l = {l1

0 . . . lnl
nx} with li

k ∈ IR3 and
i∈ 1...nl is the unique index of a landmark and nl is the total
number of detected landmarks. This constitutes the set of
variables in a typical SLAM problem. The set of landmarks,
l = ls ∪ ld, constitutes of a set of static landmarks ls and

a set of landmarks detected on moving objects at different
time steps, ld. Let {0} denote the reference coordinate frame.
The robot/camera poses and the positions of the 3D points
are represented in the {0} reference frame. For a SLAM
problem with dynamic rigid body objects, let {L} be a
coordinate frame associated to a moving rigid body (object).
0Lk ∈ SE(3) is the rigid body pose with respect to the ref-
erence frame {0}, 0bk ∈ se(3)|0bk = log(0Lk). For a feature
observed on an object, Lli ∈ IR3 denotes the coordinates of
this point in the body-fixed frame, where ‘i’ is the unique
index of the feature. We write 0li

k the coordinates of the
same point expressed in the reference frame {0} at time
k. The relative motion of the object from time k to time
k+1 is represented by a rigid-body transformation 0

kH j
k+1 ∈

SE(3), with 0
ku j

k+1 ∈ se(3)|0ku j
k+1 = log(0

kH j
k+1), j ∈ 1...no is

the object index and no is the number of identified objects.

B. Graph formulation
We start from a ‘naive’ way of integrating rigid body

motion into the estimation, with the aim of justifying
why this implementation is impractical and in most cases
infeasible. Fig. 1 shows a factor graph representation of
an implementation of a SLAM algorithm that integrates
dynamic body motion into the estimation. In Fig. 1, solid
black nodes represent random variables to be estimated, and
coloured dots represent the factors relating those nodes. Blue
factors represent odometric measurements, red factors rep-
resent point measurements in camera frames, green factors
represent relative positions of points with respect to the
object pose they belong to, and grey factors represent the
object motion constraints. We are particularly interested in
the relative point positions with respect to their object pose
and the object motion factors.

p0 x0 x1 x2

l1 l20 l21 l22 l3

b10 b11 b12

bu1

1

Fig. 1: Factor graph representation of a SLAM problem with moving
objects.

The green factors encode the positions of the landmarks in
the body fixed frame, which are constant for every time step
(assuming rigidity of the objects). Implementation of these
factors requires some knowledge of the object 3D model,
either estimated at every time step or known a-priori. The
grey factors require an measurement of the object pose at
every time step. This is usually provided by the front end
explicitly based on a model of the point estimates or directly
from a deep network or similar front end.

A-priori knowledge of 3D models of the objects in the
scene requires development of an object database before-
hand [17] or training of a deep network on known example
scenarios. Even if such prior learning is available, state-of-
the-art front-end algorithms are still unable to reliably and
accurately provide object poses/motion [22], [23]. In many
real-world situations the ability to undertake prior learning
is not available and algorithms that rely on such information
are infeasible.

C. Motion model of a point on a rigid body

This section shows how the motion of the rigid body
objects can directly be transferred to the motion of the feature
points without the need of estimating for the pose or the
geometry of the moving object.

p0 x0 x1 x2

l1 l20 l21 l22 l3

0u1

1

Fig. 2: Factor graph representation of a problem with a motion vertex and
its edges.

Fig. 2 shows a factor graph representation of a SLAM
problem that integrates the motion of a rigid body object
that acts directly on the feature points without the need to
estimate the rigid body pose. First, we write the relative
position of a landmark with respect to the object centroid for
two consecutive time steps; k and k+1. Using the assumption
that the object in question is a rigid body, it follows that
L l̄i

k =
L l̄i

k+1 which can be written as;

0L−1
k

0 l̄i
k =

0L−1
k+1

0 l̄i
k+1 (1)

where L l̄i and 0 l̄i
k are the homogeneous coordinates of the

points Lli and 0li
k, respectively. Factor ‘c’ represents the

relation between the position of a landmark with respect to
the parameterisation of its object centroid is shown in Fig. 3a.
From which,

0 l̄i
k+1 =

0 Lk+1
0L−1

k
0 l̄i

k (2)

l20 l21

b10 b11

c c

bu1

d01

rigid

body

l20 l21

b10 b11

e01

bu1

d01

change

of variables

l20 l21

0u1

g01

(a) (b) (c)

1

Fig. 3: Transition from a factor graph representation with rigid body object
poses to one with no object poses and with a motion vertex

The factor corresponding to (2) represents a quaternary
factor that relates the same landmark at two consecutive time
steps, and the poses of the object on which it belongs at these
two time steps, and is defined as follows;

e(0li
k,

0 li
k+1,

0 bk,
0 bk+1) :=

0Rbk ∗
0 R>bk+1

∗ (0li
k+1−0 tbk+1)+

0 tbk −
0 li

k +a j
k (3)

where with 0Rbk and 0tbk are obtained using the exponential
map exp(0bk), and ak ∼N (0,Σak) normally distributed with
zero mean Gaussian noise with covariance Σak . Fig. 3 shows
the transition from a factor graph representation with rigid
body objects (Fig. 3a) to one with motion vertices and no
object poses (Fig. 3b), passing by one with a quaternary
factor between two landmarks at consecutive time steps
and their respective object poses at the same time steps
(Fig. 3c). Factor ‘d’ represents the relation between the
parameterisation of two consecutive object poses and their
respective body-fixed frame pose change is shown in Fig. 3b.
Using the fact that 0Lk+1 can be written as 0Lk+1 = 0Lk
k
kHk+1, where k

kHk+1 ∈ SE(3) (which we call body-fixed frame
pose change) is the rigid body transformation that represents
the relative motion of the object from time k to time k+ 1
expressed in body-fixed frame, and with a simple change of
variables, (2) can be re-written as

0 l̄i
k+1 =

0Lk
k
kHk+1

0L−1
k

0 l̄i
k = 0

kHk+1
0 l̄i

k (4)

where 0
kHk+1 =

0 Lk
k
kHk+1

0L−1
k ∈ SE(3). According to [34],

this equation represents a frame change of a pose transfor-
mation, and shows how the body-fixed frame pose change
relates to the reference frame pose change. The factor
corresponding to (4) and shown in Fig. 3c is:

g(li
k, l

i
k+1,

0
k u j

k+1) =
0
kR j

k+1
> 0li

k+1− 0
kR j

k+1
> 0

kt j
k+1−

0 li
k +qs j (5)

where 0
kR j

k+1 and 0
kt j

k+1 are obtained using the exponential
map exp(0

ku j
k+1), and qs ∼N (0,Σq) is the normally dis-

tributed zero-mean Gaussian noise. The factor in (5) is a
ternary factor that we call the motion model of a point on a
rigid body.

This formulation is key to the proposed approach since it
eliminates the need to estimate the actual object pose and
allows us to work directly with points 0li

k in the reference
frame. A second key observation we make in this paper is
that if the body-fixed frame pose change is constant between
time steps then the reference frame pose change is also
constant. This can be seen by replacing 0Lk by 0Lk−1

k−1
k−1Hk

in 0
kHk+1 =

0Lk
k
kHk+1

0L−1
k to obtain:

0
kHk+1 =

0 Lk−1
k−1
k−1Hk

0L−1
k−1 =

0
k−1Hk (6)

Therefore, for a rigid-body object in motion we can use a
constant reference frame pose change H ∈ SE(3) that acts on
the points on the rigid body to update their reference frame
coordinates: 0 l̄i

k+1 = H0 l̄i
k. This then allows us to draw the

factor graph representation as shown in Fig. 2.
The set of all variables is now θ = x∪ l∪u, where u is the

set of all the variables characterising the objects’ motion.

D. Measurements and object motion constraints

Two types of measurements, the odometry obtained from
the robot’s proprioceptive sensors, and the observations of
the landmarks in the environment obtained by processing the
images from an on-board camera are typically integrated into
a visual SLAM application. Let f (xk−1,xk) be the odometry
model with Σvk , odometry noise covariance matrix:

ok = f (xk−1,xk)+ vk , with vk ∼N (0,Σvk) , (7)

and o = {o1...omi} being the set of mi odometric measure-
ments. Similarly, let h(xk, li

k) be the 3D point measurement
model with Σwk , the measurement noise covariance matrix:

zi
k = h(xk, li

k)+wi
k , with wi

k ∼N (0,Σwk) (8)

where z = {z1...zmk}, zk ∈ IR3 is the set of all 3D point
measurements at all time steps.

The relative pose transformation of the points on moving
rigid bodies is given in (4). Observe that the motion of any
point on a specific object j can be characterised by the same
pose transformation 0

kH j
k+1 ∈ SE(3) with 0

kR j
k+1 the rotation

component and 0
kt j

k+1 the translation component, respectively.
In this paper we show results of integrating constant

motion into the SLAM estimation problem. Fig. 2 depicts the
factor graph of a small SLAM example of three robot poses,
two static features and a feature detected at three different
time steps on an object with constant motion. We say that a
pose change 0

kH j
k+1 is constant for all the points on an object

j at every time step, hence a sole state variable 0u j is used
for each object and the factor in (5) becomes:

g(li
k, l

i
k+1,

0 u j) = 0R j> 0li
k+1− 0R j> 0t j−0 li

k +qs j (9)

E. The graph optimisation

Given the measurements and motion factors introduced
above, we can formulate an NLS problem to obtain the
optimal solution of the SLAM with dynamic objects:

θ
∗ = argmin

θ

1
2

{
mi

∑
i=1
‖ f (xk−1,xk)−ok‖2

Σvk
+

mk

∑
k=1
‖h(xi, li)− zk‖2

Σwk
+

ms

∑
i, j
‖g(li

k, l
i
k+1,

0 u j)‖2
Σq

}
(10)

where mi, mk and ms are the number of odometric measure-
ments, point measurement and constant motion factors.

Iterative methods such as Gauss-Newton (GN) or
Levenberg-Marquard (LM) are used to find the solution of
the NLS in (10). An iterative solver starts with an initial
point θ

0 and, at each step, computes a correction δ towards
the solution. For small ‖δ‖, a Taylor series expansion leads
to linear approximations in the neighbourhood of θ

0 and a
linear system A>Aδ =−A>b is solved at each iteration [35].
In here, A gathers the derivatives of all the factors in (10)
with respect to variables in θ weighted by the square rooted
covariances of each factor, and b is the residual evaluated
at the current linearisation point. The new linearisation point
θ

i+1 is obtained by applying the increment δ ∗ to the current

linearisation point θ
i. This formulation is often used in the

SLAM literature [30], [33], [35], [36].
The factor graph formulation of the SLAM problem is

highly intuitive and has the advantage that it allows for
efficient implementations of batch [33] [37] and incremen-
tal [38], [39], [40] NLS solvers.

IV. EXPERIMENTAL METHODOLOGY

Two main problems are considered, and to which a so-
lution is found by employing the same approach explained
in III. The first problem consists of a SLAM with moving
object tracking, where the goal is to estimate for the robot
and moving object trajectories, and the structure of static
features in the environment. A second application with a
very similar underlying factor graph representation is a multi-
camera extrinsic calibration problem that integrates moving
objects. A factor graph representation for this problem is
similar to the one shown in Fig. 2, however without the
presence of odometric measurements (blue factors).

A set of experiments are carried out on simulated data
obtained by emulating an advanced front-end that is capable
of identifying objects, and associating detected landmarks
with the different objects in the scene at every time step. In
these simulations, two other types of measurements are also
available; odometric measurements and point observations.
A second, more realistic experiment, is performed on the
Virtual KITTI dataset [41]. Furthermore, three more experi-
ments are carried out for extrinsic multi-camera calibration
with different number of cameras. The first two experiments
are simulated datasets with 3 non-overlapping field of view
cameras, and 4 cameras with minimal overlap. Both exper-
iments provide ground-truth. The third is performed on a
real dataset, captured by moving an object around three non-
overlapping ZED-cameras mounted on a rig.

A. Experiments

1) Experiments ‘A’ & ‘B’: In order to evaluate the effect
of integrating the motion of rigid body objects into the
SLAM problem, 2 experiments with multiple moving objects
are generated using a simulated environment. In both experi-
ments, (we will refer to these as “Experiments ‘A’ and ‘B’ in
the remainder of this document), the objects are constrained
to follow a constant motion trajectory. In Experiment ‘A’
the objects are following an elliptical trajectory as seen in
Fig. 4a. Experiment ‘A’ is composed of 581 vertices, 910
edges when motion is integrated into the estimation, and
576 edges when no motion is integrated. In Experiment ‘B’,
the objects are only translating in 3D as seen in Fig. 4b.
Experiment ‘B’ is composed of 302 vertices, 460 edges when
motion is integrated into the estimation, and 299 edges when
no motion is integrated. The decrease in number of edges
when no motion is integrated into the estimation is due of
the removal of ternary edges. It is worth mentioning that
these two experiments involve moving only scene (no static
features) and a moving observer.

-20

20

-10

10

0

0

z
(m

)

y (m)

10

0

x (m)

20

-20-10

-20 -40

(a) Experiment ‘A’

-4

-2

5

0

2

0

z
(m

) 4

y (m)

0

x (m)

6

-5

8

-10-5
-15

(b) Experiment ‘B’

-20

20
10

10

-10

0

y (m)

0 -10

x (m)

0

-20

z
(m

)

-10
-30

-20

10

-40

20

(c) Experiment ‘A’ Solution

0

-2

5

0

-5

y (m) x (m)

0

2

-10

z
(m

)

-5

4

-15

6

8

(d) Experiment ‘B’ Solution

Fig. 4: Different simulated robot and object trajectories(left). Solution of the SLAM with dynamic objects(right). Large dots represent robot trajectory
and small dots represent moving points trajectories. Green - ground truth, Red - the SLAM solution without incorporating object motion information and
Blue - the SLAM solution with constant motion. (best viewed in colour)

2) Simulated camera calibration datasets: Two simulated
experiments with a multi RGBD camera system were run. In
the first experiment, a simulated multi-camera rig consisting
of 3 RGBD cameras with completely disjoint field of views
with an ellipsoid circumnavigating the rig of 3 cameras,
as shown in Fig. 5a, is used to apply our algorithm
for the extrinsic calibration of a multi-camera system. The
visibility map for each camera is shown in Fig. 5b and shows
completely disjoint fields of view. The second experiment
features a system of 4 RGBD cameras where cameras 1 &
2 share some overlapping fields of view, as do cameras 3 &
4, as shown in Fig. 5c. The visibility map for each camera
is shown in Fig. 5d

3) Real camera calibration dataset: The real data is
acquired by manually moving an object (a checker board
pattern) around a rig on which 3 cameras are mounted
looking outwards with non-overlapping fields of view. We
also make use of the planarity information of the object to
enhance the estimation, as explained in [14]. Fig. 6 depicts
a snapshot of the real data setup. This experiment will be
referred to as the ‘real camera calibration’ experiment in
the remainder of this paper. The ‘real camera calibration’
experiment is composed of 1104 vertices, and 3078 edges.
It is worth mentioning that all camera calibration experiments
involve moving only scene (no static features) and a static
observer.

4) Virtual KITTI dataset: Virtual KITTI [41] is a photo-
realistic synthetic dataset designed to evaluate computer
vision scene understanding algorithms. The videos are fully
annotated at the pixel level with object labels, and the
depth map of each image is also available. This makes it
a perfect dataset to test and evaluate the proposed technique
on realistic scenarios. Our front-end detects features in each
image and obtains the 3D position relative to the camera
of each point. The pixel-level object tracking is used to
determine if these points are located on moving or static
objects, and the known camera poses are used to project the
points to the next image in the sequence. In this manner,
static and moving points are tracked between images to
provide data associations between landmarks and objects, as

shown in Fig. 7. It is possible to project points attached to
moving objects to other images as the pose of all moving
objects is provided by the dataset for each image. As the
3D position is tracked for all the points, along with the
camera poses, the relative position of all points can be
obtained for every image that the point remains in the
camera’s field of view. An experiment was run over a total
of 1539 vertices, including robot poses, static and dynamic
landmark positions and constant motion vertices resulting
in a total 3810 edges, of which 1051 are object motion
related ternary factors. The noise levels added to the ground
truth data in order to generate noisy measurements are
as follows: Σv = diag[0.4m,0.4m,0.4m,6◦,6◦,6◦]2 , Σw =
diag[0.4m,0.4m,0.4m]2 , Σq = diag[0.05m,0.05m,0.05m]2.
This experiment will be referred as ‘vKITTI’ in the remain-
der of this paper, and involves static and dynamic scene along
with a moving observer.

B. Implementation details

This work is an extension of an already existing MATLAB
framework that is able to integrate not only simple point
measurements but also additional available information about
the environment into a single SLAM framework. The object
oriented design is thought to accommodate different types
of information about the environment as long as there is
a front-end that can provide this information and a function
that can model it. Added information could be in the form of
structural, geometric, kinematic, dynamic or even semantic
constraints.

The framework consists of: 1) a simulation component
that can reproduce several dynamic environments; 2) a front-
end that generates the data for the SLAM problem by
tracking features, objects and providing point associations
using simulated or real data inputs; 3) a back-end compo-
nent that includes different non-linear solvers for batch and
incremental processing. The estimation is implemented as a
solution to an NLS problem as presented in section III and
solved using Levenberg-Marquardt method. The proposed
technique can be easily integrated into any of the existing
SLAM back-ends [30], [38], [40]. The code for SLAM

-10 -5 0 5 10

x (m)

-10

-8

-6

-4

-2

0

2

4

6

8

10

y
(m

)

(a) 3 camera rig

50 100 150 200 250 300
time

camera 1

camera 2

camera3

(b) camera visibility

-10 -5 0 5 10

x (m)

-6

-4

-2

0

2

4

6

8

10

12

y
(m

)

(c) 4 camera rig

50 100 150 200 250 300
time

camera 1

camera 2

camera3

camera 4

(d) camera visibility

Fig. 5: Top view of an object (green ellipsoid) circumnavigating a rig of n-cameras counter-clockwise and their visibility maps over time. Each camera
and its corresponding visibility map are shown using the same colour. If at a certain time step, more than one camera can see the same object, overlap is
present.(best viewed in colour)

Fig. 6: A snapshot of the real camera calibration data collection; 3 cameras
were mounted on a rig, pointing outwards and a checker board was manually
moved around the rig, and seen by individual cameras at different time steps.

-+- Static Object

-o- Car:81

-o- Car:83

-o- Car:88

Fig. 7: Feature extraction and tracking applied to the virtual kitti dataset.
Static points are shown in green, and a different colour is used for points
attached on each unique object.

with dynamic objects will be made publicly available upon
acceptance.

V. EXPERIMENTAL RESULTS

This section evaluates the proposed technique on the appli-
cations described in section IV. We are focused on analysing
the accuracy and consistency of the proposed estimation
solution and comparing it to the classical SLAM formulation
that does not integrate any additional information about the
motion of the 3D points in the environment.

The accuracy of the solution of the SLAM problem is
evaluated by comparing the absolute trajectory translational
error (ATE), the absolute trajectory rotational error (ARE),
the absolute structure error (ASE), the all to all relative
trajectory translational error (allRTE), the all-to-all relative

Exp.A Exp.B

Error w/o
DOM

w/
DOM % w/o

DOM
w/

DOM %

ATE (m) 0.342 0.203 40.6 0.453 0.351 22.5
ARE (◦) 6.211 3.751 39.6 6.371 4.644 27.1
ASE (m) 0.733 0.498 32.1 0.567 0.319 43.7
allRTE (m) 0.213 0.171 19.7 0.393 0.236 39.9
allRRE (◦) 5.183 3.665 29.3 5.410 5.012 7.3
allRSE (m) 1.049 0.707 32.6 0.797 0.439 44.9

TABLE I: Error values for experiments ‘A’ and ‘B’ explained in section
IV-A.1. ‘w/ DOM’ denotes the proposed estimation technique with dynamic
object motion, while ‘w/o DOM’ means that no object motion information
was used in the estimation. A positive % shows improvement of ‘w/ DOM’.

trajectory rotational error (allRRE), and the all-to-all relative
structure error (allRSE) calculated as in [40].

A. Analysis of the simulated experiments

The tests show that the proposed method helps preserve
the consistency of the map and improves the estimation
quality significantly. This can be seen in Fig. 8 and in Table
I to Table III.

1) Experiments ‘A’ & ‘B’: Table I shows the accuracy
results for the Experiments ‘A’ & ‘B’. The values indicate
that adding information about the motion of the objects in
the estimation process significantly improves the estimation
quality and reduces the trajectory and map errors in both
absolute and relative metrics. This can be seen in the positive
percentage values in the table. Qualitative evaluation of the
same experiments is shown in Fig. 4. Note that the ground
truth (in green) and the SLAM accounting for constant mo-
tion (in blue) have similar values, while without accounting
for the constant motion (in red) diverges from the ground
truth.

2) “Simulated camera calibration”: Results for the multi-
camera rig consisting of 3 & 4 cameras are shown in Table
II. Results show cm/mm range position accuracy (in the 3
camera calibration and the 4 camera calibration respectively)
and less than 1◦ rotation error.

3) Analysis of the real camera calibration experiment: We
project our SLAM 3D point estimates onto their respective
camera poses (generated by our SLAM algorithm) to obtain

Error 3 camera
calibration

4 camera
calibration

ATE (m) 0.098 0.002
ARE (◦) 0.265 0.071
ASE (m) 0.041 0.005

allRTE (m) 0.138 0.003
allRRE (◦) 0.375 0.007
allRSE (m) 0.223 0.059

TABLE II: Result values for the simulated camera calibration with 3 and
4 cameras, and the real camera calibration dataset.

the structure points in the camera frames. As no ground-truth
data is available, a 3D error metric is used. We compare the
points in the camera frames to the output of the triangulate
function in MATLAB. This triangulate function projects
image points onto the camera frames using the knowledge of
the baseline between the stereo-cameras. The structure error
compared the MATLAB output is 0.01m for the absolute
structure error (ASE) and 0.015m for the all-to-all relative
structure error (allRSE).

4) Experiment “vKITTI”: Table III shows the accuracy of
the SLAM solution obtained with and without constant mo-
tion information. As expected, the solution of the estimation
improves when accounting for moving objects in the scene.
It can also be seen in Fig. 8 where a colour map is used
to evaluate the error in the returned map. The lighter the
colour of the point, the less error it has compared to ground-
truth, and the darker the point, the higher the error. Results
show a drop of map error from 5.043m to only 0.779m when
accounting for rigid bodies motion.

vKITTI Exp.
Error w/o DOM w/ DOM %

ATE (m) 1.815 1.547 14.7
ARE (◦) 111.624 8.322 92.5
ASE (m) 5.043 0.779 84.5

allRTE (m) 1.189 1.082 8.9
allRRE (◦) 77.287 7.123 90.7
allRSE (m) 7.325 1.123 84.6

TABLE III: Result values for the vKITTI experiment. “w/ DOM” denotes
the proposed estimation technique with object motion, while “w/o” means
that no object motion information was used in the estimation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce a new way to incorporate
motion of rigid bodies into a SLAM framework and show
how such information can be useful for the SLAM estimation
to improve accuracy and consistency of the results. The for-
mulation has the advantage that no additional object pose or
knowledge about the object geometry is required in order to
account for the moving objects in SLAM. We show potential
applications of the proposed algorithm for SLAM in urban
environments and for the extrinsic calibration of a multi
RGBD camera system. Results show improvements in the

estimation quality and consistency of the results compared
to the same problem with no added motion information.

Although the calibration examples presented in this paper
only use RGBD cameras, the proposed formulation can
easily be extended to monocular cameras, to achieve extrinsic
and intrinsic camera calibration by minimising re-projection
errors. We plan to extend our formulation in the future to in-
clude monocular cameras intrinsic, and extrinsic calibration.

Another important issue to be analysed in the future is the
computational complexity of SLAM with dynamic objects.
It is important to note that without further reductions, the
problem can become intractable in large-scale environments
with many moving objects. But at the same time, state
reduction can be easily implemented using a windowing
approach that maintains only a small set of object points
in the state rather than the full set of points observed along
the entire trajectory. A principled way to do so is to analyse
how much the old observations contribute to the solution of
the SLAM problem [38], [39], [42]. In the future, we plan
to restrict the optimisation problem to relevant state space,
and produce scalable solutions.

ACKNOWLEDGMENTS

This research was supported by the Australian Research
Council through the “Australian Centre of Excellence for
Robotic Vision” CE140100016.

REFERENCES

[1] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard,
“Dynamic pose graph slam: Long-term mapping in low dynamic envi-
ronments,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2012, pp. 1871–1878.

[2] D. Hahnel, D. Schulz, and W. Burgard, “Map building with mobile
robots in populated environments,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2002., vol. 1. IEEE, 2002,
pp. 496–501.

[3] D. Hahnel, R. Triebel, W. Burgard, and S. Thrun, “Map building
with mobile robots in dynamic environments,” in IEEE International
Conference on Robotics and Automation, 2003. Proceedings. ICRA’03,
vol. 2. IEEE, 2003, pp. 1557–1563.

[4] D. F. Wolf and G. S. Sukhatme, “Mobile robot simultaneous local-
ization and mapping in dynamic environments,” Autonomous Robots,
vol. 19, no. 1, pp. 53–65, 2005.

[5] H. Zhao, M. Chiba, R. Shibasaki, X. Shao, J. Cui, and H. Zha, “Slam
in a dynamic large outdoor environment using a laser scanner,” in
IEEE International Conference on Robotics and Automation, 2008.
ICRA 2008. IEEE, 2008, pp. 1455–1462.

[6] C.-C. Wang, C. Thorpe, and S. Thrun, “Online simultaneous local-
ization and mapping with detection and tracking of moving objects:
Theory and results from a ground vehicle in crowded urban areas,”
in IEEE International Conference on Robotics and Automation, 2003.
Proceedings. ICRA’03, vol. 1. IEEE, 2003, pp. 842–849.

[7] I. Miller and M. Campbell, “Rao-blackwellized particle filtering for
mapping dynamic environments,” in IEEE International Conference
on Robotics and Automation, 2007. IEEE, 2007, pp. 3862–3869.

[8] J. G. Rogers, A. J. Trevor, C. Nieto-Granda, and H. I. Christensen,
“Slam with expectation maximization for moveable object tracking,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010. IEEE, 2010, pp. 2077–2082.

[9] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao, “Robust monocular
slam in dynamic environments,” in IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), 2013. IEEE, 2013, pp. 209–
218.

[10] E. Zamora and W. Yu, “Recent advances on simultaneous localization
and mapping for mobile robots,” IETE Technical Review, vol. 30, no. 6,
pp. 490–496, 2013.

-15 -10 -5 0 5 10 15

x

-6

-4

-2

0

2

4

6

8

10

12

y

-10 -5 0 5 10

x

-10

-5

0

5

10

15

y

0
10

20
30

40
50

er
ro

r
in

te
rv

al
s

(a) simulated 3 cameras calibration (b) simulated 4 cameras calibration (c) vKitti final estimates (d) vKitti final estimates
with no overlap with overlap with motion integrated with no motion integrated

Fig. 8: Solution of simulated camera calibration (left) and SLAM in urban environment (right). Green represents ground truth camera poses and points,
final pose estimates are drawn as coordinates. In the right, a color map is supplied to evaluate the error in the structure points, the lighter the point, the
less error it has vs ground-truth, the darker, the higher error. (best viewed in colour)

[11] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[12] P. de la Puente and D. Rodrı́guez-Losada, “Feature based graph-slam
in structured environments,” Autonomous Robots, vol. 37, no. 3, pp.
243–260, 2014.

[13] M. Kaess, “Simultaneous localization and mapping with infinite
planes,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), 2015. IEEE, 2015, pp. 4605–4611.

[14] M. Henein, M. Abello, V. Ila, , and R. Mahony, “Exploring the effect
of meta-structural information on the global consistency of slam,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
2017. The Australian National University, 2017.

[15] M. Hsiao, E. Westman, G. Zhang, and M. Kaess, “Keyframe-based
dense planar slam,” in IEEE International Conference on Robotics
and Automation (ICRA), 2017. IEEE, 2017, pp. 5110–5117.

[16] B. Mu, S.-Y. Liu, L. Paull, J. Leonard, and J. P. How, “Slam with
objects using a nonparametric pose graph,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016. IEEE,
2016, pp. 4602–4609.

[17] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and
A. J. Davison, “Slam++: Simultaneous localisation and mapping at the
level of objects,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013. IEEE, 2013, pp. 1352–1359.

[18] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte,
“Simultaneous localization, mapping and moving object tracking,” The
International Journal of Robotics Research, vol. 26, no. 9, pp. 889–
916, 2007.

[19] D. Gálvez-López, M. Salas, J. D. Tardós, and J. Montiel, “Real-time
monocular object slam,” Robotics and Autonomous Systems, vol. 75,
pp. 435–449, 2016.

[20] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and K. He,
“Detectron,” https://github.com/facebookresearch/detectron, 2018.

[21] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in IEEE
International Conference on Computer Vision (ICCV), 2017. IEEE,
2017, pp. 2980–2988.

[22] A. Byravan and D. Fox, “Se3-nets: Learning rigid body motion using
deep neural networks,” in IEEE International Conference on Robotics
and Automation (ICRA), 2017. IEEE, 2017, pp. 173–180.

[23] P. Wohlhart and V. Lepetit, “Learning descriptors for object recogni-
tion and 3d pose estimation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 3109–3118.

[24] P. Cheeseman, R. Smith, and M. Self, “A stochastic map for uncertain
spatial relationships,” in 4th International Symposium on Robotic
Research, 1987, pp. 467–474.

[25] J. J. Leonard, H. F. Durrant-Whyte, and I. J. Cox, “Dynamic map
building for an autonomous mobile robot,” The International Journal
of Robotics Research, vol. 11, no. 4, pp. 286–298, 1992.

[26] S. J. Julier and J. K. Uhlmann, “A counter example to the theory of
simultaneous localization and map building,” in IEEE International
Conference on Robotics and Automation (ICRA), Proceedings 2001,
vol. 4. IEEE, 2001, pp. 4238–4243.

[27] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous robots, vol. 4, no. 4, pp. 333–
349, 1997.

[28] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[29] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent.” in Robotics: Science and Systems, 2007, pp.
27–30.

[30] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g 2 o: A general framework for graph optimization,” in IEEE
International Conference on Robotics and Automation (ICRA), 2011.
IEEE, 2011, pp. 3607–3613.

[31] V. Ila, L. Polok, M. Šolony, P. Smrž, and P. Zemčı́k, “Fast covariance
recovery in incremental nonlinear least square solvers,” May 2015, pp.
4636–4643.

[32] C. Bibby and I. Reid, “Simultaneous localisation and mapping in
dynamic environments (slamide) with reversible data association,” in
Proceedings of Robotics: Science and Systems, 2007.

[33] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization
and mapping via square root information smoothing,” The Interna-
tional Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203,
2006.

[34] G. S. Chirikjian, R. Mahony, S. Ruan, and J. Trumpf, “Pose changes
from a different point of view,” in Proceedings of the ASME Inter-
national Design Engineering Technical Conferences (IDETC) 2017.
ASME, 2017.

[35] L. Polok, M. Solony, V. Ila, P. Smrz, and P. Zemcik, “Efficient
implementation for block matrix operations for nonlinear least squares
problems in robotic applications,” in IEEE International Conference
on Robotics and Automation (ICRA), 2013. IEEE, 2013, pp. 2263–
2269.

[36] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, 2008.

[37] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.
org.

[38] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “isam2: Incremental smoothing and mapping using the
bayes tree,” The International Journal of Robotics Research, p.
0278364911430419, 2011.

[39] L. Polok, V. Ila, M. Solony, P. Smrz, and P. Zemcik, “Incremental
block cholesky factorization for nonlinear least squares in robotics,”
in Proceedings of Robotics: Science and Systems, Berlin, Germany,
June 2013.

[40] V. Ila, L. Polok, M. Šolony, and P. Svoboda, “SLAM++-A highly
efficient and temporally scalable incremental SLAM framework,”
International Journal of Robotics Research, vol. Online First, no. 0,
pp. 1–21, 2017.

[41] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy
for multi-object tracking analysis,” in CVPR, 2016.

[42] L. Polok, V. Lui, V. Ila, T. Drummond, and R. Mahony, “The effect
of different parameterisations in incremental structure from motion,”
in Australasian Conference on Robotics and Automation, 2015. The

Australian National University, 2015, pp. 1–9.

https://github.com/facebookresearch/detectron
http://ceres-solver.org
http://ceres-solver.org

	Introduction
	Related Work
	Accounting for dynamic objects in SLAM
	Notation
	Graph formulation
	Motion model of a point on a rigid body
	Measurements and object motion constraints
	The graph optimisation

	Experimental methodology
	Experiments
	Experiments `A' & `B'
	Simulated camera calibration datasets
	Real camera calibration dataset
	Virtual KITTI dataset

	Implementation details

	Experimental results
	Analysis of the simulated experiments
	Experiments `A' & `B'
	``Simulated camera calibration''
	Analysis of the real camera calibration experiment
	Experiment ``vKITTI''

	Conclusion and future work
	References

