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Abstract— Execution monitoring is important for the robot
to safely interact with its environment, and to successfully
complete the given tasks. This is because several unexpected
outcomes that may occur during manipulation in unstructured
environments (i.e., in homes) such as sensory noises, improper
action parameters, hardware limitations or external factors.
The execution monitoring process should be continuous for
effective failure detection and prevention if possible. We present
an empirical analysis of proprioception, audition and vision
modalities to detect failures on a selected tabletop object
manipulation actions. We model failure detection as a binary
classification problem, where the classifier uses high level pred-
icates extracted from raw sensory measurements. We evaluate
the contributions of these modalities in detecting failures for
pick, place and push actions on a Baxter robot.

I. INTRODUCTION

Safety of industrial robots in engineered environments
is a well-studied topic which is regulated with established
standards [1], [2]. However, safe task execution for robots
operating in unstructured environments such as kitchens
remains an open issue. A robot may fail while manipulating
an object resulting in undesired consequences. Sensor/motor
misalignments, dropping the object due to an unstable grasp,
collusions with other objects while carrying an object due to
perception errors can be given as example root causes for
failures. A sample failure situation is presented in Figure
1 where a Baxter robot grasps the cereal box from a wrong
orientation, therefore, it produces an unstable grasp resulting
in the dropping of the box while carrying.

In order to ensure the safety of the robot itself and the
environment, the robot’s task execution should be continu-
ously monitored. Therefore, a continual execution monitoring
and failure detection system is needed to detect anomalies in
an observed state. In this study, we analyze the continuous
observation data produced by various sensor modalities on
a selected set of manipulation actions and their suitability
for detecting failures on these actions. Our analysis includes
data from proprioceptive, auditory and visual sensors for
their use as past experiences to learn success and failure
models. We first analyze outputs from each sensor modality
separately and show that each has a different contribution
in reliably detecting different anomalies. To the best of
our knowledge, this is the first time that different sensor
modalities are analyzed for detecting manipulation failures in
such a low-level/granularity. We show how these modalities
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Fig. 1: The Baxter robot manipulating the cereal box. An un-
stable grasp is produced due to a wrong grasping orientation.
The box may drop during movement.

can complement each other for detecting failures for pick,
place and push actions. We believe this analysis is useful for
developing an effective failure detection and safe execution
framework.

II. RELATED WORK

There is not a detailed analysis of modalities for ma-
nipulation failure detection in literature. However, it would
be relevant to review existing execution monitoring and
single/multi-modal failure detection methods. Detailed sur-
veys on execution monitoring approaches can be found in
[3] and [4].

Execution monitoring approaches can be grouped into
[5]: (i) model-based approaches using models to predict
outcomes of actions where predictions are compared with
observations, and (ii) model-free approaches which are based
only on observations without existing models.

Among model-based approaches [6], [7], [8] address fault
detection for mobile robots. [6] uses odometry information
to detect and identify differential drive faults. [7] proposes a
Kalman Filter (KF) and Neural Network (NN) based system
to detect and identify mechanical and sensor failures. Each
fault type is modeled with a separate KF. An NN is trained
using the residual between predictions and observations to



identify failures by selecting the relevant KF. In [8], the
kinematic model is developed as the residual generator.

Temporal Logic based execution monitoring is another
model-based approach. [9] uses Temporal Action Logic
(TAL) to define action control formulas to achieve action
monitoring for unmanned aircraft systems. [10] integrates
several sensors including RGB-D camera, sonar, microphone
and tactile sensors to evaluate Metric Temporal Logic (MTL)
formulas defined for a mobile robot. Each sensor serves for
detecting a different kind of failure.

[11] extends semantic knowledge, represented as Descrip-
tion Logic (DL) formulas, with probabilistic action and
sensing models to cope with uncertainties. [12] addresses
robot safety issues particularly for software components.
They propose a domain-specific language based approach to
implement safety rules to monitor software components.

In [13], anomalous regions in the state space are identified
by detecting deviations from the normal execution model. In
[14], after creating the plan for the given task, stochastic
expectations are generated for actions. Observations are
compared with expectations to detect unsatisfied conditions
during runtime. In another study [15], extended action mod-
els are introduced in order to detect and recover from failures
by repairing the plan.

In addition to model-based methods, model-free execution
monitoring is studied using standard pattern recognition
approaches [16]. [17] proposes a model-free fault detection
mechanism by comparing two redundant observations from
different sources. [18] proposes a sensor fusion based model-
free failure detection and isolation method. Redundant sensor
sets, with the same contextual information (e.g., distance),
are installed on the robot. Conflicts and deviations in sensory
measurements are monitored to detect failures. In order to
isolate faults, a rule-based method is applied.

III. PERCEPTION PIPELINE FOR FAILURE DETECTION

In our analysis, we consider pick, place, and push ac-
tions as compositions of primitive behavior sets {move to,
approach, grasp, retreat}, {move to, approach, release, re-
treat} (the object is in the hand), {move to, approach, push,
retreat}, respectively. Each can be combined with a sensing
action, {sense}. At the beginning of the execution, the scene
is visually perceived by one of these sensing actions, and
motion trajectories are generated. At the end of execution,
the scene is perceived again to observe the effects of the
manipulation in the environment.

A. Proprioception

The proprioception monitors the robot state; joint angles
and torques measured by internal sensors. In this study, we
only use the gripper status of the Baxter’s two finger parallel
gripper.
Proprioceptive Predicates: The gripper state is discretized
into following mutually exclusive binary states by threshold-
ing the force F and the distance between fingers D (τD and
τF are distance and force thresholds):
• Open: Fingers of the gripper are open: D > τD.

• Closed: Fingers are closed: D < τD ∧ F < τF .
• Moving: Fingers are either opening or closing.
• Gripping: Measured force exceeds a threshold, F > τF .

B. Auditory Perception
The sound source identification system has three com-

ponents: preprocessing, feature extraction and classification.
The audio signal is acquired from the microphone at 16
KHz sampling rate. In the preprocessing step, the signal is
divided into 32 ms frames with 10 ms step size. Each frame
is transformed into the frequency domain via Fast Fourier
Transform (FFT), and a Mel filterbank is applied to. The
total energy of the current frame is thresholded to eliminate
the background noise. The start and end points of an audio
event is detected via empirically predefined onset and offset
thresholds respectively. The feature vector contains the mean
of the 12 Mel Frequency Cepstrum Coefficients (MFCC) of
the first 10 frames after the onset, and the total duration
measured between onset and offset. In the final step, a Linear
Support Vector Machine is used to classify audio events.
Auditory Predicates: For relating sound data with a failure
case, we identified four different events (E = ej) which are
determined based on a classification procedure:
• no event: The lack of sound event, in which total energy

of the current frame is less than the onset threshold
value.

• drop: The sound generated after an object is dropped
from any height.

• hit: The sound generated when the robot hits an object
with its gripper.

• ego-noise: The sound generated by the robot.

C. Visual Perception
We use the Violet system described in [19] to create the

model of the environment. The world model contains the
detected objects as well as their physical properties (e.g., 3D
location, size, color) and spatial predicates (e.g., on table).
The raw RGB-D data are processed with the Euclidian
clustering based 3D segmentation [20] algorithm to extract
object models from point clouds. The extracted point clouds
are represented as bounding boxes. In some cases, more than
one attached objects can be placed in a single bounding box.
After creating bounding boxes, the total surface area (A) is
calculated by projecting object bounding boxes (o) in the
given scene (St) onto ground plane (i.e., xy):

A =
∑
o∈St

osize(x)osize(y) (1)

Visual Predicates: Comparing the initial and final world
model states provided by visual perception, the following
predicates are computed:
• ∆A: The difference in the total point cloud area (A),

where the objects are spread on the table.
∆A = Afinal −Ainitial

• ∆L: The difference in the observed location (L) of the
target object. It is computed separately for each axis.
∆L = ofinallocation − oinitiallocation



Fig. 2: Object set for the (a) pick and place, (b) push actions.

IV. ANALYSIS ON REAL-WORLD DATA

A. Environment Setup

We use the Baxter research robot with a two-finger electric
gripper to manipulate objects placed on a table. An Asus
Xtion RGBD camera and a PSEye microphone is mounted on
the robot’s head and the lower torso of the robot, respectively,
to acquire visual and auditory data. The software system is
developed using the ROS1 and HARK2 middleware.

B. Data Collection

During data collection, the robot is given several pick,
place, and push actions and the following raw sensory data
are recorded in the rosbag format: (i) the robot’s state
information (i.e., joint angles, joint torques), (ii) the raw
audio signals obtained from the PSEye microphone, and (iii)
the RGB and depth images obtained from the Asus Xtion
pro camera.
Pick Dataset: The dataset contains observation sequences
of 42 pick actions (with 21 successes and 21 failures). Task
descriptions and failure causes are as follows: (i) Grasping an
object lying on the table. The robot fails due to the incorrect
localization of the object. (ii) Grasping an object on the top
of a stack of other objects. The whole stack collapses while
the robot is approaching. (iii) Grasping an object on the top
of a built stack. In this case, the objects are next to each
other. The failure occurs due to the wrong grasp orientation.
Place Dataset: The dataset consists of 39 place actions (i.e.,
13 successes and 26 failures). The task is stacking blocks on
top of each other by picking up the object from the table and
putting it on top of the structure. The height of the structure
varies from 2 to 4 objects. The structure collapses due to the
unstable intermediate stacking.
Push Dataset: The dataset contains 32 push recordings (12
successes and 20 failures). A push action is conducted as
follows: a randomly chosen object (see Figure 2 for the
complete object set) is placed to a random location on the
table. Then, the robot is asked to push the object in the given
direction for a fixed amount of distance. The cause of the
failure is faulty estimation of the contact point in most cases.

The reader should note that as manipulation trajectories are
generated online using MoveIt3, the duration of recordings
may vary.

1http://www.ros.org/
2http://www.hark.jp/
3http://moveit.ros.org/

C. Qualitative Evaluation

Proprioception: Figure 3 presents raw measurements and
corresponding discretized gripper status for four different
types of pick actions. During pick dataset collection, to create
anomalies an offset is added to the observed object location
which resulted in three different failure patterns. In the first
failure (Figure 3(a)), while the gripper approaches to the
object, it hits the object resulting in its flip, but still it can
grasp the object. We consider such a situation as a failure,
since this causes an unsafe execution where a brittle object
could easily get damaged. In the second failure (Figure 3(b)),
the gripper status turns into gripping as it applies force on the
object. However, the object cannot be grasped. The gripper
status is updated as closed only after retreating. In the third
failure (Figure 3(c)), the gripper collides with the object, and
causes it to fall down. Figure 3(d) presents a success case.
The similarity between (a) and (d) causes a confusion in the
proprioception based failure detection. Similar observations
are also made in both successful and failed place executions.
In this case, after releasing the object, it is not possible to
sense the object status via proprioception. In such cases,
complementary modalities are helpful to correctly identifying
failures from successful executions.
Audition: Audio data are informative in terms of detect-
ing unexpected events such as dropping the manipulated
object or hitting another object in the environment. This
is particularly useful when the objects are out of sight or
occluded. Figure 4 visualizes the waveform, spectrogram,
and energy plots of drop audio event for four different objects
namely: cubic block (wood), pasta box (carton, full), salt
box (soft plastic, full), coffee mug (hard plastic, empty).
The physical properties of objects (e.g., size, weight and
material) affect the resulting audio signal. For example, the
pasta box gets stable after landing the table, on the other
hand coffee mug makes a rolling effect. Figure 5 presents
the entire execution of a push action. In the last panel of
Figure 5, classification outcomes are given at those moments
sound events are detected.

The reader should note that the robot is aware of the action
it is executing. This provides the flexibility to adjust action
conditioned models. In our experiments, hit event is only
observed during pick action due to misalignment. Therefore,
it is considered only for pick action.
Vision: In Figure 6, world states for successful and failed
cases are visualized where the task is stacking each object
on top of the pre-build structure. In the successful case, ∆A
remains unchanged, whereas it increases in the failure case
as the objects are spread around. In Figure 7, the world states
are visualized for the push action, where the task is pushing
the object in the given distance and direction. Similarly,
the ∆A remains unchanged for the successful execution,
whereas it increases as the object falls down. Additionally,
in the push action, the distance and direction are provided as
action parameters. Therefore, this information can be useful
to monitor the error on the object’s displacement.

Based on our analysis, Figure 8 depicts observable action
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Fig. 3: The visualization of execution and measurements for four pick actions in different situations. (a-d) represent the
observed data from these executions. The snapshots from the executions are presented on the top. Then, the readings on
the finger distance of the two finger parallel gripper, the force on the gripper fingers and the discretized gripper status are
presented correspondingly.

Fig. 4: Waveform, spectrogram and normalized energy plots
of drop event for four different objects: cubic block, pasta
box, salt box, coffee mug.

phases for each modality on the actions. Here we focus on
detecting failures related to the target object to be manipu-
lated. Proprioception data in move-to phase of pick action
and retreat phase of place action does not help. In the same
manner, the readings remain unchanged during the entire

execution of the push action as there is no applied force in the
gripper’s opening/closing direction. The audio modality has
no constraints and can be used to detect failures at any stage
of the execution. The scene can only be observed visually
before and after manipulation, where the robot arm is moved
to a predefined base position such that robot arm becomes
out of field of view. During the execution of the action, the
robot arm partially/fully occludes the scene. Therefore, it is
not feasible to make visual observations in this duration.

D. Quantitative Evaluation

The pick, place, and push datasets are randomly split into
the training (50%) and the test (50%) sets by preserving their
class distributions. The results are obtained by repeating the
processes 10 times, and averaging them. The final decisions
are made and evaluated at the end of sequences.

Hidden Markov Model (HMM) based approach is adopted
to learn probabilistic temporal models from observation
sequences.

1) Methods for Failure Detection:

• Proprioception (HMM): A unimodal HMM based ap-
proach. An HMM is trained for each class of success
and failure.

• Audition (HMM): A unimodal HMM based approach on
the auditory predicates. An HMM is trained for each
class of success and failure.

• Vision (∆A): A prediction is made based on change in
∆A predicate. It is assumed to be failure whenever area
is increased (e.g., the block tower collapses).



Fig. 5: Waveform, spectrogram, normalized energy plot and
the classification outcome of push event for the cubic block.
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Fig. 6: Snapshots from successful (top row) and failed
(bottom row) place executions. Columns correspond to initial
and final scene states.

• Vision (∆L): Three binary features (i.e., for each axis)
are computed using the task parameters and the differ-
ence in the observed and the expected location of the
manipulated object. Then, a Decision Tree is trained.

2) Results: Table I presents the unimodal failure detection
results. For the pick action, proprioception is the main source
of information about the success. We are unable to assess
vision performance for the pick action, due to the fact that
our recordings end after grasp attempt and there is no offset
to fully observe the scene.

For the place action, the proprioception is unable to
provide any further feedback after releasing the object. In
terms of visual representation, the difference in the total area

Initial Scene Final Scene
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Fig. 7: Snapshots from successful (top row) and failed
(bottom row) push executions. Columns correspond to initial
and final scene states.
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Fig. 8: Visualization of observable action phases for pro-
prioception, audition and vision for different actions. The
frequencies of the dots in rectangles roughly represent the
frequencies of the readings.

can represent any major changes in the scene that results in
a clutter.

During the execution of the push action, the proprioception
observation remains unchanged. Object location based scene
comparison performs better than area comparison, as there
is only one object in the push scenario.

As can be seen in the results, proprioception modality is
essential in detecting failures during the execution of pick
action. This modality can be complemented by audition
for some cases. For the other two actions, it is obvious
that we need audition and vision, since proprioception does
not provide reasonable outcomes. Comparing visual and
auditory modalities, the former makes prediction with higher
accuracy. However, it is needed to wait until the end of action
to be able to observe the scene. On the other hand, audition
can provide instant feedback.



TABLE I: Experimental Results For Unimodal Failure Detection

Pick Place Push
Approach F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

Proprioception 0.85 ± 0.00 0.80 ± 0.00 0.80 ± 0.00 0.26 ± 0.13 0.44 ± 0.33 0.39 ± 0.10 0.48 ± 0.00 0.39 ± 0.00 0.62 ± 0.00
Audition 0.76 ± 0.05 0.76 ± 0.05 0.76 ± 0.05 0.87 ± 0.04 0.90 ± 0.02 0.87 ± 0.04 0.64 ± 0.07 0.70 ± 0.10 0.64 ± 0.07

Vision (∆A) N/A N/A N/A 0.93 ± 0.05 0.95 ± 0.03 0.93 ± 0.05 0.74 ± 0.09 0.74 ± 0.09 0.74 ± 0.09
Vision (∆L) N/A N/A N/A N/A N/A N/A 0.95 ± 0.03 0.96 ± 0.02 0.95 ± 0.03

V. CONCLUSION

Execution monitoring and failure detection is a crucial
component for safe autonomous manipulation in unstructured
environments. In this paper, we model failure detection as
a binary classification problem, and we present a failure
detection system that uses semantic predicates extracted from
visual, auditory and proprioceptive sensory data. We analyze
when these modalities can be useful for detecting failures
for picking, placing and pushing actions. As future work, we
plan to create a multimodal integration framework and extend
the scenarios with more daily life objects and cluttered
scenes.
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