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Abstract— Lightweight, autonomous drones are soon ex-
pected to be used in a wide variety of tasks such as aerial
surveillance, delivery, or monitoring of existing architectures.
A large body of literature in robotic perception and control
exists. Existing methods are mature, but not robust, therefore
hindering drones’ deployment in natural environments, like a
city or a forest. Indeed, in unstructured and dynamic scenarios,
drones face numerous challenges to navigate autonomously in
a feasible and safe way. A recent line of research has exploited
the “perception-awareness” of deep learning techniques to
unlock autonomous flight in uncontrolled environments. This
is motivated by the insight that traditional methods relying on
global state estimates in the form of robot poses are doomed
to fail because of the inherent difficulties of pose estimation
at high speed along with their inability to adequately cope
with dynamic environments. In this paper, we survey existing
learning-based methods for drone navigation and identify open
areas of research for future work.

I. INTRODUCTION

Safe and reliable navigation of autonomous systems, e.g.
unmanned aerial vehicles (UAVs), is a challenging open
problem in robotics. Being able to successfully navigate
while avoiding obstacles is indeed crucial to unlock many
applications of robotics, e.g. surveillance, construction mon-
itoring, delivery, and emergency response [1], [2], [3]. A
robotic system facing the aforementioned tasks should si-
multaneously solve many challenges in perception, control,
and localization. These become particularly difficult when
working in uncontrolled environments, e.g. forests or streets
of cities, as the one illustrated in Fig. 1. In those cases, the
autonomous agent is not only expected to navigate while
avoiding collisions but also to safely interact with other
agents present in the environment, such as pedestrians or
cars.

The traditional approach to tackle this problem is a two
step interleaved process consisting of (i) automatic localiza-
tion in a given map (using GPS, visual and/or range sensors),
and (ii) computation of control commands to allow the agent
to avoid obstacles while achieving its goal [1], [4]. Even
though advanced SLAM algorithms enable localization under
a wide range of conditions [5], visual aliasing, dynamic
scenes, and strong appearance changes can drive the per-
ception system to unrecoverable errors. Moreover, keeping
the perception and control blocks separated not only hin-
ders any possibility of positive feedback between them, but
also introduces the challenging problem of inferring control
commands from 3D maps. Recently, new approaches based
on deep learning have offered a way to learn end-to-end
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Fig. 1. Enable a drone to autonomously fly through highly
unstructured environments such as the streets of a city, represents
a challenging task for robotics. Current methods based on deep
learning have made a first step in this direction, but still many
technical and theoretical questions remain open.

flying policies, tightly coupling perception and control [6],
[7], [8], [9]. The most successful of those methods are based
on supervised-learning, since they offer an effective and
sample efficient way to learn flying policies, but leave open
the issue of the domain shift between the teacher and the
learner. Even though systems based on deep learning achieve
remarkable results, we believe that those systems are still
not ready to completely replace traditional “map-localize-
plan” approaches for drone navigation. Indeed, we speculate
that learning-based and traditional approaches are going to
complement each other and enable drones to accomplish the
most challenging tasks.

II. OVERVIEW OF DEEP LEARNING FOR DRONE
NAVIGATION

A wide variety of techniques for drone navigation and
obstacle avoidance can be found in the literature. At high
level, these methods differ for the kind of sensory input
and processing employed to control the flying platform. We
divide those approaches in three different categories:

• Classical approaches based on mapping, localization,
and planning.

• Imitation Learning methods.
• Reinforcement Learning approaches.

In the following, we survey existing works from these
cathegories and identify open areas of research for future
work.

A. Map-Localize-Plan
An Unmanned Aerial Vehicle is usually provided with

GPS, range, and visual sensors to estimate the system
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state, infer the presence of obstacles, and perform path
planning [1], [4]. Nevertheless, those systems are still prone
to fail in environments where the GPS signal is weak as
in e.g. the streets of a city or a forest trail. In addition,
it is still not clear how to detect and avoid the static and
dynamic obstacles that are present in those environment. The
prevalent approach in GPS-denied scenarios is SLAM, where
the robot simultaneously builds a map of the environment
and self-localizes in it [5]. These approaches may fail,
however, when localizing in a map that was created in
significantly different conditions or during periods of high
acceleration (because of motion blur and loss of feature
tracking). Additionally, enforcing global consistency leads to
a larger computational complexity and a significant difficulty
in coping with dynamic environments. Indeed, SLAM meth-
ods enable navigation only in a “predominantly-static world”
where waypoints and (optionally) collision-free trajectories
can be statically defined.

B. Imitation Learning Methods

Recently, there has been an increasing research effort in
directly learning control policies from raw sensory data using
imitation learning. Given its relatively low sample complex-
ity (i.e. not much sample data is required to generalize)
and its implementation simplicity, supervised learning has
become the predominant tool used to learn visual-motor
policies [6], [7], [10], [8], [11], [12]. The supervisory signal
may come from a human expert [6], hard-coded trajecto-
ries [11], or model predictive control [12]. However, when
working in the streets of a city, it can be both tedious and
dangerous to collect a large set of expert trajectories, or
evaluate partially trained policies [6]. A possible approach
is to collect data in simulation and then transfer the learned
policy to the real world. To generate very basic navigation
policies, however, it is required either a lot of photorealistic
data [9], or some real world examples [13]. Therefore, in
order to safely and efficiently acquire data, the authors of [8]
proposed to use cameras mounted on cars and bicycles.
Tightly coupling perception and control, the resulting visual
motor policy unlocks good generalization performance on a
set of environments unseen during training. Similar works
in [7], [10] trained a deep neural network from video
collected by a mountain hiker to detect forest trails. The
results of the detection were then used to make a UAV
fly through forests. Clearly, the main disadvantage of these
approaches consists in the domain-shift between the expert
providing supervision and the learning agent. Indeed, in most
of the aforementioned methods the learned flying policies
are limited to planar motion, not fully exploiting the agile
dynamics of quadrotors. An interesting direction for future
work should be unifying supervised learning with model-
based approaches for drone control. By taking the best of
the two worlds, the resulting approach will provide not only
generalizing and sample efficient solutions, but will also ease
the domain-shift problem and fully exploit drones’ dynamics.

C. Reinforcement Learning (RL) Methods

In the last few years, RL-based algorithms have gained a
lot of popularity in the research community [9], [14], [15].
With respect to supervised methods, RL offers the advantage
of not requiring an expert to imitate since the learning signal
comes from direct interaction with the environment. This
automatically solves the domain-shift problem. The cost to
be paid for such a feature is that RL methods have ex-
tremely high sample complexity and therefore require a large
amount of robot experience to learn generalizing policies.
This has mainly hindered RL methods to be widely adopted
in the quadrotors literature. Indeed, robotic experience is
both costly and dangerous to acquire with safety critical
platforms such as drones. A promising approach has been
to use simulations in order to get cheap training data for
reinforcement learning tasks while testing the learned policy
in the real world [9], [13]. Clearly, this method suffers from
the domain shift between simulation and reality and might
require some real-world data to be able to generalize [13].
On the one hand available simulators can already model
the quadrotors dynamics very well [16]. On the other they
still fail to effectively model drag effects [17] which are
potentially crucial to learn how to behave when flying close
to structure. In addition, while there has been a lot of
effort in making simulators more photorealistic [18], [19],
the quality of rendered images still does not enable learned
policies to fully transfer to real world. Nonetheless, some
pioneering work has been done in [9], where the authors
learned a simple flying policy by using only simulated robot
experience.

RL methods have raised more success on grounded plat-
forms [20], [21], [22]. When the robot can afford to experi-
ence collision, good driving behaviour can only be learned
from real-world data. Another approach consists in making
most of the experiences in simulation, and then fine-tune the
learned policies with real-world data [9]. Eventually, if the
robotic platform can be precisely modeled, model-based RL
techniques [20], [21] can be used to learn advanced driving
policies. We believe that future work will take advantage
of known quadrotors models to efficiently learn generalizing
flying policies with model-based reinforcement learning and
leverage recent computer vision techniques [23] to make
policies learned in simulation better generalize to the real
world.

III. CONCLUSIONS

This paper presents a survey on existing deep learning
methods for drone navigation. Even though they have a
stronger perception awareness with respect to classical ap-
proaches, learning based solutions are still failing to exploit
the dynamics and agility of drones. Indeed, we believe
that learning-based and traditional approaches are going to
complement each other and allow drones to be used in a
wide variety of navigation related applications such as aerial
delivery or search and rescue.
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