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I. INTRODUCTION

Acquiring models of the environment from data gathered
by a moving sensor is an essential building block of many
robotics applications. These “models” should support several
tasks such as navigation and manipulation. Common repre-
sentations of 3D scenes are: voxel maps, octrees [3], implicit
surfaces [1], sample based [5], [6] or surface distributions [4].
All representations mentioned above do not exploit any
structure in the environment. Exploiting structure to describe
a scene has clear advantages on the storage: describing a
room as a set of walls and a floor requires far less memory
than storing the corresponding point cloud.

In this work we propose a unified representation for hybrid
scenes consisting of points, lines, planes and surfels and we
refer to these primitives within a scene as “matchables”. By
using this unified representation we can define correspon-
dences among items in the scene that belong to different
classes: besides enforcing that two planes or two points in
the scenes are the same, we can also express constraints such
as “a point lies on a line”, or “a line lies on a plane”, as
shown in Fig.

A registration approach built upon the presented rep-
resentation is expected to capture in a uniform manner
several ICP variants. This would allow the system to benefit
from environmental structure when present, while smoothly
degrading to regular ICP [2] when the structure is missing.

II. UNIFIED SCENE REPRESENTATION

A matchable m is a data-structure that contains the
information to represent the geometric primitives previously
mentioned, and it is parametrized as follows:

<vm= ( a >Qm> (1)

More in detail, py, € R is the centroid of the primitive,
dm € S(2) its direction vector and 2, € R3*3 a 3D
information matrix obtained from d,, according to Tab.
note that Ry, is a rotation matrix that applied to the direction
vector d, returns the x axis, i.e., (1 0 O)T = Rpnd,.
Albeit not minimal, this formulation allows to represent
points, lines, planes and surfels by using the same set of
parameters.

Applying a transformation X € SE(3) to a matchable m
results in a new matchable m’ = X - m with the following
parameters:
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Fig. 1: Two scenes, moving (M) and fixed (F)), with different types
of matchables: points (pt), lines (1), planes (pl) and surfels (s).
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A straightforward way to compute a 6D vector difference
between matchables consists in stacking the difference be-
tween the corresponding points e, = pm — P, and direction
vectors eq = dy, — d,. Extending this difference vector
with an additional component e, = dl d., allows us to
capture the orthogonality between two direction vectors. Ac-
cordingly, we define the difference between two matchables
as the following 7D vector:

ep Pm — p:n
e(vim,viy)=| esa | = dm—d, 3)
€o dl d.,

The difference vector is not necessarily zero even for
identical primitives since the representation is not minimal.
To carry on the minimization we need to define a metric
that is immune to this issue. To this extent, we construct a
distance metric that is zero whenever a constraint is satisfied.

A distance e(m,m’) between matchables is a non-
negative scalar computed from the difference vector. If
the distance is null, the constraint between the two
matchables is satisfied. To compute the distance, we em-
ploy adapted (2-norm to difference vector: as follows
e(m,m’) = ||e(m7m’)||?z(m7m,). The information matrix
Q(m,m’) € R7X7 activates the appropriate components
of the difference vector during the minimization, based on



type | Pm][ dm] Qm | Shape of Qm |
point | p | O Isxs <

line | py | dy Rumdiag(0, 1, 1)RZ, N\
plane | pr | dr Rumdiag(1,0,0)RL, ‘
surfel | ps | ds Rmdiag(1, ¢, ¢)RE ‘

TABLE I. The shape of €2, discriminates the type of primitive
represented by the matchable. The confidence ellipsoid obtained
from Q. is a sphere if the matchable is a point, or it has a disk-
like shape with dn, as direction of minimal variation in case of a
sufel. If the primitive is a line or a plane the confidence ellipsoid
degenerates respectively to a cylinder oriented as dm or to two
parallel planes having normal dp,.
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TABLE II: Information Matrix €2(m, m’), green: €, does not
depend on m, pink: €, depends on m.

the type of constraint, according to Tab. [l We enforce the
following block diagonal structure for £2(m, m’):

Q 0 0
Q(m,m’) = 0 Q4 0 “)
0 0 Q

With this formulation, the generic distance between two
matchables is computed as

e(mm') = 5)

2
He(vm, V;n) ||Q(m,m’)

2 2 2
lepllq, + lleallq, +lleollq,

Having defined how to transform the matchables and a way
to compute how “far” is a constraint from being satisfied,
the described representation is suitable to be used within a
registration context by seeking for the optimal transformation
X* that better alignes two scenes:

X* = argmin Y e(Xmy, m)
gx Z( I, )

= arg}r{ninz||e(ka,m;€)THil(ka7m%) (6)

where the matchables of the “moving” scene m; . x are linked
to the matchables of the “fixed” scene m/_ .

TABLE III: Synthetic Experiments - Error Evolution. In solid blue
is shown the evolution of the error without noise, while in dashed
red is reported the low-noise case and in point-dashed yellow the
high-noise case.
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IIT. RESULTS

To validate the proposed representation in a registration
context, we designed an experiment with synthetic data,
isolating the effect of homogeneous and heterogeneous con-
traints. For each constraint type, we build an optimization
problem with 10 couples of matchable in three cases: no-
noise, low-noise (07 ~ 0.05,02 ~ 0.025] and high-noise
[02 ~ 0.1,02 ~ 0.05], where the noise is applied to the
measurements. In Tab. we report the error evolution of
the Gauss-Newton iterative solver for 10 iterations, under
different levels of noise. In all cases the solver was able to
find the correct minimum.
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