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Abstract— We present a model for identifying and recog-
nizing task success and distinct modes of task failure in
robot manipulation applications. Our model leverages physics
simulation and clustering to learn symbolic failure modes, and
a deep network to extract visual signatures for each mode
and to guide failure recovery. We present an early experiment
where we apply our model to the archetypal manipulation
task of placing objects into a container. A CNN is trained on
synthetic depth images generated and labeled in simulation,
and we demonstrate the ability of the network to compute task
outcomes in both synthetic and real depth images.

I. TASK OUTCOME CLASSIFICATION

Fallibility is not the sole preserve of mankind. Despite
our efforts to make released systems function with absolute
consistency, deployed robots can and do make mistakes.

As our field pushes further into unstructured environments,
such as human workplaces and homes with increasingly
generalized use cases, the incidence of failures is set to
increase. For robots to be able to operate effectively in
these environments, they must possess the ability to identify
and correct any failures in tasks they are set, be these due
to insufficient planning data, unforeseen impediments, or
adversarial interference.

Over the past three decades, our community has con-
structed a solid understanding of the geometric aspects of
manipulation — motion planning, grasp (hand/wrist pose)
planning, manipulation control. By contrast, the semantic
aspect of manipulation remains poorly understood. Concepts
related to task success generalize poorly under the strictly
geometric metrics that we currently use.

We propose a semantic task outcome model that leverages
contact/physics simulation to parse the structure of a given
behavioral domain and to extract a symbolic characterization
of the nature of possible failures (or failure modes of the
task). In turn, our model leverages an image classifier to
capture the sensory context of a manipulation task, and to
ground failure modes in perceptual data.

We propose to identify the failure modes of a given task by
executing randomly-perturbed variants of reference trajecto-
ries provided by an instructor, and grouping those executions
according to proximity in a space consisting of geometric
measurement effected on end-of-task scene configurations.
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Fig. 1.  Left: Greyscale render of synthetic depth image. Right: Task
outcome labels provided by our model: green corresponds to a successfully-
executed insertion task, yellow and red correspond to two modes of failure.

This work is conducted in simulation, which facilitates exe-
cution and exposes geometric parameters whose computation
in the real world would be prohibitively time-consuming.

The responsibility of the image classifier is to identify
whether a given perceptual representation of a scene indicates
success or failure of the task, and in the case of failure,
identify a failure mode. When a failure occurs, it can be
taken as evidence that the information used to plan the task
was either flawed or incomplete. For this reason, determining
the outcome of general tasks in unstructured environments
may benefit greatly from an unbiased assessor that ignores
any a priori knowledge of the workspace. Accordingly, we
implement task outcome classification with a convolutional
neural network — a model known for its capacity to capture
high-variance environmental parameters.

As an example, let us consider the task consists of in-
serting an object in a box shaped container by dropping the
object from above. Different outcomes can be exposed by
varying the pose from which the object is dropped, which
could yield for instance object in box (success) object fell
outside of the box (failure mode 1), and object in the box
but sticking out (failure mode 2). These three labels naturally
emerge by clustering the outcomes according to the distance
between the object and the center of the box. The role of
the image classifier amounts to capturing a direct mapping
between an image of the end-of-task scene, and its label
(success, or failure mode in case of a failure).

In prior art, much of the existing work on analysis of
manipulation task outcomes focused on prediction, so as to
minimize the chances of failure [1], [2]. While this greatly
improves the likelihood of task success on the first attempt,
we believe it necessary to consider the failures that will
inevitably occur in these ever more general environments.
Similar in nature to our work, Hanheide et al. described
unexpected failures in motion planning as a mismatch be-



Fig. 2.
Labels produced by task outcome model. Right: Ground truth labels.

Left: Synthetic depth images (with Kinect noise model). Center:

tween expectation and experience [3]. Our work goes beyond
Hanheide et al. by relaxing assumptions on the environment.
Visual task success verification was investigated by Erkent
et al. [4] by checking for completion while using visual
servoing on various tasks. However, the authors do not
attempt to classify types of failure if success is not detected
in a given time. Saran et al. explored viewpoint selection
for visually determining binary task failure [5], which is
complementary to the work described here.

II. OBJECT PLACEMENT EXPERIMENT

The archetypal manipulation task chosen for demonstrat-
ing the model is the object-container insert alluded to above.
Placement of each object was deemed a success if the entire
object was contained within the receiving box; any other
result was deemed a failure, as seen in Fig. 1.

To identify failure modes, we simulated 10,000 variants
of a reference insert scenario of which 95% are used for
training and 5% for validation. We released between one and
four box-shaped objects 1.5m above the center of a larger
container of side length Im (Fig. 1). The initial position of
the objects was offset in a plane parallel to the ground,
by a vector drawn randomly from a uniform distribution
defined on {(z,y) : =,y € [-60,60]}. We simulated the
perturbed episodes in Blender with the Bullet physics engine.
We identified failure modes by clustering all object drops
according to the distance between the center of the container
and the center of mass of the dropped object in its final
configuration. Clustering was implemented with DBSCAN
[6], which yielded three clusters that correspond to the three
outcomes that a human observer would intuitively identify,
namely object in container (success), object fell next to
container (failure mode 1), and object in the container but
sticking out (including object sitting on edge of container)
(failure mode 2).

To enable the identification of the three outcomes listed
above in a new scene, we trained a CNN on a dataset
consisting of labeled depth images. We captured one depth
image of the final configuration of each of the episodes
generated above using a realistic depth-camera sensor model
[7], and we labeled all images with ground-truth outcomes
yielded by the clustering algorithm. While the problem
discussed above can be identified as a classification task, we
opted to model both the outcome of the task and the spatial
structure of the scene, to facilitate the definition of recovery

Fig. 3.
Grayscale render of processed depth image from Kinect. Right: Overlay
of segmented classes produced by CNN.

Left: RGB image of real scene from Kinect camera. Center:

actions in future work. Accordingly, instead of labeling each
image, we labeled each pixel of each image according to the
pixel’s correspondence to (1) a successfully-inserted object,
(2) an improperly-inserted object (failure mode 1), (3) an
improperly-inserted object (failure mode 2), (4) the container,
and (5) the background. We trained the fully-convolutional
MultiNet architecture proposed by Teichmann et al. [8], [9]
on this dataset. To measure the network’s performance, we
evaluated the network’s ability to predict the presence or
absence of each of the three outcome classes (success, failure
mode 1, failure mode 2), by comparing the number of pixel
labels belonging to each class to a hard-coded threshold.
Our results showed that in this canonical experiment, the
network identified the correct presence or absence of all
outcomes in 86.8% of images in the synthetic validation
set. Fig. 2 shows several depth images along with ground-
truth and predicted labels. The first row of Fig. 2 shows
an example of failure mode 1: the object is not entirely
within the volume of the container. The second row shows
two successful inserts (in green), and one failure of mode 2
(in red). Fig. 3 demonstrates the network’s ability to predict
outcome labels on real depth images from a Kinect camera.
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