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Geometric Priors from Robot Vision in Deep Networks
for 3D Object Classification
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Abstract— Handcrafted geometric features for object clas-
sification are heavily relied on in robot vision because of
their demonstrated robustness. While modern deep learning
approaches typically outperform classical methods, transferring
this success to 3D data in a robust manner is still an open
question because of the challenges introduced by the additional
dimension and the relative lack of non-artificial large 3D
datasets for classification. In this work, we demonstrate the
benefits of using a deep network to improve on classical
histogram-based descriptors. Our network uses shape features
inspired by 3D object classification based on local and global
geometry. Due to the geometric priors, our network does
not require aligned data and is directly applicable to point
clouds. Performance is evaluated on the ModelNet dataset and
results show competitive accuracy and robustness, while being
rotation invariant and using 10-100x less parameters than some
competing methods.

I. INTRODUCTION

Object classification is an intensively studied problem
in computer vision that has applications in areas such as
security, manufacturing and medicine. The now commonly
available depth sensors, such as the Microsoft Kinect, have
lead to improvements by allowing additional reasoning about
object geometry. This has advanced the perception capabil-
ities in important fields such as robotics and autonomous
driving that heavily rely on spatial context.

The representation of 3D data as a point cloud has become
the de facto standard for many robotic tasks. However, the
difficulty of dealing with the unstructured representation of
point clouds has prevented it from being widely adopted
by state-of-the-art deep learning methods used in computer
vision. Additionally, large datasets acquired by depth sensors
are still rare, which limits the direct applicability of data
hungry learning algorithms. As a result, classic methods for
3D object classification that use hand-crafted features based
on local or global geometric features are still often used.

A common work around to generate large amounts of data
is to use artificially computer generated models, however,
data acquired by robotic platforms in the real-world are
different in a few characteristic ways:

• unaligned objects
• occlusion
• outlier points
• sensor noise
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Objects in the real-world have arbitrary poses, therefore,
either the data must be aligned, a challenging problem in
itself, or rotation invariant features are required. Occlusion is
caused by other objects or distractors that obstruct the field-
of-view and outliers are often remnants from a segmentation
step. Sensor noise is inevitable with any real sensor. They
generate variable point density as well as non-linear noise
profiles.

In this work, we present a novel method that is robust to
imperfect data with a deep learning architecture. Building
on the qualities of classical descriptors, that are typically
resilient to various sources of noise, our network learns a
probabilistic version of geometric feature histograms. Any
histogram-based descriptor can be improved while maintain-
ing their geometric properties and advantages such as rota-
tion invariance (no alignment necessary) as well as robust-
ness to occlusion and variable point density. Our proposed
method uses PointNet [9] to learn, in an end-to-end fashion,
a probabilistic histogram on the original feature space. The
main advantage is that existing rotation invariant features are
fed into the network to yield a rotationally invariant deep
network for 3D classification. This has not been achieved by
prior methods as they either require a separate alignment
process (or network), or learn an approximately rotation-
invariant network through specific optimization schemes.

Our contribution is the introduction of a general method
to improve the descriptiveness of any histogram-based de-
scriptor through learning. We demonstrate our method with
two versions of an ESF-like global shape descriptor [19]
(one using pairs, the other using pairs and triplets) coined L-
ESF and a SHOT-like local descriptor [17] coined L-SHOT.
Experiments are performed on the ModelNet dataset with
the introduction of artificial occlusion, point density and
sensor noise. The results show that our method achieves
83% accuracy and maintains robustness with increased data
corruption.

II. RELATED WORK

A. Deep Learning for 3D Classification

Deep learning techniques currently dominate the field of
3D classification. Due to the multiplicity of data representa-
tions available when dealing with 3D data, the approaches
can differ drastically. We present a non-exhaustive list focus-
ing on the most common and most promising architectures.

The most straightforward way to apply convolutional
neural networks (CNNs) to 3D data is to extract 2D depth
views from the full model. These depth maps can then be fed
to any available CNN. Many mappings from single-channel
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to three-channel representation have also been developed [3],
[2], thus avoiding the issue of the lack of large datasets
for training through the re-use of learned image features.
Once a representation for each view is computed, different
schemes for pooling them have been developed, from view
pooling [16] to more complex view-set reasoning [18]. While
performing very well in practice, these approaches lose all
information between the views, and raise the problem of view
selection since not all viewpoints are accessible. Another
disadvantage is that these approaches uses significantly more
parameters than other methods.

An alternative approach is to extend 2D CNNs to 3D
CNNs by learning features over voxel grids [20], [7]. While
this direction is a meaningful extension of CNNs, it has
two main problems that are inherent to the design of the
network. First, the additional dimension is an optimization
burden, and because of the explosion of the number of
parameters, they typically use coarse voxel grids, making
the data much less informative. This explosion of parameters
can be tackled with hierarchical representations [11], or
more recently, by embracing the sparsity of the data at the
convolution level [8]. Second, they are not rotation invariant
by design. Consequently, they need either to learn to match
the representation of each orientation of the object, as in
[21] or [15], making learning more difficult, or align the
model beforehand, which is in itself challenging to perform
robustly.

The last direction is to operate directly with point clouds,
however, this data representation loses all explicit neigh-
borhood information. One way to compensate is to rely
on the creation of a KD-Tree over the set of points [6].
However, the KD-Tree itself depends on the orientation of
the model. Moreover, a reasonably large noise can also
affect the structure of the KD-Tree. Another option is to
rely only on the implicit information of the coordinates [9],
[10]. The approach in [9] (PointNet) is to drastically expand
the feature dimension of the coordinates (from 3 to 1024
in multiple steps). This enables the network to learn up to
1024 functions expressing a probability of presence in a
certain area of the space. This approach requires aligned data,
which is achieved using a spatial transformer network [5]
to learn a data dependent alignment. Learning such an
alignment over a whole object, however, is vulnerable to
outliers and occlusion: they modify the data distribution that
the alignment method relies on. The representation is then
computed on an incomplete and potentially misaligned set
of points. In [10] a similar path is taken, except that the
models are assumed aligned. Improvement on the layers of
the network is made by subtracting a weighted version of
the maximum activation value over the whole set for each
filter.

B. Robotic Classification

In robotic vision, handcrafted features were carefully
developed to capture either local, regional or global geomet-
ric features. One of the best performing local handcrafted
descriptor is the Signature of Histograms of OrienTations

(SHOT) descriptor [17]. This descriptor first aligns the neigh-
borhood along a local reference frame, which is computed
as a repeatable representation of the statistical distribution of
points. Once aligned, histograms of angles are computed on
spatial bins spread in the sphere around the point of interest.

To capture local information, a whole family of descriptors
have been created following variants of the scheme intro-
duced by the Point Feature Histogram (PFH) and Fast Point
Feature Histogram (FPFH) [13]. These histograms rely on
a set of angles between the normal of a point of interest
and its neighborhood. PFH/FPFH was extended in Viewpoint
Feature Histogram (VFH) [12] to capture global information
by considering angles of the vector made between the
viewpoint and the centroid of the considered object.

The Ensemble of Shape Functions (ESF) [19] is a global
descriptor that relies on simple randomly sampled geometri-
cal entities, such as pairs and triangles. This captures global
information in a viewpoint independent manner without
relying on a direct neighborhood of a point of interest.

The advantage of these handcrafted descriptors is that they
have proven their robustness to most types of noise typical
in robotic tasks. However, due to their simple geometric
features, randomization and the choice of pooling method
(histograms), their descriptiveness is inferior to modern deep
learning approaches.

III. LEARNED DESCRIPTORS FOR ROBOTIC
CLASSIFICATION

We propose to learn descriptors using the PointNet ar-
chitecture as a histogram-like pooling solution. This builds
on handcrafted features and thus provides robustness, while
introducing learning to achieve good accuracy and general-
ization. In this section, we will first describe how we learn
such a representation. We then provide two concrete applica-
tions, one for a global shape representation coined Learned-
ESF (L-ESF), and one on a local shape representation coined
Learned-SHOT (L-SHOT).

A. Learning Histogram-like Features

Most of the descriptors used in robotics rely on his-
tograms, which is a crucial contribution to their proven
robustness. Approaching noisy data as a set is a good trade-
off between the amount of information discarded and the
robustness of the description, and a histogram is the most
straightforward way for set pooling. The PointNet architec-
ture, by working on one data point at a time but optimizing
over the whole set, provides a structure to learn functions
that activate when a data point is present nearby. The
functions behave like probabilistic bins over the Euclidean
space and the global optimization ensures that the functions
are optimally spread. An ensemble of such functions can
therefore be seen as a probabilistic histogram that is trainable
end-to-end. This idea can be extended to any other space.

Our proposed architecture is shown in Figure 1. In
this setup, the spatial transformer network of the original
PointNet architecture is not necessary as we no longer
rely on Euclidean coordinates. Instead, four one-dimensional
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Fig. 1. System overview of our proposed method. The classifier layer is composed of two fully connected layers. N is the number of pairs sampled, M
is the number of local descriptors sampled.

convolutional layers are used, with a kernel size of 1. A
progressively increasing number of filters are then used
before a max-pooling layer to implement the histogram-like
feature learning scheme. Each of the layers include a batch
normalization step [4]. We also subtract a weighted version
of the maximum value of a given filter over the whole set
to each output, as described in [10]. ReLU is used as an
activation function.

B. Global Pipeline - Learned ESF

We first extract robust global shape information with a
pipeline that is inspired by the ESF descriptor [19]. This
descriptor was chosen because it is a good performing
viewpoint independent handcrafted global shape descriptor.
The ESF descriptor first samples random pairs and triplets
of points and extracts handcrafted features for each. Various
histograms are then created. For a pair of points, the features
chosen are their spatial distance and the percentage of the
length of the line between the points that is filled with surface
points. This quantity is determined by tracing the line in a
voxel grid of size 64x64x64 and counting the percentage of
filled voxels. For a triplet of points, the angle of the triangle
and the area covered by the triangle are computed.

Following this model, and after scaling our point cloud
to the unit sphere, our global shape descriptor randomly
samples triplets of points and extracts a number of features
using the three points. Flat triangles are rejected as they
are uninformative in our pipeline. Both the triplet and pair
features are rotation invariant, making the whole pipeline
rotation invariant as well.

1) Triplets: For a triangle with sides a, b and c, we extract
the three angles and the square root of the area of the triangle
using the Heron formula,

A =
√
s(s− a)(s− b)(s− c),

where s =
a+ b+ c

2
.

(1)

This creates a four-dimensional feature vector for each
triangle.

2) Pairs: In addition to the features extracted for the ESF
descriptor, we also draw inspiration from the Point Pair Fea-
ture [1], and Fast Point Feature Histogram [13] descriptors.
For the two sampled points, −→p 1 and −→p 2, and their respective
normals (which are assumed to be normalized), −→n 1 and −→n 2,
we extract the distance d between the points

d =
∥∥−→p 1 −−→p 2

∥∥ . (2)

The cosine similarity between the normals (3) and the
absolute value of the cosine similarity between the vector
−→p 1 −−→p 2 and each of the normals (4) are also computed

cos(∠(−→n 1,
−→n 2)) =

−→n 1 · −→n 2, (3)

∣∣∣cos(∠(−→p 1 −−→p 2,
−→n {1,2}))

∣∣∣ = ∣∣∣∣∣ (−→p 1 −−→p 2).
−→n {1,2}∥∥−→p 1 −−→p 2

∥∥
∣∣∣∣∣ .

(4)
Finally, as in the ESF descriptor, we consider the percentage
of −→p 1 −−→p 2 that is on the surface of the object.

Following the PointNet [9] architecture for the classifi-
cation of the global pipeline, each set of features is fed
to its own convolutional neural network, always operating
on a single element (pair or triplet) at a time. The feature
dimension is enlarged and the set is then max-pooled. Due
to the intractable number of potential pairs and triangles,
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information about fine structure can be lost. For this reason,
we introduce a local descriptor pipeline.

C. Local Pipeline - Learned SHOT

Finer structure needs to be captured to improve the de-
scriptiveness of our approach. However, computing local
descriptor densely would be wasteful. As such, we introduce
a method to guide the sampling of local patches.

1) Attention Model: We use an attention model that is
based on the statistical consistency of the normal orientations
over the whole model. Finer structures are characterized
by a larger angle between neighboring normals. However,
local variations of the angle between normals cannot be
relied on solely, otherwise, any rounded surface would be
considered salient. Consider the example of a flower pot:
local descriptors on the leaf are probably more informative
than redundant local descriptors on the rounded pot itself.

Therefore, a histogram of angles between each point’s
normals and its neighbors’ normal is created. Each point
contributes to the same histogram, thus capturing globally
the frequency of each angle value on the whole model. The
histogram is normalized such that the sum of the bins is
equal to one. With ‖P‖0 the number of non-zeros elements
in the histogram and Pk the k-th entry in the histogram, the
following transformation is applied

P̃k =

{
‖P‖0 − Pk if Pk ≤‖P‖0 ,
0 otherwise .

(5)

This allows statistically significant angles to be captured
while removing all highly recurrent angles.

In a second step, the saliency value for each point is
computed. This is done by checking the saliency value of
the transformed histogram bin that corresponds to the angle
between the point’s normal and the normal of its neighbors.
The values for each neighborhood are summed.

Sampling salient points is done according to a Poisson
distribution. The attention model gives a zero probability to
many points, therefore, we draw from the average between
the distribution from the attention model and a uniform
distribution.

2) Local Descriptor: The learned local descriptor follows
the design of the SHOT descriptor [17]. Firstly, a robust
and repeatable local reference frame (LRF) is computed for
alignment. Then, the sphere of all neighbors is divided into
32 bins with a histogram of normal angles computed for
each.

In contrast to the PointNet architecture [9] that uses a
learned alignment, our architecture transforms all neighbor-
ing points in the LRF, where the sampled salient point is
used as the origin. The coordinates of the points are then
fed into a smaller version of PointNet. The removal of the
spatial transformer network drastically reduces the number
of parameters.

TABLE I
CLASSIFICATION ACCURACY ON THE MODELNET DATASET [20]

MN10 MN40 Input Rot.
Inv.

3DShapeNets [20] 83.5 77 Voxel grid 7
VoxNet [7] 92 83 Voxel grid 7

PointNet [9] 89.2 Point Cloud ~
KD-Networks [6] 94 91.8 KD-Tree 7

MVCNN [16] 90.1 Views ~
SHOT+PointNet 83.3 73.9 Point Cloud 3

ESF 81.1 70.4 Point Cloud 3
SHOT+ESF 85.2 76.9 Point Cloud 3

L-ESF 84.6 Point Cloud 3
L-SHOT+L-ESF (Pairs) 86.3 83.0 Point Cloud 3

L-SHOT+L-ESF 87.0 83.0 Point Cloud 3

IV. EXPERIMENTS

A. Classification Accuracy - ModelNet

An evaluation is performed on the ModelNet dataset [20].
This is a CAD model dataset that has two variants, Mod-
elNet40 with 40 classes, and ModelNet10, which is a 10
class subset of ModelNet40. Experiments in this section are
performed with clean data, and when necessary, with the
aligned version of ModelNet10 and ModelNet40.

Our method was designed to be used with point clouds,
so as a pre-processing step, point clouds from the original
CAD models were extracted by re-sizing the CAD model to
the unit sphere and then sampling points on the surface.

For the global pipeline, 2000 triplets (or 5000 pairs if
working only on pairs) are sampled for ModelNet40 and
1500 triplets (or 3200 pairs) are sampled for ModelNet10.
For the local pipeline, 50 salient points are drawn using
Poisson sampling from a distribution that is the average
of a uniform distribution and our attention model. For all
experiments, the accuracy is averaged over 5 runs on the test
set due to the random nature (sampling) of our algorithm. For
the SHOT, ESF and SHOT+ESF results, the learned versions
of the descriptors are replaced with the original descriptors
as implemented in [14]. The same classification layers are
maintained. We classify the set of SHOT descriptors with a
PointNet architecture for a fair comparison on the robustness
analysis (thus improving its accuracy compared to a more
classical bag of words approach). The accuracy results can
be found in Table I for ModelNet.

B. Invariance and Robustness

Our proposed network was designed with robust features.
To demonstrate their intrinsic power, we devised a set of
transformations applied to the input point cloud and report
the corresponding accuracy. It is important to note that,
unless specified otherwise, the experiments are performed
without re-training the network, which is only trained
on clean data. The following experiments demonstrate
that the network carries over the robustness of the chosen
features. We report the results of our proposed architecture in
comparison to the original descriptors, whose robustness has
already been proven. No experiments are required regarding
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Fig. 2. Influence of the point density on the accuracy

Fig. 3. Influence of occlusion on the accuracy

data that is not aligned as all features fed to the network are
rotation invariant.

1) Point Density: We first evaluate how well the network
behaves depending on the point density of the point cloud.
Point density is reduced by randomly removing points from
the original point clouds. Results of the experiments are
reported in Figure 2.

2) Occlusion: Artificial occlusion is introduced by remov-
ing a neighborhood around a randomly sampled point. The
size of the neighborhood corresponds to the percentage of
the points being removed. Results are reported in Figure 3.
Experiments with PointNet and artificial occlusion were
performed with ModelNet40.

3) Sensor Noise: Full models prevent a true analysis
of realistic sensor noise. However, generic noise can be
modeled by adding Gaussian noise. The standard deviation
of the Gaussian noise is chosen as a proportion of the
longest distance between points in the point cloud. Results
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Fig. 4. Influence of sensor noise on the accuracy

are reported in Figure 4. We also show the improvement of
retraining with noise for L-SHOT+L-ESF.

C. Discussion

Our approach achieves results that are better than or on par
with the methods based on vanilla voxel grids and classical
descriptors but worst than the view-based methods. It should,
however, be noted that view-based methods use architectures
with significantly more parameters (10-100 million compared
to around 1 million for ours). Compared to the point cloud
based methods, KD-Networks performs best but requires
aligned models, and was therefore evaluated on the aligned
version of ModelNet40, so it is not as robust. PointNet also
performs well but learns an alignment which is itself sensitive
to occlusion and outliers.

In the case of ModelNet10, most of the misclassifica-
tions are caused by the confusion between night stand
and dresser, and between table and desk. In the
case of ModelNet40, there is additional confusion between
flower pot and plant. A deeper observation of the CAD
models in each of these classes shows that the mistakes are
quite reasonable. Overall our architecture shows promising
potential as a robust generic shape feature.

In the study of the robustness of our model, we can see that
most of the desirable properties of the classical descriptors
are retained. Only the robustness to Gaussian noise seems
worse. This is due to the setup of our experiment: this study
focuses on the intrinsic properties of the features used, rather
than on the already demonstrated learning capabilities of
neural networks. For the classical descriptors, the robustness
to Gaussian noise mostly comes from the use of a histogram
rather than the features themselves, and it can be seen
that training with some noise improves the robustness to
noise. A final observation is that introducing more geometric
priors in the network improves results with clean data. The
experiment with PointNet on artificial occlusions shows that
the performance steeply degrades as the amount of occlusion
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increases.Training with occlusions could mitigate this issue,
but would make training harder, potentially needing more
parameters than with an appropriate prior.

Our learning scheme transfers the robustness of the orig-
inal features, as can be seen by the individual evaluation
of the priors, and is overall rotation invariant. However,
the simple scheme for fusing each pipeline is suboptimal
regarding the robustness, and a noise-adaptive scheme would
be necessary to make the most of each pipeline. Introducing
more geometric information also allows us to more efficiently
use the parameters, and use a more compact network, i.e. no
spatial transformer and a rotation invariant representation.
Through the use of randomization, fewer parameters and
batch normalization, our model is less likely to overfit
because every representation of a given instance is slightly
different, making it possible to train on smaller datasets.

V. CONCLUSION AND FUTURE WORK

We have presented a novel architecture that provides
robust yet descriptive shape features through the use of
geometric priors. Moreover, the scheme devised in this paper
can be used to adapt any local or global histogram-based
handcrafted feature into a learned descriptor, thus facilitating
better task specific performance and end-to-end learning.
Our first evaluation shows promising results but indicates a
further investigation of a better fusion scheme for the priors
is still needed.

The flexible nature of the architecture also allows its use
in both a single and multi-view scenario. In the case of
multiple views, it can perform efficiently, as information
already computed over previous sets can easily be included
to the next step through the max-pooling layer over the whole
set, while still preserving inter-view information.

Finally, the geometric priors make the features more
interpretable. By keeping track of the indices used during
the max-pooling step, it is possible to extract the contributing
pairs, triplets and/or local structures, which allows insight to
be gained about choices made by the network. As an exten-
sion, such local structures could be used for correspondence
problems, such as pose estimation, which can be done by
sampling pairs as demonstrated in [1].
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