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Abstract— Research in Simultaneous Localization And Map-
ping (SLAM) is increasingly moving towards richer world
representations involving objects and high level features that
enable a semantic model of the world for robots. Many of
these advances are grounded in state-of-the-art computer vision
techniques primarily developed in the context of image-based
benchmark datasets, leaving several challenges to be addressed
in adapting them for use in robotics. In this work, we derive
a SLAM formulation that uses dual quadrics as 3D landmark
representations, exploiting their ability to efficiently represent
the size, position and orientation of an object, and show how 2D
bounding boxes (such as those typically obtained from visual
object detection systems) can directly constrain the quadric
parameters via a novel geometric error formulation. We develop
a sensor model for deep-learned object detectors that addresses
the challenge of partial object detections often encountered in
robotics applications, and demonstrate how to jointly estimate
the camera pose and constrained dual quadric parameters in
factor graph based SLAM.

I. INTRODUCTION

In recent years, impressive vision-based object detection
performance improvements have resulted from the “rebirth”
of Convolutional Neural Networks (ConvNets). Despite
these impressive developments, the Simultaneous Localiza-
tion And Mapping community (SLAM) has not yet fully
adopted the newly arisen opportunities to create semantically
meaningful maps. SLAM maps typically represent geometric
information, but do not carry immediate object-level seman-
tic information. Semantically-enriched SLAM systems are
appealing because they increase the richness with which a
robot can understand the world around it, and consequently
the range and sophistication of interactions that robot may
have with the world, a critical requirement for their eventual
widespread deployment at workplaces and in homes.

Semantically meaningful maps should be object-oriented,
with objects as the central entities of the map. Quadrics, i.e.
3D surfaces such as ellipsoids, are ideal landmark represen-
tations for object-oriented semantic maps. Quadrics have a
very compact representation, can be manipulated efficiently
within projective geometry, and capture information about
the size, position, and orientation of an object.

The link between object detections and dual quadrics was
recently investigated by [1], [2] and [3]. However, previous
work utilized quadrics as a parametrization for landmark
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Fig. 1: QuadricSLAM uses objects as landmarks and repre-
sents them as constrained dual quadrics in 3D space. This
figure depicts the estimated quadrics fit to true objects, with
red ellipses as the 2D outline of the 3D quadric surfaces.

mapping only [2], was limited to an orthographic camera
[1], or used an algebraic error that proved to be invalid
when landmarks are only partially visible [3]. In this work
we formulate a novel geometric error that is well-defined
even when the observed object is only partially visible in
the image. Furthermore, we investigates the utility of quadric
based landmarks in a factor graph SLAM formulation that
jointly estimates camera poses and quadric parameters from
noisy odometry and object detection bounding boxes using
a general perspective camera.

II. DUAL QUADRICS – FUNDAMENTAL CONCEPTS

Quadrics are surfaces in 3D space that are defined by a
4×4 symmetric matrix Q, so that all points x on the quadric
fulfill xTQx = 0. Examples for quadrics are bodies such as
spheres, ellipsoids, hyperboloids, cones, or cylinders.

When a quadric is projected onto an image plane, it creates
a dual conic, following the simple rule C∗ = PQ∗PT. Here,
P = K[R|t] is the camera projection matrix that contains
intrinsic and extrinsic camera parameters. Conics are the 2D
counterparts of quadrics and form shapes such as circles,
ellipses, parabolas, or hyperbolas.

III. A SENSOR MODEL FOR MODERN OBJECT
DETECTORS

A. Motivation

Our goal is to incorporate state-of-the-art deep-learned
object detectors such as [4]–[6] as a sensor into SLAM.
We thus have to formulate a sensor model that can predict
the observations of the object detector given the estimated
camera pose xi and the estimated quadric parameters qj .

We therefore seek a formulation for the sensor model
β(xi,qj) = d̂ij , mapping from camera pose xi and quadric
qj to predicted bounding box observation d̂ij . This sensor
model allows us to formulate a geometric error term between
the predicted and observed object detections.
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Fig. 2: Visual comparison between an incorrect bounding
box prediction (left) and a correct sensor model (right), here
the red ellipse represents a partially visible object and the
expected bounding box from an object detector is highlighted
in green.

B. Deriving the Object Detection Sensor Model β

Our derivation of β(xi,qj) = d̂ij starts with projecting
the estimated quadric parametrized by qj into the image
using the camera pose xi according to C∗

ij = PiQ
∗
(qj)P

T
i

with P = K[R|t] comprising the intrinsic (K) and pose
parameters of the camera. Given the dual conic C∗, we
obtain its primal form C by taking the adjugate.

A naive sensor model would simply calculate the enclosing
bounding box of the conic C and truncate this box to fit the
image. However, as illustrated in Figure 2, this can introduce
significant errors when the conic’s extrema lie outside of the
image boundaries.

An accurate sensor model requires knowledge of the
intersection points between conic and image borders. The
correct prediction of the object detector’s bounding box
therefore is the minimal axis aligned rectangle that envelopes
all of the conic contained within the image dimensions. We
will explain the correct method of calculating this conic
bounding box, denoted BBox(C), below. The overall sensor
model is then defined as

β(xi,qj) = BBox
(
adjugate(PQ∗

(qj)P
T)
)
= d̂ij (1)

C. Calculating the On-Image Conic Bounding Box

We can calculate the correct on-image conic bounding box
by the following algorithm which we denote BBox(C):

1) Find the four extrema points of the conic C, i.e.
the points {p1, ...,p4} on the conic that maximise or
minimise the x or y component respectively.

2) Find the up to 8 points {p5, ...,p12} where the conic
intersects the image boundaries.

3) Remove all non-real points and all points outside the
image boundaries from the set P = {p1, ...,p12}.

4) Find and return the maximum and minimum x and y
coordinate components among the remaining points.

IV. EXPERIMENTS AND EVALUATION

We implemented the SLAM problem as a factor graph
where the robot poses and dual quadrics, X∗ and Q∗,
populated the latent variables of the graph, connected with

TABLE I: Comparison of the average RMSE errors for
the trajectory and landmark position (cm), as well as the
landmark shape and quality defined by the centered Jaccard
distance and the standard Jaccard distance respectively.

ATEtrans LMtrans LMshape LMquality

Odometry 58.95 - - -
SVD solution - 57.86 0.61 0.85
QuadricSLAM 20.49 17.14 0.44 0.59

odometry factors U and 2D bounding box factors D. Given
a set of noisy odometry measurements and noisy bounding
box observations, we estimate the optimal camera trajectory
and object landmark parameters by minimizing the odometry
error (‖f(xi,ui) 	 xi+1‖2Σi

) and the bounding box error
(‖dij − β(xi,qj)‖2Λij

). We evaluate the resulting trajectory
and landmark parameters in a simulation environment of 250
trajectories, comparing the odometry estimate, initial quadric
solution, and SLAM solution to the ground truth camera
trajectory and each objects 3D axis-aligned bounding boxes.

V. RESULTS AND CONCLUSIONS

We summarize the results of our experiments in Table I.
The results show that quadric landmarks significantly im-
prove the quality of the robot trajectory and the estimated
map, providing accurate high level information about the
shape and position of objects within the environment. Ex-
plicitly, QuadricSLAM gains a 65.2% improvement over the
initial trajectory estimate and a 70.4%, 26.7% and 30.6%
improvement on initial landmark positions, shape and quality.

These improvements provide justification to the use of
quadric landmarks as coarse object representations, and a
first step towards object-oriented semantic SLAM. Using
noisy 2D bounding boxes such as those typically provided
by standard object detectors, we are able to constrain the
parameters of dual quadric landmarks, reobserving these
landmarks reduces the effect of odometry drift.

Finally, we address the issue of partial object detections
by defining a sensor model for modern object detectors that
aims to predict the bounding box we would expect to see
given the current pose and map estimates.

REFERENCES

[1] M. Crocco, C. Rubino, and A. Del Bue, “Structure from motion with
objects,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 4141–4149.

[2] C. Rubino, M. Crocco, and A. Del Bue, “3d object localisation from
multi-view image detections,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2017.

[3] N. Sünderhauf and M. Milford, “Dual quadrics from object detection
boundingboxes as landmark representations in slam,” arXiv preprint
arXiv:1708.00965, 2017.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems (NIPS), 2015, pp. 91–99.

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “SSD: Single shot multibox detector,” in European
conference on computer vision. Springer, 2016, pp. 21–37.

[6] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” arXiv
preprint arXiv:1703.06870, 2017.


