
Bonnet: An Open-Source Training and Deployment Framework
for Semantic Segmentation in Robotics using CNNs

Andres Milioto Cyrill Stachniss

Abstract— The ability to interpret a scene is an important
capability for a robot that is supposed to interact with its
environment. The knowledge of what is in front of the robot
is, for example, key to navigation, manipulation, or planning.
Semantic segmentation labels each pixel of an image with a
class label and thus provides a detailed semantic annotation of
the surroundings to the robot. Convolutional neural networks
(CNNs) became popular methods for addressing this type of
problem. The available software for training and the integration
of CNNs in real robots, however, is quite fragmented and
difficult to use for non-experts, despite the availability of sev-
eral high-quality open-source frameworks for neural network
implementation and training. In this paper, we propose a novel
framework called Bonnet, which addresses this fragmentation
problem. It provides a modular approach to simplify the
training of a semantic segmentation CNN independently of
the used dataset and the intended task. Furthermore, we also
address the deployment on a real robotic platform. Thus, we
do not propose a new CNN approach in this paper. Instead, we
provide a stable and easy-to-use tool to make this technology
more approachable in the context of autonomous systems. In
this sense, we aim at closing a gap between computer vision
research and its use in robotics research. We provide an open-
source framework for training and deployment. The training
interface is implemented in Python using TensorFlow and the
deployment interface provides a C++ library that can be easily
integrated in an existing robotics codebase, a ROS node, and
two standalone applications for label prediction in images and
videos.

I. INTRODUCTION

Perception is an essential building block of most robots.
Autonomous systems need the capability to analyze their
surroundings in order to safely and efficiently interact with
the world. Augmenting the robot’s camera data with the
semantic categories of the objects present in the scene, has
the potential to aid localization [2, 3, 22], mapping [16, 29],
path planning and navigation [10, 30], manipulation [5, 27],
precision farming [19, 20] as well as many other tasks and
robotic applications. Semantic segmentation provides a pixel-
accurate category mask for a camera image or image stream.
The fact that each pixel in the images is mapped to a semantic
class, allows the robot to obtain a detailed semantic view of
the world around it and aids to the understanding the scene.

Most methods, which represent the current state of the art
in semantic segmentation, are based on fully convolutional
neural networks. The success of neural networks for many
tasks from machine vision to natural language processing
has triggered the availability of many open-source devel-
opment and training frameworks such as TensorFlow [1]

All authors are with the University of Bonn, Germany. This work has
partly been supported by the EC under the grant number H2020-ICT-
644227-Flourish.

Fig. 1. Sample predictions from our framework. Left: Raw RGB images.
Right: Overlay with semantic segmentation label from CNN prediction.
From top to bottom: Cityscapes dataset [9], Synthia dataset [25], Crop-
Weed agricultural dataset [6]. Best viewed in color.

or Caffe [15]. Even though these tools have simplified the
development of new networks and the exploitation of GPUs
dramatically, they are still non-trivial to use for a novice.
Companies such as NVIDIA and Intel have furthermore de-
veloped custom accelerators such as TensorRT or the Neural
Compute SDK. Both use graphs created with TensorFlow
or Caffe as inputs and transform them into a format in
which inference can be accelerated by their custom hardware.
As with the other frameworks, their learning curve can be
steep for a developer that actually aims at solving a robotics
problem but which relies on the semantic understanding of
the environment. Last but not least, source code of computer
vision research related to semantic segmentation is often
made available, which is a great achievement. Each research
group, however, uses a different framework and adapting
the trained networks to an (own) robotics codebase can
sometimes take a considerable amount of development time.

Therefore, we see the need for a framework that allows a
developer to easily train and deploy semantic segmentation
networks for robotics. Such a framework should allow devel-
opers to easily add new research approaches into the robotic
system while avoiding the effort of re-implementing them
from scratch or modifying the available code until it becomes
at least marginally usable for the research purpose. This is
something that we experienced ourselves and observed in the
community too often.

The contribution of this paper is a novel software frame-
work that provides a modular implementation of semantic
segmentation using CNNs. It solves training and deploy-
ment on a robot. Thus, we do not propose a new CNN
approach here. Instead, we provide a set of tools to make this
technology easily usable in robotics and to enable a larger
number of people to use CNNs for semantic segmentation
on their robots. We strongly believe that our framework
allows the scientific robotics community to save time on
the CNN implementations, enabling researchers to spend
more time to focus on how such approaches can aid robot
perception, localization, mapping, path planning, obstacle
avoidance, manipulation, safe navigation, etc. Our framework
relies on TensorFlow for our graph definition and training,
but provide the possibility of using different backends with
a clean and stable C++ API for deployment. It allows
for the possibility to transparently exploit custom hardware
accelerators that become commercially available, without
modifying the robotics codebase.

In sum, our software framework provides (i) a modular
implementation platform for training and deploying semantic
segmentation CNNs in robots; (ii) a sample architecture that
performs well for a variety of perception problems in robotics
while working roughly at sensor framerate; (iii) a stable, easy
to use, C++ API that also allows for the addition of new
hardware accelerators as they become available; (iv) a way
to promptly exploit new datasets and network architectures
as they become available in the computer vision and robotics
community.

Although we do not propose a new scientific method, we
believe that this work has the potential to have a strong
positive impact on the robotics community. Our software
is available as open-source at https://github.
com/Photogrammetry-Robotics-Bonn/bonnet.
Furthermore, we make this paper available on arXiv to
promote the use of our framework.

II. RELATED WORK

Semantic segmentation is important in robotics. The pixel-
wise prediction of labels can be precisely mapped to objects
in the environment and thus allowing the autonomous system
to build a high resolution semantic map of its surroundings.

One of the pioneers in efficient feed-forward encoder-
decoder approaches to semantic segmentation is Segnet [4].
It uses an encoder based on VGG16 [28], and a symmetric
decoder outputting a semantic label for each pixel of the
input image. The decoder uses the encoder pooling indexes
to perform the unpooling to recover some of the lost spatial
resolution during pooling. Segnet is available as a Caffe im-
plementation and has pre-trained weights for several datasets.
U-Net [24], which was released contemporaneously, exploits
the same encoder-decoder architecture but uses a decoder
concatenation of the whole encoder feature map instead
of sharing pooling indexes. This allows for more accurate
decision boundaries, which comes at a higher computational
and memory cost. U-Net is available as an implementation in
a modified Caffe version and provides pre-trained weights for

Fig. 2. Example of an encoder-decoder semantic segmentation CNN, based
on the non-bottleneck idea behind ERFNet [23]. Best viewed in color.

a medical dataset. PSP-Net [32], the current state of the art in
semantic segmentation, uses ResNet [12] as the encoder, and
exploits global information through a pyramid of average-
pooling layers after the latter, to provide more accurate
semantics based on the environment of the image objects.
PSP-Net is also available as a modified Caffe implementation
and comes with pre-trained weights from different scene
parsing datasets. All of these architectures are based on
encoders such as VGG and ResNet, which focus on accuracy
of the predictions rather than the execution speed for a near
real-time application in robotics.

Other architectures use post-processing steps to improve
the decision boundaries in the segmented masks. Some
versions of DeepLab [7] use fully connected conditional
random fields (CRF) in addition to the last layer CNN
features in order to improve the localization performance.
CRF-as-RNN [33] replaces the CRF with a recurrent neural
network for prediction refinement, also deviating from a
fully feed-forward implementation. Both approaches provide
modified implementations of Caffe and pre-trained weights
for some scene parsing datasets. Because of rather ineffi-
cient feature extractors and the post-processing steps, their
execution speed is quite far away from the frame-rate of a
regular camera, even when executed on the most powerful
acceleration hardware available today.

Robots, however, need online inference capabilities for
most applications. There has been work focusing on infer-
ence efficiency, both in terms of execution time and model
size. Enet [21] proposes efficient down-sampling modules,
efficient bottlenecks, and dilated convolutions to decrease
the model size and to improve the computational efficiency.
Enet is available as an implementation based on the scien-
tific computing framework Torch and provides pre-trained
weights. ICNet [31] proposes a compressed pyramid scene
parsing network using an image cascade that incorporates
multi-resolution branches to provide a more efficient imple-
mentation of PSP-Net that can run closer to real-time. It is
available as a Caffe implementation based in PSP-Net, and
contains pre-trained weights. ERFNet [23] proposes a way
of widening each layer by replacing the bottleneck modules
with efficient dilated separable convolution modules. It is
available both, as Torch and PyTorch implementations, and
contains pre-trained weights. Mobilenets-v2 [26] proposes
inverted residuals and linear bottlenecks to achieve near

https://github.com/Photogrammetry-Robotics-Bonn/bonnet
https://github.com/Photogrammetry-Robotics-Bonn/bonnet

Fig. 3. Layout of the framework. Python interface is used for training and
graph definition, and C++ library can use a trained graph and infer semantic
segmentation in any running application, either linking it or by using the
ROS node. Both interfaces communicate through the four configuration files
in yaml format and the trained model weights.

state-of-the-art performance in semantic segmentation using
efficient constrained networks. Mobilenets-v2 is available as
a TensorFlow implementation.

This fragmentation of different systems and backends
motivates our idea of providing a modular implementation
framework, in which such architectures can be realized.

III. BONNET: TRAINING AND DEPLOYMENT
FOR SEMANTIC SEGMENTATION IN ROBOTICS

We provide our semantic segmentation framework called
Bonnet with a Python training pipeline and a C++ deploy-
ment library. The C++ deployment library can be used stan-
dalone or as a ROS node. We provide a CNN implementation
based on ERFNet, as depicted in Fig. 2 as well as pre-
trained weights on three different scene parsing datasets.
Our framework allows for fast multi-GPU training, for easy
addition of new state-of-the-art architectures and available
datasets, for easy training, retraining, and deployment in a
robotic system. It furthermore allows for transparently using
different backends for hardware accelerators as they become
available. This all comes with a stable C++ API.

The usage of our framework is split in two steps. First,
training the models to infer the pixel-accurate semantic
classes from a specific dataset through a Python interface
which is able to access the full-fledged API provided by
TensorFlow for neural network training. Second, deploying
the model in an actual robotic platform through a C++
interface which allows the user to infer from the trained
model in either an existing C++ application or a ROS-
enabled robot. Fig. 3 shows a modular description of this
division, from the application level to the hardware level,
which we explain in detail in the following sections.

IV. BONNET TRAINING

The training of the models is performed through the
methods defined through the abstract classes Dataset
and Network (see Fig. 3), which handle the pre-fetching,
randomization, and pre-processing of the images and labels,
and the supervised training of the CNNs, respectively.

In order to train a model using our framework, there is
a sequence of well-defined steps that need to be performed,
which are:

• Dataset definition, which is optional if the dataset is
provided in one of our defined standard dataset formats.

• Network definition, which is also optional if the pro-
vided architecture fits the needs of the addressed se-
mantic segmentation task.

• Hyper-parameter tuning.
• GPU training, either through single or multi GPU. This

step can be performed either from scratch, or from a
provided pre-trained model.

• Graph freezing for deployment, which optimizes the
models to strip them from training operations and
outputs a different optimized model format for each
supported hardware family.

A. Dataset Definition

The abstract class Dataset provides a standard way to
access dataset files, given a desired split for it in training,
validation, and testing sets. The codebase contains a general
dataset parser which can be used to import a directory
containing images and labels that are already split and put
them in the standard dataset format, but the script can also be
used as a baseline to implement it in a different way, given
a different organization of the dataset files. The definition
of each numeric label’s semantic class, the colors for the
debugging masks, the desired image inference size, and the
location of the dataset are meant to be performed in the
corresponding dataset’s data.yaml file, of which there are
several examples in the codebase. Once the dataset is parsed
into the standard format, the abstract class Network knows
how to communicate with it in order to handle the training
and inference of the model. Besides the handling of the file
opening and feeding to the CNN trainer, the abstract dataset
handler performs the desired dataset augmentation, such as
flips, rotations, shears, stretches, and gamma modifications.
The dataset handler runs on a thread different from the
training, such that there is always an augmented batch
available in RAM for the network to use, but also allows
the program to use big datasets in workstations with limited
memory. The selection of this cache size allows for speed vs.
memory adjustment which depend on the system available
to the trainer.

B. Network Definition

Once the dataset is properly parsed into the standard for-
mat, the architecture has to be defined. We provide a sample
architecture, which is designed with real-time operation in
mind, and provide pre-trained weights for different datasets,
and different network sizes, depending on the complexity

of the problem. Other network architectures can be easily
added, given the modular structure of the codebase, and it is
the main purpose of the framework to allow the implemen-
tation of new architectures as they become available. The
abstract class Network (see Fig. 3) contains the definition
of the training method that handles the optimization through
stochastic gradient descent, inference methods to test the
results, metrics for performance assessment, and the graph
definition method, which each architecture overloads in order
to define different models. Each architecture inherits the
abstract class Network and redefines the graph in order
to change the model type, which allows to easily add new
architectures. If a new architecture requires a new metric,
or a different optimizer, these can be modified simply by
overloading it corresponding method of the abstract class.
The interface with the model architecture is done through
the net.yaml configuration file, which includes the selection
of the architecture, the number of layers, number of kernels
per layer, and some other architecture dependent hyper-
parameters such as the amount of dropout [13], and the batch
normalization [14] decay.

The interface with the optimization is done through the
train.yaml file, which contains all training hyper-parameters,
such as learn rate, learn rate decay, batch size, the num-
ber of GPUs to use, and some other parameters such as
the possibility to periodically save image predictions for
debugging, and summaries of the weights and activations
histograms, which take a lot of disk space during training,
and are only useful to have during hyper-parameter selection.
There are examples of these configuration files provided for
the included architectures in the codebase.

It is important to notice that since the abstract classes
Network and Dataset handle most cases well with their
default implementation, no coding is required to add a new
task and train a model unless a number of very special cases.
However, if a complex dataset is to be added, or a new
network implementation is desired, the framework allows for
its easy implementation.

C. Hyper-parameter Selection

Once the network and the dataset have been properly
defined, the hyper-parameters need to be tuned. We recom-
mend doing the hyper-parameter selection through random-
search, as single GPU jobs, which can be performed by start-
ing the training with different configuration files (net.yaml,
train.yaml), with all summary options enabled, and then
choosing the best performing model for a final multi-GPU
training until convergence. The framework is designed in
this way for more simplicity, and because in this way the
hyper-parameter selection jobs can be scheduled easily with
an external job-scheduling tool. The hyper-parameters that
can be configured are the following:

• Cache size: number of images and labels to keep in
main memory by the dataset handler, ready for feeding
to the training. This does not affect the performance of
the model, but a higher number of fetched examples
will train faster, avoiding reading directly from disk.

• Image properties: data augmentation techniques such as
rotations, flips, shears, stretches, gamma modifications.
The image size can also be treated as a hyper-parameter,
trying to adjust it to the lower possible resolution as
long as the performance is acceptable for the task. Since
each application may require different levels of pixel
accuracy, in speed and resource constrained applications
such as robotics we want to avoid extra calculations, and
thus the selected input image size is critical to runtime.

• Network properties: number of layers; size of kernels;
number of kernels; batch normalization [14] decay rates
and regularizer rates such as dropout [13] and weight
decay.

• Training properties: Adam optimizer [17] learning rate
and decays; type of weighting policy for dealing with
unbalanced classes in the dataset and γ for focal
loss [18]; batch size and number of GPUs.

A key factor for training that is worth mentioning is what
to do when the pixel content is unbalanced for each class. If
some of the classes of the dataset have a lower occurrence
frequency, we need to address the problem properly to obtain
a good performance. There are currently three different
approaches to handle this type of problem implemented in
our framework, considering as a starting point a pixel-wise
vanilla log-loss for each image of the type:

Lvanilla(y, p) = −
P∑
i=1

C∑
j=1

yij log(pij)

where pj =
ezj∑C
j=1 e

zj
for j = 1, ..., C

Here, C is the number of classes, P is the total number
of pixels in the image, y is the ground truth value as a one-
hot representation, z represents the pixel-wise un-bounded
logits, and p its corresponding softmax value.

The first two methods incur into adding a per-class weight
in the pixel-wise loss, resulting in a per-image loss and
weighting strategies of the form:

Lweighted(y, p) = −
P∑
i=1

C∑
j=1

wj yij log(pij)

where wj =

{
f̃
fj

for median frequency balancing
1

ln(fj+ε)
for inverse log frequency balancing

and fj =
Pj
P

for j = 1, ..., C

In the case of “inverse log frequency balancing”, ε needs
to be set so that each wj doesn’t surpass certain value for
numerical stability (e.g., 10, or 50, also a hyper-parameter).

The third method was introduced in the context of object
detection by RetinaNet [18], and penalizes the hard examples
by using a “focal” loss function of the form:

Lfocal(y, p) = −
P∑
i=1

C∑
j=1

yij (1− pij)
γ
log(pij)

These three methods address the problem of class balanc-
ing in different ways, and the weighting and focal loss can
be combined in our framework by using a combined loss,
with two tunable parameters γ and ε of the form:

Lcombined(y, p) = −
P∑
i=1

C∑
j=1

wij yij (1− pij)
γ

log(pij)

Most frameworks require the setting of the weight vector
manually, but our framework calculates the frequencies au-
tomatically from the training set labels, and allows to select
the strategy in the training configuration file train.yaml. For
more information, please refer to the readme file within the
code.

D. Multi GPU training

Once the most promising model is found, the training can
be done with this hyper-parameter set using multiple GPUs
to be able to increase the batch size, and hence, the speed
of training. Changing the number of GPUs used for training
is as simple as changing the setting in the train.yaml config-
uration file, but we recommend scaling the hyper-parameter
set found following the procedure described in [11] for better
results. The multi-GPU training, as described in Fig. 4, is per-
formed by synchronously averaging the gradients obtained by
a single SGD step in each GPU. For this, all model parameter
are stored in main memory, and they are transferred to each
GPU after each step of averaged gradient update. This is
handled by the abstract network’s training method, and it is
transparent to the user. The accuracy and Jaccard index (IoU)
are periodically reported and the best performing models in
the validation set are stored. We store both the best accuracy
and the best intersection over union model, for posterior use
in deployment. The mean Jaccard index (IoU) is used for the
final evaluation:

mIoU =
1

C

C∑
i=1

TPj
TPj + FPj + FNj

Another important work to make GPU training more
efficient is the introduction of the concept of “checkpointed
gradients” [8], which allows to fit big models in GPU
memory in sub-linear space. This is done by checkpointing
nodes in the computation graph defined by the model, and
recomputing the parts of the graph in between those nodes
during backpropagation. This makes it possible to calculate
the network gradients in the backward pass at reduced mem-
ory cost, without increasing the computational complexity
linearly. Our framework allows to use the implementation of
the checkpointed gradients, and therefore, besides allowing
for bigger batches due to the multi-GPU support, it also
allows for bigger per-GPU batches.

E. Graph Freezing for Deployment

Once the trained model performs as desired, the frame-
work exports a log directory containing a copy of all the con-
figuration files used, for later reference, and two directories
inside containing the best IoU and best accuracy checkpoints.

Fig. 4. Multi-GPU training. Example using two GPUs, but scalable to all
GPUs available in workstation.

To deploy the model and use it with different back-ends,
such as TensorRT, we need to “freeze” the desired model,
which means removing all of the helper operations required
for training and unnecessary for inference, such as the op-
timizer ops, the gradients, dropout, and calculation of train-
time batch normalization momentums. The abstract network
provides a method which handles this procedure, creating
another directory with four frozen models: the model in
NCHW format, which is faster when inferring using GPUs;
the model in NHWC format, which can be faster when using
CPUs; an optimized model which tries to further combine
redundant operations, and an 8-bit quantized model for faster
inference. This method also generates a new configuration
file called nodes.yaml, which contains important node names,
such as the inputs, code, and outputs as logits, softmax, and
argmax. This allows for a more automated parsing of the
frozen model during inference, automatically remembering
the names of the inputs and outputs. We provide a Python
script for this procedure, which takes in a log directory
and outputs all the frozen models and their configuration
files in a packaged directory that contains all files needed
for deployment. We also provide other applications to test
this model in images and videos, in order to observe the
performance qualitatively for debugging, and to serve as an
example for serving using python, in case this is desired. It is
key to notice that since the whole process can be performed
in a host PC, the device PC on the robot only needs the
dependencies to run the inference, such as our C++ library.

Listing 1. C++ code showing simplicity of semantic segmentation CNN
inference in C++ application, using Bonnet framework as a library.

i n c l u d e <bo nn e t . hpp>
i n c l u d e <opencv2 / c o r e / c o r e . hpp>
i n c l u d e <s t r i n g >

int main () {

// path to frozen dir
s t d : : s t r i n g p a t h = "/path/frozen/pb" ;
// tf for Tensorflow, trt for TensorRT
s t d : : s t r i n g backend = "trt" ;
// gpu or cpu (or specialized)
s t d : : s t r i n g dev = "/gpu:0" ;

// Create the network
bo nn e t : : Bonnet n e t (pa th , backend , dev) ;

// Infer image from disk
cv : : Mat image , mask , m a s k c o l o r ;
image = cv : : imread ("/path/to/image") ;
n e t . i n f e r (image , mask) ;

// If necessary, colorize (makes
// color debug mask like Fig.1)
n e t . c o l o r (mask , m a s k c o l o r) ;

}

V. BONNET DEPLOYMENT

For the deployment of the model on a real robot, we
provide a C++ library with an abstract handler class that takes
care of the inference of semantic segmentation, and allows
for each implemented back end to run without changes in
the API level. The library can handle inference from a frozen
model that is generated through the last step of the Python
interface. Bonnet handles the inference through the user’s
selection of the desired back end, execution device (GPU,
CPU, or other accelerators), and the frozen model to use.
There are two ways to access this library: one is by linking
it with an existing C++ application, using the two provided
standalone applications as a usage example, and the other one
is to use the provided ROS node, which already takes care
of everything needed to do the inference, from debayering
the input images, to resizing, and publishing the mask
topics. List. 1 contains an example of how to build a small
“main.cpp” application to perform semantic segmentation on
an image from disk using our C++ library.

VI. SAMPLE USE CASES SHIPPED WITH BONNET

In order to show the capabilities of the framework, we
provide a sample architecture focusing on a good accuracy
vs. runtime trade-off. The model is based on the concept of
“variable receptive field non-bottleneck” behind ERFNet [23]
which proposes factorized convolutions of diverse receptive
fields in order to widen each layer of a residual and asym-
metric encoder-decoder architecture (see Fig. 2), to improve
the performance of real-time capable models such as ENet,
without increasing the computational cost significantly. Tab. I

TABLE I
PIXEL-WISE METRICS FOR SAMPLE ARCHITECTURE.

Dataset Input Size #Params #Operations mIoU mAccuracy

Cityscapes 512x256 1.8M 16.5B 52.3% 90.4%
1024x512 66.1B 64.1% 93.1%

Synthia 512x384 1.8M 24.2B 64.1% 92.3%
960x720 85.1B 71.3% 95.2%

Crop-Weed 512x384 1.1M 9.5B 80.1% 98.5%

TABLE II
MEAN RUNTIME OF THE SAMPLE ARCHITECTURE.

Dataset Input Size Back-end i7+GTX1080Ti Jetson TX2 SoC

Cityscapes
512x256 TensorFlow 19ms ≈ 52 Hz 170ms ≈ 6 Hz

TensorRT 10ms ≈ 100 Hz 89ms ≈ 11 Hz

1024x512 TensorFlow 71ms ≈ 14 Hz 585ms ≈ 2 Hz
TensorRT 33ms ≈ 30 Hz 245ms ≈ 4 Hz

Synthia
512x384 TensorFlow 20ms ≈ 50 Hz 223ms ≈ 4 Hz

TensorRT 11ms ≈ 100 Hz 127ms ≈ 8 Hz

960x720 TensorFlow 61ms ≈ 16 Hz 673ms ≈ 1 Hz
TensorRT 27ms ≈ 37 Hz 362ms ≈ 3 Hz

Crop-Weed 512x384 TensorFlow 9ms ≈ 111 Hz 132ms ≈ 8 Hz
TensorRT 4ms ≈ 250 Hz 99ms ≈ 10 Hz

shows the performance of the sample architecture on three
diverse challenging datasets, two for scene parsing, and one
for agricultural purposes, for which we provide the trained
weights. Because each problem presents a different level of
difficulty, and uses images of a different aspect ratio, we
show the performance of the model for different number of
parameters and number of operations by varying the number
of kernels of each layer of the base architecture and the size
of the input.

The model size used for the Cityscapes dataset, which
contains a set of 5000 challenging real world images for
road scene parsing (of which 2975 are used for training)
was shared with the Synthia dataset, which contains over
10000 synthetic images for road scene parsing in different
lighting and seasonal conditions, and it was pre-trained with
the latter in order to increase the performance on the real
world data.

The model used for the agricultural dataset is reduced
in size, given the lower complexity of the task due to the
reduced number of classes, and it can therefore benefit from
a faster running time.

Since the framework is meant to serve as a general
starting point to implement different architectures, we advise
referring to the code in order to have an up-to-date measure
of the latest architecture design performances.

As previously stated, our sample model is designed with
a focus on the best accuracy vs. runtime trade-off currently
possible for robotics. Therefore, these architectures achieve
values of accuracy and intersection over union scores which
are slightly inferior to-state-of-the-art papers in computer
vision, but are specially fast to run, which is critical in real-
time applications such as robotics, where processing images
at the frame-rate of the camera device is desirable, and often
necessary. Tab. II shows the runtime of the included models,
depending on the model and input size, where we can see

how much the inference time can be improved by using
custom accelerators for the available commercial hardware,
further supporting the importance of allowing the user to
transparently benefit from its usage.

VII. CONCLUSION

In this paper, we presented Bonnet, an open-source se-
mantic segmentation training and deployment framework for
robotics research. Our framework eases the integration of
state-of-the-art semantic segmentation methods in robotics. It
provides a stable interface allowing the community to better
collaborate, add different datasets and network architectures,
and share implementation efforts as well as pre-trained
models. We believe that this framework will speed up the
deployment of semantic segmentation CNNs on research
robotics platforms. We provide a sample architecture that—
depending on the available hardware and input image size—
operates at camera framerate or even faster, including pre-
trained weights for diverse and challenging datasets with
the goal that the robotics community will exploit them and
contribute to the framework.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] A. Armagan, M. Hirzer, and V. Lepetit. Semantic segmentation for 3d
localization in urban environments. In Joint Urban Remote Sensing
Event (JURSE), pages 1–4, 2017.

[3] N. Atanasov, M. Zhu, K. Daniilidis, and G.J. Pappas. Localization
from semantic observations via the matrix permanent. Intl. Journal of
Robotics Research (IJRR), 35(1-3):73–99, 2016.

[4] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. on Pattern Analalysis and Machine Intelligence (TPAMI),
2017.

[5] N. Blodow, L. C. Goron, Z. C. Marton, D. Pangercic, T. Rühr,
M. Tenorth, and M. Beetz. Autonomous semantic mapping for robots
performing everyday manipulation tasks in kitchen environments. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 4263–4270, 2011.

[6] N. Chebrolu, P. Lottes, A. Schaefer, W. Winterhalter, W. Burgard,
and C. Stachniss. Agricultural robot dataset for plant classification,
localization and mapping on sugar beet fields. Intl. Journal of Robotics
Research (IJRR), 2017.

[7] L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A.L.
Yuille. Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs. arXiv
preprint, abs/1606.00915, 2016.

[8] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with
sublinear memory cost. arXiv preprint, abs/1604.06174, 2016.

[9] M. Cordts, S. Mohamed Omran, Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

[10] R. Drouilly, P. Rives, and B. Morisset. Semantic representation for
navigation in large-scale environments. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 1106–1111,
May 2015.

[11] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch
SGD: training imagenet in 1 hour. arXiv preprint, abs/1706.02677,
2017.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2016.

[13] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint, abs/1207.0580, 2012.

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint,
abs/1502.03167, 2015.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint, abs/1408.5093, 2014.

[16] R. Khanna, M. Möller, J. Pfeifer, F. Liebisch, A. Walter, and R. Sieg-
wart. Beyond point clouds - 3d mapping and field parameter measure-
ments using uavs. In IEEE 20th Conference on Emerging Technologies
Factory Automation (ETFA), pages 1–4, 2015.

[17] D.P. Kingma and J.Ba. Adam: A method for stochastic optimization.
arXiv preprint, abs/1412.6980, 2014.

[18] T.Y. Lin, P. Goyal, R.B. Girshick, K. He, and P. Dollár. Focal loss for
dense object detection. arXiv preprint, abs/1708.02002, 2017.

[19] P. Lottes, M. Höferlin, S. Sander, M. Müter, P. Schulze-Lammers, and
C. Stachniss. An Effective Classification System for Separating Sugar
Beets and Weeds for Precision Farming Applications. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2016.

[20] A. Milioto, P. Lottes, and C. Stachniss. Real-time Semantic Segmen-
tation of Crop and Weed for Precision Agriculture Robots Leveraging
Background Knowledge in CNNs. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2018.

[21] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: Deep
neural network architecture for real-time semantic segmentation. arXiv
preprint, 1606.02147, 2016.

[22] J. Pöschmann, P. Neubert, S. Schubert, and P. Protzel. Synthesized
semantic views for mobile robot localization. In Proc. of the Eu-
rop. Conf. on Mobile Robotics (ECMR), pages 1–6, 2017.

[23] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo. Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation.
IEEE Trans. on Intelligent Transportation Systems (ITS), 19(1):263–
272, Jan 2018.

[24] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. arXiv preprint,
abs/1505.04597, 2015.

[25] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. Lopez. The
synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes. In Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2016.

[26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.C. Chen.
Inverted Residuals and Linear Bottlenecks: Mobile Networks for
Classification, Detection and Segmentation. arXiv preprint, jan 2018.

[27] M. Schwarz, A. Milan, A.S. Periyasamy, and S. Behnke. Rgb-d object
detection and semantic segmentation for autonomous manipulation in
clutter. Intl. Journal of Robotics Research (IJRR), 2017.

[28] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint, abs/1409.1556, 2014.

[29] N. Sünderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P.I.
Corke, G. Wyeth, B. Upcroft, and M. Milford. Place categorization and
semantic mapping on a mobile robot. arXiv preprint, abs/1507.02428,
2015.

[30] C. Zhao, H. Hu, and D. Gu. Building a grid-point cloud-semantic
map based on graph for the navigation of intelligent wheelchair. In
21st International Conference on Automation and Computing (ICAC),
pages 1–7, Sept 2015.

[31] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. Icnet for real-time
semantic segmentation on high-resolution images. arXiv preprint,
abs/1704.08545, 2017.

[32] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing
network. arXiv preprint, abs/1612.01105, 2016.

[33] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. Torr. Conditional random fields as recurrent neural
networks. In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV),
2015.

	Introduction
	Related Work
	Bonnet: Training and Deployment for Semantic Segmentation in Robotics
	Bonnet Training
	Dataset Definition
	Network Definition
	Hyper-parameter Selection
	Multi GPU training
	Graph Freezing for Deployment

	Bonnet Deployment
	Sample Use Cases Shipped with Bonnet
	Conclusion
	References

