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Object detection and classification is a component of
situational awareness basic to numerous robotics applications
involving semantic world perception and mapping. While
object classification is considered largely solved in many
”controlled” computer vision scenarios, challenges often re-
main in applications which involve mobile robots, especially
where semantic information affects autonomous decision
making. The latter often require algorithms to function under
rather general assumptions on robot environment and its
localization within it, maintaining and refining awareness of
the environment while imaging complex scenes under uncer-
tain robot motion. Challenges include partial or full object
occlusions, class aliasing (due to classifier imperfections or
objects that appear similar from certain viewpoints), imaging
problems, false detections.

The mobility of robotic systems is widely exploited to
overcome some of these challenges by accumulating classifi-
cation evidence across multiple observations and viewpoints
[1], [2], [8], [10], [12], [13], [17], [19], including a recent
surge in active methods for autonomous classification, where
next viewpoints are automatically selected, e.g. [1], [2], [8],
[13], [17], [19]. Variations in object appearance are often
directly addressed using offline-built class models for infer-
ence rather than raw classifier measurements. Especially in
the active methods, such models are often themselves spatial
and view-dependent. As was shown by Teacy et al. [17] and
Velez et al. [19] view-dependent models can allow for better
fusion of classifier measurements by modelling correlations
among similar viewpoints instead of the common but usually
false assumption of independence of measurements.

Reliance on spatial models however introduces new prob-
lems, as robot localization is usually not precisely resolved,
leading to errors when matching measurements against the
model. This is aggravated in the presence of classifier
measurements actually not complying to the model, as may
happen for example when a classifier is deployed in an
environment different in appearance from the one it was
trained on, for example - in another country where objects
semantically identical to the ones in the training set look
differently. In the latter case, classifier output would often
be arbitrary, rather than reflect the actual uncertainty in
classification, known as epistemic or model uncertainty [6],
[9]. In the domain of Bayesian deep learning, methods exist
to approximate the above as network posterior [3], [6], [11],
for example using test-time dropout [5], which allows to
(approximately) obtain it for virtually any deep learning-
based classifier without change in model (Fig. 2).

Accounting for uncertainty is directly related to novelty
detection and safety e.g. [7], [15], and confidence prediction
[16], [18]. It essentially allows the system to be aware of
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Fig. 1: Robot acquires observations along track in the
vicinity of the object of interest. At each time step, classifier
outputs a cloud of classification vectors reflecting the model
uncertainty, unlike a single vector measurement (red dot) or
a component thereof in many current approaches.

low confidence situations and avoid autonomously making
confident wrong decisions, in the case of classification -
assigning a wrong class with high confidence.

Existing classification fusion methods however do not
address model uncertainty. Indeed, with few exceptions most
current methods discard also the classification vector com-
monly output by the classifier, only using the most likely
class (component with highest response) for belief update.
Likewise, most methods ignore uncertainty in localization,
assuming it perfectly known.

In light of the above, we develop a method [4] for fusing
responses of a classifier which provides a model uncer-
tainty measure, while accounting for viewpoint-dependent
variations in object appearance and correlations in classi-
fier responses, and accounting for localization uncertainty
(Fig. 1). We confirm in MATLAB simulation that our method
provides robustness with respect to the above sources of
uncertainty compared to current methods. An ongoing work,
initial simulations in a 3D Unreal Engine environment con-
firm that localization bias introduces class aliasing, causing
wrong classification when uncertainty is not accounted for
(Fig. 3).

While [4] limits itself to classification of a single object,
more interesting challenges arise in a realistic scenario of
an environment containing multiple objects, of which some
may be instances of the same class, and with the general as-
sumption that objects may be present for which classification



Fig. 2: Simulation of model uncertainty in classification to 3
classes. Left: multiple forward passes with MC dropout [6] result
in a point cloud of classification outputs in the simplex, red point
denotes sample mean. Right: Mean and standard deviation of
classification scores over point cloud.

models are not available. Maintaining uncertainty as part of
the semantic world map (possibly represented as a hybrid
belief over discrete class variables and continuous poses and
landmarks) may be of help in detecting and treating such
novel information, possibly directing active collection of data
for further training and disambiguation.
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(a) Spatial (2D) model of classifier responses for class ’desk’
(interpolation using GP). For some viewpoints, most likely class is
’chest’, motivating the use of a model over raw classifier outputs.

(b) Plots of classifier responses measured over a 2D track for an
object of class ’desk’ (red) against classification models (model
for class ’desk’ in green, ’chest’ - in blue, ’crate’ - yellow). Top:
measurements best match model for ground truth class (’desk’).
Bottom: localization bias causes measurements to shift against
spatial model. As a result, measurements over first part of track
better match ’chest’ model, leading to erroneous classification if
localization uncertainty is not accounted for.

Fig. 3: Spatial model for a class is represented using a separate
GP learned per feature (see [4] for details). Here, training data
is obtained by capturing rendered images of an object of corre-
sponding class (using Unreal Engine with UnrealCV plugin [14]),
feeding them into a Caffenet classifier, then fitting GP models to
the components of interest of produced classification vectors. Plots
in (b) correspond to localization uncertainty scenario from [4].
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