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I. INTRODUCTION

Acquiring models of the environment from data gathered
by a moving sensor is an essential building block of many
robotics applications. These “models” should support several
tasks such as navigation and manipulation. Common repre-
sentations of 3D scenes are: voxel maps, octrees [3], implicit
surfaces [1], sample based [5], [6] or surface distributions [4].
All representations mentioned above do not exploit any
structure in the environment. Exploiting structure to describe
a scene has clear advantages on the storage: describing a
room as a set of walls and a floor requires far less memory
than storing the corresponding point cloud.

In this work we propose a unified representation for hybrid
scenes consisting of points, lines, planes and surfels and we
refer to these primitives within a scene as “matchables”. By
using this unified representation we can define correspon-
dences among items in the scene that belong to different
classes: besides enforcing that two planes or two points in
the scenes are the same, we can also express constraints such
as “a point lies on a line”, or “a line lies on a plane”, as
shown in Fig. 1.

A registration approach built upon the presented rep-
resentation is expected to capture in a uniform manner
several ICP variants. This would allow the system to benefit
from environmental structure when present, while smoothly
degrading to regular ICP [2] when the structure is missing.

II. UNIFIED SCENE REPRESENTATION

A matchable m is a data-structure that contains the
information to represent the geometric primitives previously
mentioned, and it is parametrized as follows:〈

vm =

(
pm

dm

)
,Ωm

〉
. (1)

More in detail, pm ∈ <3 is the centroid of the primitive,
dm ∈ S(2) its direction vector and Ωm ∈ <3×3 a 3D
information matrix obtained from dm according to Tab. I,
note that Rm is a rotation matrix that applied to the direction
vector d, returns the x axis, i.e.,

(
1 0 0

)T
= Rmdm.

Albeit not minimal, this formulation allows to represent
points, lines, planes and surfels by using the same set of
parameters.

Applying a transformation X ∈ SE(3) to a matchable m
results in a new matchable m′ = X ·m with the following
parameters:
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Fig. 1: Two scenes, moving (M) and fixed (F)), with different types
of matchables: points (pt), lines (l), planes (pl) and surfels (s).

v′ =

(
Rpm + t

Rdm

)
Ω′m = RΩmRT (2)

A straightforward way to compute a 6D vector difference
between matchables consists in stacking the difference be-
tween the corresponding points ep = pm−p′m and direction
vectors ed = dm − d′m. Extending this difference vector
with an additional component eo = dT

md′m allows us to
capture the orthogonality between two direction vectors. Ac-
cordingly, we define the difference between two matchables
as the following 7D vector:

e(vm,v
′
m) =

 ep

ed

eo

 =

 pm − p′m
dm − d′m
dT

md′m

 (3)

The difference vector is not necessarily zero even for
identical primitives since the representation is not minimal.
To carry on the minimization we need to define a metric
that is immune to this issue. To this extent, we construct a
distance metric that is zero whenever a constraint is satisfied.

A distance e(m,m′) between matchables is a non-
negative scalar computed from the difference vector. If
the distance is null, the constraint between the two
matchables is satisfied. To compute the distance, we em-
ploy adapted Ω-norm to difference vector: as follows
e(m,m′) = ‖e(m,m′)‖2Ω(m,m′). The information matrix
Ω(m,m′) ∈ <7×7 activates the appropriate components
of the difference vector during the minimization, based on



type pm dm Ωm Shape of Ωm

point p 0 I3×3

line pl dl Rmdiag(0, 1, 1)RT
m

plane pπ dπ Rmdiag(1, 0, 0)RT
m

surfel ps ds Rmdiag(1, ε, ε)RT
m

TABLE I: The shape of Ωm discriminates the type of primitive
represented by the matchable. The confidence ellipsoid obtained
from Ωm is a sphere if the matchable is a point, or it has a disk-
like shape with dm as direction of minimal variation in case of a
sufel. If the primitive is a line or a plane the confidence ellipsoid
degenerates respectively to a cylinder oriented as dm or to two
parallel planes having normal dm.
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TABLE II: Information Matrix Ω(m,m′), green: Ωp does not
depend on m, pink: Ωp depends on m.

the type of constraint, according to Tab. II. We enforce the
following block diagonal structure for Ω(m,m′):

Ω(m,m′) =

 Ωp 0 0
0 Ωd 0
0 0 Ωo

 (4)

With this formulation, the generic distance between two
matchables is computed as

e(m,m′) = ‖e(vm,v
′
m)‖2Ω(m,m′) (5)

= ‖ep‖2Ωp
+ ‖ed‖2Ωd

+ ‖eo‖2Ωo

Having defined how to transform the matchables and a way
to compute how “far” is a constraint from being satisfied,
the described representation is suitable to be used within a
registration context by seeking for the optimal transformation
X∗ that better alignes two scenes:

X∗ = argmin
X

∑
e(Xmk,m

′
k)

= argmin
X

∑∥∥e(Xmk,m
′
k)T
∥∥2

Ω(Xmk,m′
k)

(6)

where the matchables of the “moving” scene m1:K are linked
to the matchables of the “fixed” scene m′1:K .

TABLE III: Synthetic Experiments - Error Evolution. In solid blue
is shown the evolution of the error without noise, while in dashed
red is reported the low-noise case and in point-dashed yellow the
high-noise case.
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III. RESULTS

To validate the proposed representation in a registration
context, we designed an experiment with synthetic data,
isolating the effect of homogeneous and heterogeneous con-
traints. For each constraint type, we build an optimization
problem with 10 couples of matchable in three cases: no-
noise, low-noise [σ2

t ∼ 0.05, σ2
r ∼ 0.025] and high-noise

[σ2
t ∼ 0.1, σ2

r ∼ 0.05], where the noise is applied to the
measurements. In Tab. III we report the error evolution of
the Gauss-Newton iterative solver for 10 iterations, under
different levels of noise. In all cases the solver was able to
find the correct minimum.
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