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I. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) is a

prerequisite for many robotic applications, for example
collision-less navigation. SLAM techniques estimate jointly a
map of an unknown environment and the robot pose within
such map, only from the data of its onboard sensors. The
map allows the robot to continually localize within the same
environment without accumulating drift. This is in contrast to
odometry approaches that integrate the incremental motion
estimated within a local window and are unable to correct
the drift when revisiting places.

Visual SLAM, where the main sensor is a camera, has
received a high degree of attention and research efforts over
the last years. The minimalistic solution of a monocular
camera has practical advantages, like size, power and cost;
but also several challenges like the unobservability of the
scale or the state initialization. By using more involved
setups, like stereo or RGB-D cameras, these issues are solved
and the robustness of the system can be greatly improved.

The research community has addressed SLAM from
many different angles. However, the vast majority of the
approaches and datasets make the hypothesis of a static
environment. And as a consequence, they can only address
small fractions of dynamic content by classifying them as
outliers to the static model. Although the staticity assumption
holds for some robotic applications, it certainly limits the
applicability of visual SLAM to many relevant cases, such as
intelligent autonomous systems operating in populated real-
world environments over long periods of time.

Visual SLAM can be classified into feature-based methods
[1], [2], that rely on salient points matching and can only esti-
mate a sparse reconstruction; and direct methods [3], [4], [5],
which are able to estimate in principle a completely dense
reconstruction by the direct minimization of the photometric
error and TV regularization. Some direct methods focus on
the high-gradient areas estimating semi-dense maps [6], [7].

None of the above methods, considered the state of the art,
address the very common problem of dynamic objects in the
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(a) Input RGB-D frames with dynamic content.

(b) Output RGB-D frames. Dynamic content has been removed. Occluded
background has been reconstructed with information from previous views.

(c) Map of the static part of the scene, after removing the dynamic objects.

Fig. 1: Overview of Our system results for the RGB-D case.

scene, e.g., people walking, bicycles, cars, etc. Detecting and
dealing with dynamic objects in visual SLAM reveals several
challenges for both mapping and tracking, including:

1) How to detect such dynamic objects in the images.
2) How to prevent the tracking algorithm from using

information belonging to dynamic objects.
3) How to prevent the mapping algorithm from including

moving objects as part of the 3D map.
4) How to complete the 3D information in the scene

occluded by the moving objects.

Many applications would be greatly benefited from a so-
lution for this problem, e.g., augmented reality, autonomous
vehicles, service robots and medical imaging, among others.
In the main, all of them that, for instance, could reuse maps.

In this work we propose an algorithm for dealing with
dynamic objects in RGB-D, stereo and monocular SLAM.



Fig. 2: Block diagram of our methodology. The stereo and monocular images (black continuous line) pass through a FCN
for computing the segmentation of the a priori dynamic objects before being used for mapping and tracking. In the RGB-D
case (black dashed line) a multi-view geometry based approach is added for detecting all dynamic objects, for which we
need a low-cost tracking. We do the inpainting of the occluded background once the position of the camera is known.

This is done by adding a front-end stage to the state-of-the-
art ORB-SLAM2 system [8], with the purpose of having a
more accurate tracking, and a reusable map of the scene.
In the monocular and stereo cases our proposal is to use a
Fully Convolutional Network (FCN) to detect the a priori
dynamic objects in the frames, e.g., people, cars, trucks, etc,
so that the SLAM algorithm does not extract features on
them. In the RGB-D case we propose to combine multi-
view geometry models and deep-learning-based algorithms
for detecting dynamic objects and, after having removed
them from the images, inpaint the occluded background with
the correct information of the scene (Fig. 1).

II. SYSTEM DESCRIPTION
Fig. 2 shows an overview of our system. First of all, the

RGB channels pass through a FCN that segments out all the
a priori dynamic content, e.g., people or vehicles.

In the RGB-D case, we use multi-view geometry to im-
prove the dynamic content segmentation in two ways. Firstly,
we can refine the segmentation of the dynamic objects.
Secondly, we can label as dynamic new object instances that
are static most of the times (i.e., detect moving objects that
were not set to movable in the FCN stage).

For that purpose, it is necessary to know the camera pose,
for which a low-cost tracking module has been implemented
to localize the camera within the already created scene map.
These segmented frames are the ones which are used to
obtain the camera trajectory and the map of the scene.

Once this full dynamic objects detection and the localiza-
tion of the camera have been done, we aim to reconstruct
the occluded background of the current frame with static
information from previous views.

In the monocular and stereo cases, the images are seg-
mented out by the FCN so that the features extractor algo-
rithm does not work with keypoints belonging to the a priori
dynamic objects in both the tracking and mapping threads.

All the different stages are described more in depth along
the next subsections (II-A to II-E).

A. Segmentation of Potential Dynamic Content using FCN

For detecting dynamic objects we propose to use a Fully
Convolutional Network (FCN). In our experiments we use
Mask R-CNN [9], which extends Faster R-CNN [10] by
adding a branch that predicts the segmentation mask in

parallel with the already existing branch for bounding box
recognition. He et al. have not published their code yet, but
different researchers have implemented variations [11].

The input of the FCN is the RGB original image. The
idea is to segment those classes that are potentially dynamic
or movable (e.g., people, dog, cat, car). The output of the
network, assuming that the input is a RGB image of arbitrary
size m × n × 3, is a matrix of size m × n × l, where l is
the number of objects in the image. For each channel i ∈ l a
binary mask is obtained. By combining all the channels into
one image we would obtain the segmentation of all those
dynamic objects appearing in one image of the scene.

B. Low-Cost Tracking

After the potentially dynamic content has been segmented
out, the pose of the camera is tracked using the static part of
the image. The segment contours usually fall in high-gradient
areas, where salient point features tend to appear. We do not
consider the features in such contour areas.

The tracking implemented in this stage of the algorithm
is a low-cost version of the one in Mur and Tardos [8]. It
projects the map features in the image frame, searches for
the correspondences in the static areas of the image, and
minimizes the reprojection error to optimize the camera pose.

C. Segmentation of Dynamic Content using FCN and Multi-
view Geometry

By using Mask R-CNN, most of the dynamic content can
be segmented and therefore not used for both the tracking
and the mapping. However, some objects cannot be detected
by this approach because they are not a priori dynamic, but
are movable. Examples of the latest are a book carried by
someone, a chair that someone is moving, or even furniture
changes in long-term mapping. This approach for dealing
with these changes in the scene is detailed in this section.

For each input frame, we select those previously processed
keyframes that have the maximum overlapping of the scene
with itself. This is done taking into account both the distance
and the rotation between the new frame and each of the
keyframes, similarly to Tan et al. [12]. The number of
selected keyframes has been set to five in our experiments.

We then compute the projection of each extracted keypoint
x of the keyframes into the current frame, obtaining the
keypoints x′, as well as their projected depth zproj . For each



keypoint we calculate the angle between the rays connecting
x and x′ with their corresponding 3D map point X , i.e.,
their parallax angle α. If this angle is greater than 30◦,
its corresponding keypoints might be subject to occlusions,
and will be ignored from now on. Experimentally, we have
proved that, in the indoor scenarios of the TUM dataset, with
a parallax angle greater than 30◦ some static objects were
considered as dynamic due to the view point difference. We
obtain the depth of the remaining keypoints in the current
frame z′, taking into account the reprojection error, and we
compare them with the already computed projected depth of
the keyframes zproj . If the difference ∆z = zproj−z′ is over
a threshold τz the keypoint x′ is considered to belong to a
dynamic object. This idea can be seen in a schematic manner
in the diagram of Fig. 3. In order to set the threshold τz we
have manually tagged the dynamic objects of a few images
within the TUM dataset, and evaluated both the precision
and recall of our method for different thresholds τz . By
maximizing the expression 0.7×Precision+ 0.3×Recall,
we have concluded that τz = 0.4m is a reasonable choice.

Some of the keypoints that have been previously set to
dynamic lay on the borders of moving objects. To avoid
this, we use the information given by the depth images. If
a keypoint is considered to be dynamic, but a patch around
itself in the depth map has a high variance, this keypoint will
no longer be tagged as dynamic.

So far, we know which keypoints belong to dynamic
objects, and which ones do not. In order to classify all the
pixels belonging to these objects, we grow the region around
those dynamic pixels in the depth image. An example of a
segmented image projected on the RGB frame can be seen
in Fig. 4a. Our results show small misalignments due to both
the time difference between RGB and depth images, and the
depth discontinuities inside a moving object itself. We dilate
the segmented regions in order to avoid both effects.

The results of the FCN (Fig. 4b) can be fused together
with those of this geometric method for a full dynamic
objects detection (Fig. 4c). We can find advantages and
disadvantages in both dynamic objects detection methods.
Firstly, using geometric approaches, the main problem is that
initialization is not trivial because of its multi-view nature.

(a) Keypoint x′ belongs
to a static object (z′ =
zproj ).

(b) Keypoint x′ be-
longs to a dynamic ob-
ject (z′ < zproj ).

Fig. 3: The dynamic keypoints are detected if the difference
between zproj and z′ is greater than a threshold ∆z.

Learning methods and their impressive performance using a
single view, do not have such initialization problems. On the
other hand, the main limitation of the deep learning method
is that objects that are supposed to be static can be moved,
and the method is not able to identify them. This causes
defects on the reconstruction of the scene. Such defects can
be solved by checking the multi-view compatibility.

These two ways of facing the moving objects detection
problem are illustrated in Fig. 4. In Fig. 4a we see that the
person in the back, which is potentially a dynamic object, is
not detected. This is due to both the difficulties that RGB-D
cameras face when measuring the depth of objects that are
far, and the fact that reliable features lie on defined, and
therefore nearby, parts of the image. Albeit, this person is
detected by the deep learning method (Fig. 4b). Apart from
this, on one hand we see in the Fig. 4a that not only is
detected the person in the front of the image, but also the
book he is holding and the chair he is sitting on. On the other
hand, in the Fig. 4b the two people are the only objects
detected as dynamic, and also their segmentation is less
accurate. If only the deep learning method is used, a floating
book would be left in the images and would incorrectly
become part of the 3D map.

Because of the advantages and disadvantages of both
methods, we consider they are complementary and therefore
the combined use of both is an effective way to achieve
an accurate tracking and mapping. In order to achieve this
goal, if an object has been detected with both approaches,
the segmentation mask should be that of the geometrical
method. If an object has only been detected by the learning
based method, the segmentation mask should contain this
information too. The final segmented image of the example
explained above can be seen in the Fig. 4c. These segmented
dynamic parts are then removed from the current frame.

D. Tracking and Mapping

The input to this stage of the system contains the RGB and
depth images, as long as their segmentation mask. We extract
ORB features in the image segments classified as static. As
the segment contours are high-gradient areas, the keypoints
falling in this intersection have to be removed.

E. Background Inpainting

For every dynamic object that is removed, we also aim at
inpainting the occluded background with static information
from previous views, so that we can synthesize a realistic
image without moving content for virtual reality applications.

First, we project into the dynamic segments both the
weighted color and depth from a set of all the previous
keyframes (the last twenty in our experiments). Secondly,
some gaps have no correspondences and are left blank: it can
be due to the difference of field of view between the cameras
–two pixels in the keyframes might correspond to three pixels
in the input frame–. Besides, another reason why some areas
can not be inpainted is because their correspondent part of
the scene has not appeared so far in the keyframes, or, if
has appeared, it has no valid depth information. The first



(a) Using Multi-view Geometry. (b) Using Deep Learning. (c) Using Geometry and Deep Learning.

Fig. 4: Detection and segmentation of dynamic objects using multi-view geometry (left), deep learning (middle), and a
combination of both geometric and learning methods (right). Notice that Fig. 4a cannot detect the person behind the desk,
Fig. 4b cannot segment the book carried by the person, and the combination of the two (Fig. 4c) is the best performing.

(a) RGB original images. (b) Depth original image.

(c) Inpainted RGB images. (d) Inpainted depth image.

Fig. 5: Qualitative results of our approach. In Fig. 5a we show three RGB input frames, and in Fig. 5c we show the output
of our system, in which all dynamic objects have been detected and the background has been reconstructed. Figs. 5b and
5d show respectively the depth input and output, which has also been processed. Figure best viewed in electronic format.

ones usually have a small size and can easily be inpainted
with the color and the depth from the neighbors. The second
ones can not be reconstructed with geometrical methods and
would need a more elaborated inpainting technique.

Fig. 5 shows the synthetic images for three input frames
from different sequences of the TUM RGB-D benchmark.
The first row contains three RGB and one depth original
images, and the second row shows the inpainted ones. Notice
how the dynamic content has been successfully segmented
and removed. Also, most of the segmented parts have been
properly inpainted with information from the background.

III. EXPERIMENTAL RESULTS

We evaluate our system using the TUM RGB-D dataset
and compare to other state-of-the-art SLAM systems in
dynamic environments. Besides, we compare our evaluation
to the original ORB-SLAM2 system to quantify the improve-

ment of our approach in dynamic scenes. Mur and Tardos [8]
propose to run each sequence five times and show median
results, to account for the non-deterministic nature of the
system. In our case, we run each sequence ten times, as
dynamic objects are prone to exalt this effect.

A. TUM Dataset

The TUM RGB-D dataset [13] sequences have been
recorded using a Microsoft Kinect sensor in different indoor
scenes at full frame rate (30Hz). Both the RGB and the
depth images are available, together with the ground-truth,
obtained from a high-accuracy motion-capture system. In the
sequences named sitting there are two people sitting in a
desk while speaking and gesticulating, i.e., there is very few
motion. In the sequences named walking, two people walk
both in the background and the foreground. This dataset
is highly dynamic and therefore challenging for standard



Sequence Our
system

(N)

Our
system

(G)

Our
system
(N+G)

Our
system

(N+G+BI)

walking halfsphere 0.025 0.035 0.025 0.029
walking xyz 0.015 0.312 0.015 0.015
walking rpy 0.040 0.251 0.035 0.136
walking static 0.009 0.009 0.006 0.007

sitting halfsphere 0.017 0.018 0.017 0.025
sitting xyz 0.014 0.009 0.015 0.013

TABLE I: Absolute trajectory RMSE [m] for several variants
of Our system (RGB-D).

SLAM systems. For both types of sequences sitting and
walking there are four camera movements: 1) halfsphere The
camera moves following the trajectory of a 1m diameter half
sphere, 2) xyz: The camera moves along the x-y-z axes, 3)
rpy: The camera rotates over roll, pitch and yaw axes, and
4) static: The camera is kept static manually.

We use for the experiments, as error metric, the absolute
trajectory RMSE that has been proposed by Sturm et al. [13].

The results of different variations of our system for six
different sequences within this dataset are shown in Table I.
Firstly, Our system (N) stands for the system in which only
the Fully Convolutional Network (FCN) segments out the
a priori dynamic objects. Secondly, in Our system (G) the
dynamic objects have been only detected with the multi-
view geometry method based on depth changes. Thirdly,
Our system (N+G) stands for the system in which the
dynamic objects have been detected combining both the
geometrical and the deep learning approaches. Finally, we
have considered interesting to analyze the system that is
shown in Fig. 6. In this case (N+G+BI), the background
inpainting stage (BI) is to be done before the tracking and
mapping. The motivation for this experiment is that, if the
dynamic areas are inpainted with the static content, the
system can work as a SLAM system under the staticity
assumption using the inpainted images. In this proposal, the
ORB features extractor algorithm works both in the real and
reconstructed areas of the frames, finding matches with the
keypoints of the previously processed keyframes.

According to Table I, the system (N+G) that uses learning
and geometry is the most accurate one in most sequences.
The improvement over (N) comes from the segmentation of
movable objects and refinement of the dynamic segments.
The system (G) has higher error because it needs motion
and its segmentation is only accurate after a small delay,
during which the dynamic content introduces error.

Adding the background inpainting stage (BI) before the
localization of the camera usually leads to less accuracy

Fig. 6: Block diagram of RGB-D Our system (N+G+BI).

in the tracking. The reason is that that the background
reconstruction is strongly correlated with the camera poses.
Hence, in those sequences in which there are pure rota-
tion movements (rpy mainly, and halfsphere), the estimated
positions of the cameras have a greater error and lead to
a non-accurate background reconstruction. The background
inpainting stage (BI) should be done therefore once the
tracking stage is finished (Fig. 2). The main accomplishment
of the background reconstruction is seen in the synthesis of
the static images (Fig. 5) for applications such as virtual
reality or cinematography. The Our system results shown
from now on are from the best variant, that is, (N+G).

Table II shows our results in the same six sequences, com-
pared against RGB-D ORB-SLAM2. Our method outper-
forms ORB-SLAM2 in highly dynamic scenarios (walking),
reaching an error similar to that of the original RGB-D
ORB-SLAM2 system in static scenarios. In the case of
low-dynamic scenarios (sitting) the tracking results are
slightly worse because the tracked keypoints find themselves
further than those belonging to dynamic objects. Albeit, Our
system’s map does not contain the dynamic objects that
appear along the sequence. Fig. 7 shows an example of
the estimated trajectories of Our system and ORB-SLAM2,
compared against the ground-truth. Our system trajectory is
almost indistinguishable from that of the ground-truth.

Sequence ORB-SLAM2
(RGB-D) [8]

Our system (N+G)
(RGB-D)

walking halfsphere 0.351 0.025
walking xyz 0.459 0.015
walking rpy 0.662 0.035
walking static 0.090 0.006

sitting halfsphere 0.020 0.017
sitting xyz 0.009 0.015

TABLE II: Comparison of the RMSE of ATE [m] of Our
system against ORB-SLAM2 for RGB-D cameras.

Table III shows, in six challenging dynamic sequences, a
comparison between our system and several state-of-the-art
RGB-D SLAM systems designed for dynamic environments.
Our system significantly outperforms all of them in all

−1.5 −1 −0.5 0

−3

−2.5

x[m]

y
[m

]

ORB-SLAM2
Our System
Ground-truth

Fig. 7: Estimated trajectory with Our system, ORB-SLAM2
and ground-truth in the TUM sequence fr3/walking xyz.



Sequence Depth Edge SLAM [14] Motion Segmentation
DSLAM [15]

Motion Removal
DVO-SLAM [16]

Our system (N+G) (RGB-D)

walking halfsphere 0.049 0.055 0.125 0.025
walking xyz 0.060 0.040 0.093 0.015
walking rpy 0.179 0.076 0.133 0.035
walking static 0.026 0.024 0.066 0.006

sitting halfsphere 0.043 - 0.047 0.017
sitting xyz 0.040 - 0.048 0.015

TABLE III: Comparison of the absolute trajectory RMSE [m] of our method against the state-of-the-art RGB-D SLAM
systems for dynamic scenes. Our tracking results are estimated with the FCN and the multi-view geometry stages (N+G).

sequences (high and low dynamic). The error is, in general,
similar to that of the state of the art in static scenes (1-2 cm).

Monocular ORB-SLAM in highly dynamic scenes is, in
general, more accurate than RGB-D SLAM. The reason is the
initialization algorithm of ORB-SLAM and RGB-D SLAM.
RGB-D SLAM is initialized and starts the tracking from the
very first frame, and hence dynamic objects can introduce
errors. ORB-SLAM delays the initialization until there is
parallax and consensus using the staticity assumption. Hence,
it does not track the camera for the full sequence, sometimes
missing a substantial part of it, or even not initializing.

Table IV shows the tracking results and percentage of the
tracked trajectory for ORB-SLAM and Our system (monocu-
lar) in some sequences of the TUM dataset. The initialization
in Our system is always quicker than that of ORB-SLAM. In
fact, in highly dynamic sequences, ORB-SLAM initialization
only occurs when the moving objects disappear from the
image. In conclusion, although the accuracy of Our system
is slightly worse, it succeeds in bootstrapping the system with
dynamic content and producing a map free of such content
(see Fig. 1), to be re-used for long-term applications.

Sequence ORB-SLAM Our system
[8] (Monocular)

ATE [m] % Traj ATE [m] % Traj

fr3/walking halfsphere 0.017 87.16 0.021 97.84
fr3/walking xyz 0.012 57.63 0.014 87.37

fr2/desk with person 0.006 95.30 0.008 97.07
fr3/sitting xyz 0.007 91.44 0.013 100.00

TABLE IV: RMSE of ATE [m] and the tracked trajectory
percentage for Our system and ORB-SLAM (monocular).

IV. CONCLUSIONS

We have presented a full visual SLAM system for dynamic
environments that can use monocular, stereo and RGB-D
cameras. Our system is able to accurately track the camera
and create a static and therefore reusable map of the scene.
In the RGB-D case, Our system is capable of obtaining
the synthetic RGB frames with no dynamic content and
with the occluded background inpainted, as well as their
corresponding synthesized depth frames, which might be
together very useful for virtual reality applications.

The comparison against the state of the art shows that Our
system achieves in most cases the highest accuracy.

In the TUM Dynamic Objects dataset, Our system is the
best RGB-D SLAM solution. In the monocular case, our
accuracy is similar to that of ORB-SLAM, obtaining however
a static map of the scene and an earlier initialization.

Future extensions of this work might include a real time
performance, a RGB-based motion detector, or a more real-
istic appearance of the synthesized RGB frames.
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