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Abstract— We present an algorithm for combining computer
vision, natural language processing (NLP) and realtime robot
motion planning to enable human-robot interaction and auto-
matically generate safe robot movements. Our approach uses
Gaussian Process-based offline learning of human actions along
with temporal coherence to predict the human actions. We use
dynamic constraint mapping to generate robot actions from
NLP commands. Our formulation transforms the complex,
attribute-based natural language instructions into appropriate
cost functions and parametric constraints for optimization-
based motion planning.

I. INTRODUCTION

Motion planning algorithms are used to compute collision-
free paths for robots among obstacles. In the field of human-
robot interaction (HRI), it is important to develop an interface
to communicate a human’s intent to a robot [1], [2], [3]
and use reliable planning algorithms that can safely handle
dynamic and unpredictable human motion.

As robots are increasingly used in complex scenarios and
applications, it is important to develop a new generation
of motion planning and robot movement techniques that
can respond appropriately to diverse, attribute-based NLP
instructions for HRI, e.g., those containing negation based
phrases or references to position, velocity, and distance
constraints. Furthermore, we need efficient techniques to
automatically map the NLP instructions to such motion
planners. As we generate robot movements in response to
these instructions, we need to use vision-based techniques
to predict human action and generate collision-free and
robot movements. As the humans move, it is important for
the robots to predict the human actions and motions from
sensor data and to compute appropriate trajectories. In some
scenarios, it is possible to infer high-level human intent using
learning-based algorithms [4], and thereby perform a better
motion planning that generates safer robot trajectories.

At a high level, natural language instructions can be
decomposed into task description and attributes. Task de-
scriptions are usually verb or noun phrases that describe the
underlying task performed by a robot. The attributes include
various adjectives, adverbs, or prepositional phrases are used
to specify additional conditions the robot must (or must
not) satisfy. For example, these conditions may specify some
information related to the speed, orientation, physical space
characteristic, or the distances. Therefore, it is important to
design motion planners that take into account these robotic
task descriptions and robot motion constraints.

We use Dynamic Grounding Graphs (DGG) to parse
and interpret the commands and generate the constraints.

Moreover, our formulation includes the latent parameters in
the grounding process and that allows us to model many con-
tinuous variables in our grounding graph [5]. Furthermore,
we use a new dynamic constraint mapping that takes DCG as
the input and computes different constraints and parameters
of the motion planner. The appropriate motion parameters
correspond to the speed, orientation, position, smoothness,
repulsion, and avoidance. The final trajectory of the robot is
computed using a realtime constraint optimization solver [6].
Overall, our approach can automatically handle complex
natural language instructions corresponding to spatial and
temporal adjectives, adverbs, superlative and comparative
degrees, negations, etc.

We address the problem of planning safe and reliable
motions for a robot that is working in environments with
humans. As the humans move, it is important for the robots to
predict the human actions and motions from sensor data and
to compute appropriate trajectories. We developed a high-
DOF motion planning approach to compute collision-free
trajectories for robots operating in a workspace with human-
robot cooperating scenarios. We track the positions of the
human using depth cameras and present a new method for
human action prediction using combination of classification
and regression methods. Given the sensor noises and pre-
diction errors, our online motion planner uses probabilistic
collision checking [7] to compute a high dimensional robot
trajectory that tends to compute safe motion in the presence
of uncertain human motion.

We highlight the performance of our algorithms in a
simulated environment as well as on a 7-DOF Fetch robot
operating next to a human in a safe manner. Our approach
can handle a rich set of natural language commands and
can generate appropriate paths in realtime. These include
complex commands such as picking (e.g., “pick up a red
object near you”), correcting the motion (e.g., “don’t pick
up that one”), and negation (e.g., “don’t put it on the book”).

II. IMPLEMENTATION AND RESULTS

We have implemented our algorithm and evaluated its
performance in a simulated environment and on a 7-DOF
Fetch robot. All the timings are generated on a multi-core
PC.with Intel 17-4790 8-core 3.60GHz CPU and a 16GB
RAM.

A. Training DGGs for Demonstrations

The training dataset for NLP is created with enough
number of training samples, up to 100,000 samples in



Fig. 1. [Initially the user gives the “pick and place” command. However,
when the robot gets closer to the book, the person says “don’t put it there”
(i.e. negation) and the robot avoids the book using our dynamic constraint
mapping functions and optimization-based planning. Our approach can
generate appropriate motion plans for such attributes.
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Fig. 2. The simulated Fetch robot arm is reaching towards one of the two
red objects . (a) When a command “pick up one of the red objects” is issued,
the robot moves to the right red object because of DGG algorithm. (b) If
the user doesn’t want the robot to pick up the right object, he/she uses
a command “don’t pick up that one”. Our DGG algorithm dynamically
changes the cost function parameters. (¢) The robot approaches the right
object and stops.

our experiments. For each demonstrations, we write tens
of different sentences that specifying goals of tasks and
constraints of motion plans, with different nouns, pronouns,
adjectives, verbs, adverbs, preposition, etc.. Sentences that
specify constraints may start with “Don’t”. For each sen-
tence, we generate random robotic environment and initial
state of robot. Some objects in the environment, such as
tables, are in fixed locations, while other objects such as
small boxes or cans to pick up are randomly placed on the
table.

B. Simulations and Real Robot Demonstrations

We have evaluated the performance in complex environ-
ments composed of multiple objects and local minima in
the optimization problems. Based on the NLP commands,
the robot decides to pick an appropriate object or is steered
towards the goal position in a complex scene. In particular,
the user gives NLP commands such as “move right”, “move
up”, “move left” or “move down” to guide the robot.
For each such command, we compute the appropriate cost
functions.

We also integrated our NLP-based planner with ROS and
evaluated its performance on the 7-DOF Fetch robot. In a
real-world setting, we tested its performance on different
tasks corresponding to: (1) moving a soda can on the table
from one position to an other; (2) not moving the soda
can over the book. More details are given in the technical
report [5]. The robot recomputes the cost functions and
avoids the region around the book.

We observe reliable human motion prediction results and
smoothly planned trajectories, as shown in Fig. II-B. This
is because the robot changes its path in advance before the
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Fig. 3. The human asks the robot to “put the cube on table” (a). As it
approaches the laptop (b), the human uses a negation NLP command “don’t
put it there,” so the robot places it at a different location (c).

Fig. 4.

The human is moving arm forward to blocks on the table. The
human’s current pose is colored in blue, and predicted future motions are
colored in red. The motion planner generates safe robot trajectories avoiding
human.

human obstacle actually blocks the robot’s shortest path if
human motion prediction is used.

C. Analysis

We evaluated the performance based on the following
metrics:

o Success Rate: The ratio of successful task completion
among all trials.

o Trajectory Duration: The duration between the time the
first NLP command is given and the robot’s successful
completion of the task after trajectory computation.

o Trajectory Smoothness Cost: A cost based on evaluating
the trajectory smoothness based on standard metrics
and dividing it by the trajectory duration. A lower cost
implies a smoother and more stable trajectory.

Table I shows the results on our benchmarks with varying
numbers of training data samples on the simulation envi-
ronment shown in Fig. 2. When the number of training
data samples increases, the success rate also increases, and
the trajectory duration and the trajectory smoothness cost
decrease.

We quantitatively measure prediction time, smoothness,
jerkiness of robot trajectories and distance from the robot to
obstacles. Table II shows the performance of our I-Planner
algorithm with a real robot near a human.
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